- 无标题文档
查看论文信息

论文中文题名:

 宁东煤气化细渣的组成结构特性与分类及气流分级研究    

姓名:

 高影    

学号:

 19213077021    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 固体废弃物资源化利用    

第一导师姓名:

 周安宁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-06-28    

论文外文题名:

 Classification, Property Study and Airflow Grading of Ningxia Coal Gasification Fine Slag    

论文中文关键词:

 煤气化细渣 ; 湿法筛分 ; 组成结构 ; 粉碎分级 ; 干法分选    

论文外文关键词:

 Coal gasification fine slag ; Wet screening ; Composition structure ; Crushing classification ; Dry separation    

论文中文摘要:

煤气化灰渣是在煤气化过程中产生的固定碳含量较高的煤化工固体废弃物,目前,煤气化灰渣主要以堆积填埋方式处理为主。这不仅增加了企业的处理和运输成本,同时,造成了土地资源与能源的极大浪费,以及水体、土壤等严重污染。因此,突破煤气化灰渣高效分离与高值化利用的瓶颈,同时也将促进煤化工清洁绿色发展。本文以宁东能源化工基地水煤浆气化细渣(CWSFS)和干煤粉气化细渣(DCFS)为研究对象,通过湿法筛分分级,采用工业分析、XRF、XRD、BET、SEM等手段,探讨煤气化细渣粒度组成与结构特征的关系,提出了煤气化细渣的分类方法;采用粉碎-气流分级联合技术,开展了水煤浆气化细渣与干煤粉气化细渣的干法分离研究。探究了气化细渣的粉碎方法对气流分级分离效果的影响规律特性;基于上述结果,阐明了气化细渣的粉碎-涡轮式气流分级分离机制。研究结果对于指导宁东能源化工基地煤气化灰渣的分质高值化利用具有重要的理论与应用价值。主要研究结果如下:

(1)利用湿法筛分结合XRD、SEM等分析方法,研究了气化细渣的粒度特性及组成结构特征。结果表明,气化细渣的固定碳含量、灰组成、微观形貌、孔隙结构等与粒度分布均存在相关性。不同粒级CWSFS组分的固定碳含量随粒级增大而增加,不同粒级DCFS组分的固定碳含量与烧失量随着粒级的增大先升高后降低,残炭颗粒随粒度的增加呈现富集的趋势。根据气化细渣的组成特性,以固定碳含量为分类指标,将气化细渣分类为高炭组分(>60%)、中炭组分(40~60%)和低炭组分(<20%)不同类型的组分具有不同的组成结构特征。

(2)采用圆盘粉碎-涡轮式气流分级联合分离技术,研究了圆盘粉碎参数变化对气化细渣涡轮式气流分级效果的影响规律。结果表明,未经圆盘粉碎的CWSFS原样分级后可分离为高炭产品和中炭产品,而经圆盘粉碎后各分级产品的固定碳含量均在中炭组分的固定碳含量范围之内,布袋产品固定碳含量最低为26.89%;未经圆盘粉碎的DCFS原样与DCFS经圆盘粉碎-分级后可分为中炭产品与低炭产品,其中布袋产品固定碳含量最高(可达30%左右)。说明气流分级对气化细渣中的残炭具有富集作用,但圆盘粉碎易造成样品的均一化粉碎,使气流分级效果不明显。

(3)采用气流粉碎-涡轮式气流分级联合分离技术,研究了气流粉碎参数对气化细渣涡轮式气流分级效果的影响规律。结果表明, 采用该联合工艺方法,CWSFS可分为高炭产品和中炭产品。其中分级一产品主要为高炭产品,其固定碳含量为73.93%,产率为37.94%;DCFS可被分离为中炭产品和低炭产品,且低炭产品的脱炭效果最显著,固定碳含量可降到4.99%,产率达到了19.86%,分级二产品中残炭富集效果最明显。气流粉碎有助于大幅提高残炭的分级分离富集率。

(4)在上述研究结果基础,结合SEM照片中矿物颗粒形态统计分析与灰分测试等,探究了气化细渣的粉碎-涡轮式气流分级分离机制。结果表明,粉碎方式对气化细渣的涡轮式气流分级分离效果有重要影响,以研磨为主的圆盘粉碎容易造成样品均一化过粉碎,以冲击力和剪切力作用为主的气流粉碎,能使残炭与灰组分在黏结界面处发生分离,黏附于炭颗粒表面的球形颗粒与矿物质剥离,可更有效促进煤气化细渣的分离,可显著提高残炭的分离回收率。最后,揭示了气化细渣的粉碎-涡轮式气流分级分离机制。

论文外文摘要:

Coal gasification ash and slag are a solid waste of coal chemical industry with high fixed carbon content produced in the process of coal gasification. At present, it is mainly used for stacking and landfill treatment. This not only increases the treatment and transportation costs of enterprises, but also causes great waste of land resources and serious pollution of water and soil. Therefore, it is urgent to break through the bottleneck of efficient separation and high-value utilization of coal gasification ash and slag, which is also the key link restricting the clean and green development of coal chemical industry. This paper took coal water slurry gasification fine slag (CWSFS) and dry pulverized coal gasification fine slag (DCFS) as the research object. This paper discussed the relationship between particle size composition and structural characteristics of coal gasification fine slag by means of industrial analysis, XRF, XRD, BET and SEM, and put forward the classification method of coal gasification fine slag; The dry separation of CWSFS and DCFS was studied by using the combined technology of crushing and airflow classification. The influence law and characteristics of the crushing method of gasification fine slag on the effect of airflow classification and separation were explored; Based on the above results, the crushing and turbine airflow classification separation mechanism of gasification fine slag was discussed. The research results had important theoretical and application value for guiding the high-value utilization of coal gasification ash. The main results were as follows:
(1) The particle size characteristics and composition and structure characteristics of gasification fine slag were studied by wet screening combined with XRD and SEM. The results showed that, the fixed carbon content, ash composition, micro morphology and pore structure of gasification fine slag were related to the particle size distribution. the fixed carbon content of CWSFS components with different particle sizes increased with the increase of particle size, the fixed carbon content and ignition loss of DCFS components with different particle sizes first increased and then decreased with the increase of particle size, and the residual carbon particles showed a trend of enrichment with the increase of particle size. According to the composition characteristics of gasification fine slag, took the fixed carbon content as the main classification index, the gasification fine slag could be divided into high carbon component (fixed carbon content is higher than 60%) , medium carbon component ( fixed carbon content between 40% and 60%) and low carbon component (fixed carbon content is lower than 20%). Different types of components had different composition and structure characteristics.
(2)The influence of disc crushing parameters on the effect of turbine airflow classification of gasification fine slag was studied by using the combined separation technology of disc crushing and turbine airflow classification. The results show that the CWSFS without disc crushing could be separated into high carbon products and medium carbon products. After disc crushing, the fixed carbon content of each graded product was within the fixed carbon content of medium carbon components, and the fixed carbon content of bag products was the lowest, which was 26.89%; DCFS without disc crushing and after disc crushing and grading, DCFS could be divided into medium carbon products and low carbon products, of which the fixed carbon content of bag products was up to about 30%. It showed that airflow classification could enrich the residual carbon in gasification fine slag, but Disc crushing was easy to cause uniform crushing of samples, so that the effect of airflow classification was not obvious.
(3) The combined separation technology of airflow crushing and turbine airflow classification was used to study the influence of airflow comminution parameters on the effect of turbine airflow classification of gasification fine slag. The results showed that CWSFS could be divided into high carbon products and medium carbon products. The product I was mainly high carbon product, with fixed carbon content of 73.93% and yield of 37.94%; DCFS could be separated into medium carbon products and low-carbon products, and the decarbonization effect of low-carbon products was the most significant. The fixed carbon content could be reduced to 4.99% and the yield could reach 19.86%. The enrichment effect of residual carbon in product II was the most obvious. Airflow crushing was helpful to greatly improve the fractional separation and enrichment rate of residual carbon.
(4) Based on the above research results, combined with the statistical analysis of mineral particle morphology in SEM photos, the crushing and turbine airflow classification separation mechanism of gasification fine slag was explored. The results showed that the crushing mode had an important influence on the turbine airflow classification and separation effect of gasified fine slag, disc grinding based on grinding was easy to cause sample homogenization and over crushing. Airflow grinding based on impact force and shear force could separate the residual carbon and ash components at the bonding interface, and peel off the spherical particles adhered to the surface of carbon particles, which could more effectively promote the separation of coal gasification fine slag, especially improved the separation and recovery rate of residual carbon. Finally, the crushing and turbine airflow classification and separation mechanism of gasified fine slag was revealed.

参考文献:

[1] 朱子祺. 煤制油选煤厂煤显微组分迁移规律[J]. 洁净煤技术, 2020, 26(06): 89-95.

[2] 任振玚, 井云环, 樊盼盼,等.气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究[J].煤炭学报, 2021, 46(04): 1164-1172

[3] 张一昕,郭旸, 王如梦,等.宁东煤气化细渣及其碳灰分离产物物理化学性质研究[J]. 煤炭学报, : 1-9

[4] 吕飞勇, 初茉, 易浩然, 等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展, : 1-10

[5] 周安宁, 高影, 李振, 等. 煤气化灰渣组成结构及分选加工研究进展[J]. 西安科技大学学报, 2021, 41(04):575-584.

[6] 史达, 张建波, 杨晨年, 等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(06): 1-10.

[7] PAN C, LIANG Q, GUO X, et al. Characteristics of Different Sized Slag Particles from Entrained-Flow Coal Gasification[J]. Energy & Fuels, 2016, 30(2): 1487-1495.

[8] BUNT J R, WAANDERS F B, SCHOBERT H. Behaviour of selected major elements during fixed-bed gasification of South African bituminous coal[J]. Journal of Analytical and Applied Pyrolysis, 2012, 93: 85-94.

[9] WU S, HUANG S, WU Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. Journal of the Energy Institute, 2015, 88(1): 93-103.

[10] 王冀, 孔令学, 白进, 等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术, : 1-16 [2021-04-20].

[11] WU S, HUANG S, JI L, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122: 67-75.

[12] ZHAO X, ZENG C, MAO Y, et al. The Surface Characteristics and Reactivity of Residual Carbon in Coal Gasification Slag[J]. Energy & Fuels, 2010, 24(1): 91-94.

[13] 盛羽静. 气流床气化灰渣的理化特性研究[D].上海:华东理工大学,2017.

[14] 邬士军. 携带床气化条件下灰渣熔融特性实验研究[D].哈尔滨:哈尔滨工业大学,2013.

[15] WU T, GONG M, LESTER E, et al. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel, 2007, 86(7): 972-982.

[16] 平雅敏.气化灰渣的理化性质及其对石油焦气化反应性的影响研究[D].上海:华东理工大学, 2012.

[17] 刘艳芳, 崔龙鹏, 郎子轩, 等. Shel粉煤气化灰渣环境风险评价[J]. 石油学报(石油加工), : 1-11.

[18] 赵永彬, 吴辉, 蔡晓亮, 等. 煤气化残渣的基本特性研究[J]. 洁净煤技术, 2015, 21(03): 110-113.

[19] 刘霞, 许建良, 梁钦锋, 等. 气流床粉煤气化熔渣与其原煤灰特性比较[J]. 煤化工, 2017, 45(1): 5-9.

[20] YUAN H, YIN H, TANG Y, et al. The Basic Characteristics of Gasification Slag from Texaco Gasifier and Shell Gasifier[J]. Applied Mechanics and Materials, 2014, 675-677: 728-732.

[21] MIAO Z, WU J, ZHANG Y, et al. Physicochemical Characteristics of Mineral-Rich Particles Present in Fine Slag from Entrained-Flow Gasifiers[J]. Energy & Fuels, 2020, 34(1): 616-623.

[22] 李登新, 吕俊复, 郭庆杰, 等. 循环流化床灰渣利用研究进展[J]. 热能动力工程, 2003, (01): 5-8.

[23] 刘霞, 田原宇, 乔英云. 国内外气流床煤气化技术发展概述[J]. 化工进展, 2010, 29(S2): 120-124.

[24] 季文普. 多喷嘴对置式水煤浆气化技术的应用总结及优势探讨[J]. 化学工程与装备, 2017, (02): 220-222 .

[25] 蔡国峰, 刘勇, 安德成. 煤气化技术的研究现状与发展[J]. 广州化工, 2011, 39(23): 37-38.

[26] 李风海, 黄戒介, 房倚天, 等. 晋城无烟煤流化床气化结渣机理的探索[J]. 太原理工大学学报, 2010, 41(05): 666-669.

[27] JING N, WANG Q, CHENG L, et al. Effect of temperature and pressure on the mineralogical and fusion characteristics of Jincheng coal ash in simulated combustion and gasification environments[J]. Fuel, 2013, 104: 647-655.

[28] TOMECZEK J, PALUGNIOK H. Kinetics of mineral matter transformation during coal combustion[J]. Fuel, 2002, 81(10): 1251-1258.

[29] 景妮洁. 加压流化床气化条件下灰熔融特性研究[D]. 杭州:浙江大学, 2013.

[30] MILLER S F, SCHOBERT H H. Effect of mineral matter particle size on ash particle size distribution during pilot-scale combustion of pulverized coal and coal-water slurry fuels[J]. Energy & Fuels, 1993, 7(4): 532-541.

[31] LIND T, KAUPPINEN E I, MAENHAUT W, et al. Ash Vaporization in Circulating Fluidized Bed Coal Combustion[J]. Aerosol Science and Technology, 1996, 24(3): 135-150.

[32] 宋瑞领, 李静, 付亮亮, 等. 多喷嘴对置式水煤浆气化炉炉渣特性研究[J]. 洁净煤技术, 2018, 24(05): 43-49.

[33] 郭凡辉.气流床煤气化细渣水分赋存及脱水能量作用机制研究[D].徐州:中国矿业大学, 2021.

[34] Estimation of size and shape of pores in moist coal utilizing sorbed water as a molecular probe[J]. Fuel and Energy Abstracts, 2002, 43(3): 165.

[35] 俞利楠. 离心脱水干化一体技术用于处理危险固废(化工污泥)[J]. 中国给水排水, 2017, 33(02): 108-110.

[36] 黄文锋, 余标飞, 豆伟. 带式真空过滤机在梁北选煤厂浮选精煤脱水工艺中的应用[J]. 选煤技术, 2010, (03): 31-34.

[37] 饶天曦, 马钊, 张庆龙, 等. 神宁炉细灰掺烧气流床锅炉可行性和经济性分析[J]. 化工管理, 2019, (21): 7-8.

[38] 郭凡辉, 武建军, 张海军, 等. 煤气化细渣陶瓷膜真空脱水试验与数值模拟[J]. 化工进展, : 1-13.

[39] 曹真真, 王江涛, 孟雪. 水煤浆气化细渣脱水板框压滤机运行总结[J]. 大氮肥, 2019, 42(05): 292-294.

[40] 李文峰. 气化灰渣浮选复配药剂作用机理及其分子模拟研究[D].徐州:中国矿业大学, 2021.

[41] 李恒, 赵丽丽, 龚岩, 等. 表面活性剂复配对气化细渣浮选影响的试验研究[J].中国电机工程学报, : 1-9.

[42] 王晓波, 符剑刚, 赵迪, 等. 煤气化细渣载体浮选提质研究[J].煤炭工程, 2021, 53(01): 155-159.

[43] 葛晓东. 煤气化细渣表面性质分析及浮选提质研究[J]. 中国煤炭, 2019, 45(01): 107-112.

[44] GUO F, MIAO Z, GUO Z, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043.

[45] 张智吉, 魏上津, 郝路路, 等. 气化灰渣浮选回收炭粉的实验研究[J]. 煤炭加工与综合利用, 2021, (10): 62-65.

[46] ZHANG R, GUO F, XIA Y, et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste Management, 2019, 98: 29-36.

[47] WANG W, LIU D, TU Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel, 2020, 278: 118195.

[48] 闫小康, 苏子旭, 王利军, 等. 基于湍流涡调控的煤气化渣炭-灰浮选分离过程强化[J]. 煤炭学报, : 1-12.

[49] XU M, ZHANG H, LIU C, et al. A comparison of removal of unburned carbon from coal fly ash using a traditional flotation cell and a new flotation column[J], 2017, 53: 628-643.

[50] 赵旭,张一昕,苗泽凯,等.气化飞灰精准分离及资源化利用[J]. 洁净煤技术, 2019, 25(01): 41-46.

[51] 祁超. 粉煤灰空心微珠精细化分选方法研究[D].西安:西安建筑科技大学,2021.

[52] 李博琦, 谢贤, 吕晋芳,等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用, 2020, 40(05): 153-160.

[53] 艾伟东. 煤气化渣/有机高分子复合材料的制备及其性能研究[D].长春:吉林大学, 2020.

[54] 章丽萍, 温晓东, 史云天,等. 煤间接液化灰渣制备免烧砖研究[J].中国矿业大学学报, 2015, 44(02): 354-358.

[55] ZHAO S, YAO L, HE H, et al. Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag[J]. Archives of Environmental Protection, 2019, 45(02): 84-90.

[56] JI W, ZHANG S, ZHAO P, et al. Green Synthesis Method and Application of NaP Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China[J]. Applied Sciences, 2020, 10: 2694.

[57] GU Y-Y, QIAO X-C. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous and Mesoporous Materials, 2019, 276: 303-307.

[58] LI C-C, QIAO X-C, YU J-G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249.

[59] ZHANG J, ZUO J, AI W, et al. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. Journal of Hazardous Materials, 2020, 384: 121347.

[60] 尹洪峰, 汤云, 任耘,等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(04): 30-33.

[61] 赵永彬, 吴海骏, 张学斌,等. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术, 2016, 22(05): 7-11.

[62] 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D].北京:中国科学院大学(中国科学院过程工程研究所) 2019.

[63] FONT O, MORENO N, DíEZ S, et al. Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction[J]. Journal of Hazardous Materials, 2009, 166(1): 94-102.

[64] WU Y-H, MA Y-L, SUN Y-G, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277: 123186.

[65] HAN F, GAO Y, HUO Q, et al. Characteristics of Vanadium-Based Coal Gasification Slag and the NH3-Selective Catalytic Reduction of NO[J]. Catalysts, 2018, 8: 327.

[66] HUO W, ZHOU Z, WANG F, et al. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel, 2014, 131: 59–65.

[67] 何国锋, 柳金秋, 徐彤, 等. 水煤浆气化细灰碳灰分布特性及其分离试验研究[J]. 煤炭科学技术, 2021, 49 (4) : 82-89. doi:10. 13199/j. cnki. cst. 2021. 04. 010.

[68] 王学斌, 于伟, 张韬, 等. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术, 2021, 27(03): 61-69.

[69] 尹艳山, 尹杰, 张巍,等. 红外和拉曼光谱的煤灰矿物组成研究[J].光谱学与光谱分析, 2018, 38(03): 789-793.

[70] ZHANG J F, LIANG Q F, WANG J, et al. Flow characteristics of slag in Shell gasifier slag bath[J]. HuaxueGongcheng/Chemical Engineering (China), 2011, 39: 89-93.

[71] SUN L J, GONG Y, GUO Q H, et al. Microscopic characteristics of solid particles in opposed multi-burner gasifier[J]. Journal of Fuel Chemistry and Technology, 2014, 42.

[72] 吕登攀, 白永辉, 王焦飞,等. 气流床气化细渣中残炭的结构特征及燃烧特性研究[J]. 燃料化学学报, 2021, 49(02): 129-136.

[73] 张杰, 郭庆华, 周志杰, 等. 多喷嘴对置式水煤浆气化炉内颗粒物分布特性的实验研究[J]. 中国电机工程学报, 2013, 33(20): 59-65.

[74] SING K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57: 603.

[75] 张志清. 气化炉内颗粒物特性及气化灰渣在水煤浆制备中的应用研究[D].上海:华东理工大学, 2019.

[76] 帅航, 尹洪峰, 袁蝴蝶, 等. 煤气化炉渣的高温物相组成演变与黏温特性[J]. 煤炭转化, 2015, 38(03): 44-48.

[77] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(03): 104-111.

[78] 姜龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术, 2020, 26(04): 31-39.

[79] 尹洪峰, 汤云, 任耘,等.气化炉渣合成Ca-α-Sialon–SiC复相陶瓷[J]. 硅酸盐学报, 2011, 39(02): 233-238.

[80] LI Z, ZHANG Y, ZHAO H, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274.

[81] LIU X, JIN Z, JING Y, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106.

[82] 曲江山,张建波,孙志刚,等.煤气化渣综合利用研究进展[J].洁净煤技术,2020,26(1):184-193.

[83] 于伟, 王学斌, 刘莉君, 等. 高含碳煤气化细渣浮选行为研究[J]. 煤炭学报, : 1-14.

[84] 李金凤. 气化滤饼中碳赋存形态及循环掺烧可行性研究[J]. 洁净煤技术, 2020, 26(06): 224-228.

[85] 刘华洁, 吴文秀, 田云吉. 涡轮式气流分级机压降分析及流场模拟[J]. 石油机械, 2019, 47(06): 95-100.

[86] 王海旭. 潮湿煤跌落松散与气流分级过程研究[D].徐州:中国矿业大学,2020.

[87] 苏偲禹.气流粉碎对粉体物性的影响及破碎机理研究[D].大连:大连理工大学,2020.

[88] 赵静,付晓恒,王婕,等. 超细粉碎方式对超净煤分选效果的影响[J]. 煤炭学报, 2016, 41(12): 3108-3114.

[89] 彭飞. 陶瓷颗粒在流化床式气流磨中粉碎行为的研究[D].广州:华南理工大学, 2010.

[90] VARINOT C, HILTGUN S, PONS M-N, et al. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill[J]. Chemical Engineering Science, 1997, 52(20): 3605-3612.

[91] GAO M, FORSSBERG E. Prediction of product size distributions for a stirred ball mill[J]. Powder Technology, 1995, 84(2): 101-106.

[92] 陈海焱. 流化床气流粉碎分级技术的研究与应用[D].成都:四川大学, 2007.

[93] 曾川. 涡轮气流分级机工艺参数的优化与研究[D].绵阳:西南科技大学,2017.

[94] PALANIANDY S, AZIZLI K A M, HUSSIN H, et al. Effect of operational parameters on the breakage mechanism of silica in a jet mill[J]. Minerals Engineering, 2008, 21(5): 380-388.

[95] TASIRIN S M, GELDART D. Experimental investigation on fluidized bed jet grinding[J]. Powder Technology, 1999, 105(1): 337-341.

中图分类号:

 TQ536.4    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式