论文中文题名: | 裂隙夹冰岩体的超声学特性与压缩破坏响应 |
姓名: | |
学号: | 19204209098 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2019 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-15 |
论文答辩日期: | 2022-05-28 |
论文外文题名: | Ultrasonic characteristics and compressive failure response of rock mass intercalated with ice in cracks |
论文中文关键词: | |
论文外文关键词: | The rock mass intercalated with ice in cracks ; Ice-rock interface ; Unfrozen water film ; Ultrasonic characteristics ; Mechanical properties ; Nuclear magnetic resonance |
论文中文摘要: |
岩体含有大量不同尺度的缺陷,是决定岩体力学性质的主要因素。高寒高海拔地区岩体中裂隙多被冰充填,使冻结岩体的物理力学特性显著区别于常温岩体。在高寒高海拔地区的岩石工程或采矿活动中,冻结岩体的力学特性控制着岩体的稳定性。冻结岩体的力学特性由岩体结构和冰的力学性质共同决定。由于冰的力学性质对温度极为敏感,又考虑到冻结岩体所处地质和环境条件的差异,因此需要在考虑岩体结构影响的前提下,研究不同温度冻结岩体的物理力学特性。本文对不同裂隙倾角的夹冰岩体进行不同负温下的超声波和核磁共振试验,得到了超声参数、未冻水含量随温度和裂隙倾角的变化规律;开展不同冻结温度下裂隙夹冰岩体的压缩破坏实验,并利用声发射和高速摄影观测夹冰岩体的破坏过程,阐明了冻结裂隙岩体力学参数随温度和裂隙倾角的变化规律;利用核磁共振技术对不同温度下冰-岩界面的细观结构进行观测,揭示了界面细观结构特征随温度的演化;基于超声学和岩体力学理论,揭示了温度和裂隙倾角对其超声特性和力学特性的影响机制。主要得到以下几个结论: 1.裂隙夹冰岩体的纵波波速和幅度均随温度的升高而降低,均呈两阶段变化;裂隙夹冰岩体的纵波波速整体上均随着裂隙倾角的增加而降低,幅度随裂隙倾角的变化整体上呈倒W型。 2. 裂隙夹冰岩体的强度随温度的升高而降低,随裂隙倾角的增大呈两阶段变化;不同负温和不同裂隙倾角的夹冰岩体的轴向应力和声发射特征参数均随轴向应变的增加均呈五阶段变化。 3. 裂隙夹冰岩体的破坏形式主要有三种:冰层整体被压碎;沿冰-岩界面滑动但冰层未破裂;冰层破裂且沿冰-岩界面滑动。 4. 裂隙夹冰岩体的未冻水含量随温度的升高而增加,且呈两阶段变化;冰-岩界面影响区的分层信号强度随着温度的升高而增加,表明冰-岩界面的未冻水含量随着温度的升高而增加;界面影响区的范围增大,说明未冻水膜的厚度也随着温度的升高而增大。 5. 随着温度的升高,冰-岩界面处的未冻水含量增加,未冻水膜变厚,传播介质的改变导致纵波波速降低;界面两侧的声阻抗的差异增加,导致幅度降低;冰-岩界面处冰与砂岩的胶结强度主要取决于冰-岩界面未冻水膜的厚度,未冻水膜的变厚导致界面强度降低。 6. 超声波由砂岩入射到冰层后,波在冰层的传播路径随着裂隙倾角的增加而增大,传播路径越长波速越低,因此,裂隙倾角增大导致纵波波速降低;夹冰岩体中冰的强度和冰-岩界面的强度随着裂隙倾角的改变而不同,裂隙倾角的改变导致其强度和破坏形式发生变化。 本文揭示了裂隙夹冰岩体的超声参数随温度和裂隙倾角的变化规律;探明了裂隙夹冰岩体的压缩破坏响应;阐明了夹冰岩体冰-岩界面的细观结构特征随温度的演化;揭示了温度和裂隙倾角对夹冰岩体的超声特性和力学特性的影响机制。本论文的研究结果对冻结裂隙岩体的开挖施工和防护设计具有重要的理论参考价值。 |
论文外文摘要: |
The rock mass contains a large number of defects of different scales, which are the main factors determining the mechanical properties of the rock mechanics. The physical and mechanical properties of rocks in alpine and high altitude areas are significantly different from those of normal temperature rocks, mainly because the fissures in them are mostly filled with ice. In rock engineering or mining activities in alpine and high altitude areas, the mechanical properties of frozen rock control the stability of the rock. The mechanical properties of frozen rock are determined by both the rock structure and the mechanical properties of the ice. Since the mechanical properties of ice are extremely sensitive to temperature, and considering the differences in geological and environmental conditions in which the frozen rock are located, it is necessary to study the physical and mechanical properties of frozen rock at different temperatures, taking into account the influence of rock structure. In this paper, the ultrasonic parameters, unfrozen water content with temperature and fracture dip angle were obtained by ultrasonic and NMR tests on the rock mass intercalated with ice in cracks with different fracture dip angles at different negative temperatures. In order to clarify the changes of mechanical parameters of frozen fissure rock body with temperature and fissure dip angle, the compression damage experiments of fissure ice trapped rock body under different freezing temperatures are carried out, and the damage process of ice trapped rock body is observed by acoustic emission and high-speed photography. In order to reveal the variation of the detailed structure characteristics of the interface with temperature, the detailed structure of the ice-rock interface at different temperatures was observed using nuclear magnetic resonance techniques. Based on the theory of ultrasonics and rock mechanics, the mechanism of the influence of temperature and fracture inclination on its ultrasonic and mechanical properties is revealed. The following main conclusions were obtained: 1.The p-wave velocity and amplitude of rock mass intercalated with ice in cracks decrease with the increase of temperature, which showed a two-stage change; The p-wave velocity of the rock mass intercalated with ice in cracks decreased with the increase of the fracture Angle, and the variation of the amplitude with the Angle of the fissure presents an inverted W shape. 2. The strength of the rock mass intercalated with ice in cracks decreased with the increase of temperature, and it firstly decreased and then increased with the increase of crack Angle; With the increase of axial displacement, the axial load and the characteristic parameters of acoustic emission of the rock mass intercalated with ice in cracks are all showed five-stage changed in both different negative temperature and fracture Angle. 3. There are three main failure modes of the rock mass intercalated with ice in cracks: the ice is crushed as a whole; the ice slides along the ice-rock interface but the ice is not broken; the ice is broken and slides along the ice-rock interface.. 4. The unfrozen water content of the rock mass intercalated with ice in cracks increased with the increase of temperature and presented a two-stage change. The signal intensity of stratification at the ice-rock interface increased with the increase of temperature, indicating that the content of unfrozen water at the ice-rock interface increased and the unfrozen water film thickened with the increase of temperature. 5. During the melting process, the content of unfrozen water at the ice-rock interface increased, the unfrozen water film thickened, therefore, the change of propagation medium leads to the decrease of p-wave velocity; the difference in acoustic impedance on both sides of the interface increased, resulting in a decrease in amplitude. The bonding strength of ice and sandstone at the ice-rock interface mainly depends on the thickness of the unfrozen water film at the ice-rock interface, and the thickness of the unfrozen water film leads to the decrease of the interface strength. 6. When the ultrasonic wave incident from sandstone to ice layer, the propagation path of wave increased with the increase of crack Angle, and the longer the propagation path, the lower the p-wave velocity, therefore, the increase of crack Angle leads to the decrease of p-wave velocity. The strength of ice and the strength of ice-rock interface of the rock mass intercalated with ice in cracks vary with the change of crack Angle, which lead to the change of its strength and failure mode. In this paper, the variation of ultrasonic parameters of the rock mass intercalated with ice in cracks with temperature and crack Angle are revealed; the compressive failure response of the rock mass intercalated with ice in cracks is proved; the evolution of meso-structural characteristics of the rock mass intercalated with ice in cracks with temperature is expounded; the influence mechanism of the structure of on its ultrasonic and mechanical properties is revealed. The research results of this paper have important theoretical reference value for the excavation construction and protection design of the frozen fractured rock mass. |
参考文献: |
[1] 訾凡, 杨更社, 贾海梁. 饱和度对泥质粉砂岩冻结力学性质的影响[J]. 冰川冻土, 2018, 40(4): 748-55. [3] 荣腾龙. 低温环境下单裂隙岩体强度损伤及断裂特性分析[D]; 西安科技大学, 2015. [4] 申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J]. 2017, 36(3): 562-70. [7] 杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(3): 19. [8] 陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 19. [9] 张丽敏. 冰单轴压缩强度与影响因素试验研究[D]; 大连理工大学, 2012. [10] 李长洪, 肖永刚, 王宇, 等. 高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J]. 北京科技大学学报, 2019, 041(011): 1374-86. [39] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]; 中国地质大学, 2016. [40] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35(5): 17. [42] 刘艳章, 郭赟林, 黄诗冰, 等. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学, 2018, (S2): 10. [50] 李宁, 张平, 程国栋. 冻结裂隙砂岩低周循环动力特性试验研究[J]. 自然科学进展:国家重点实验室通讯, 2001, 11(11): 6. [51] 李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(11): 2307-15. [52] 刘红岩, 刘冶, 邢闯锋, 等. 循环冻融条件下节理岩体损伤破坏试验研究[J]. 岩土力学, 2014, 35(6): 8. [66] 杨道学. 基于深度学习的岩石微破裂演化声发射行为特征[D]; 江西理工大学,2021. [67] 沈功田. 声发射检测技术及应用[M]. 北京: 科学出版社, 2015. [68] 赵奎, 项威斌, 曾鹏, 等. 岩石声发射Kaiser效应研究现状及展望[J]. 金属矿山, 2021, (1): 12. [70] 胜山邦久. 声发射(AE)技术的应用[M]. 北京:冶金工业出版社, 1996. [78] 葛振龙. 高温后岩石声发射b值特征研究[D]; 中国矿业大学, 2019. [87] 裴向军, 朱凌, 崔圣华, 等. 加卸载条件下含缺陷岩石声发射响应特征研究[J]. 岩石力学与工程学报, 2020, 39(S01): 10. [88] 赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021, 42(4): 10. [89] 龚囱, 赵坤, 包涵, 等. 红砂岩蠕变破坏声发射震源演化及其分形特征[J]. 岩土力学, 2021, 42(10): 13. [90] 邢岳堃, 黄炳香, 陈大勇, 等. 压裂裂缝非线性断裂的声发射全波形多参量监测[J]. 煤炭学报. [91] 董陇军, 张义涵, 孙道元, 等. 花岗岩破裂的声发射阶段特征及裂纹不稳定扩展状态识别[J]. 岩石力学与工程学报, 2022, 41(1): 120-131 [94] 黄晓红, 孙国庆, 张凯月. 基于全相位多次互相关的Geiger声发射源定位方法[J]. 岩土力学, 2018, 39(4): 7. [98] 晏长根, 王婷, 贾海梁, 等. 冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J]. 岩石力学与工程学报, 2019, 38(6): 9. [101] 陆基孟 王. 地震勘探原理.2[M]. 北京:中国石油大学出版社, 1993. [103] 贾海梁, 王婷, 项伟, 等. 含水率对泥质粉砂岩物理力学性质影响的规律与机制[J]. 岩石力学与工程学报, 2018, 37(7): 1618-28. [104] 孙广忠, 孙毅. 岩体力学原理[M]. 北京: 科学出版社, 2011. [105] 韩红卫, 解飞, 汪恩良, 等. 河冰三轴压缩强度特性及破坏准则试验研究[J]. 水利学报, 2018, 49(10):1199-1206. |
中图分类号: | TU458 |
开放日期: | 2024-06-14 |