论文中文题名: | 基于多源 InSAR 数据的矿区地表形变监测研究 |
姓名: | |
学号: | 19210210065 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | InSAR数据处理与应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-26 |
论文答辩日期: | 2022-06-09 |
论文外文题名: | Research on surface deformation monitoring of mining area based on multi-source lnSAR data |
论文中文关键词: | |
论文外文关键词: | InSAR ; SBAS ; Mining-inducted Displacements ; Three-dimensional Displacements ; Mining Subsidence Prediction |
论文中文摘要: |
煤炭资源是支撑我国经济快速发展的重要能源,煤炭资源的大量开采会导致矿区地表沉陷、水平形变,开展高效准确的矿区地表形变监测,能够为矿山地质灾害的预防和治理提供数据基础和科学依据。传统的矿区地表形变监测方法大多是基于点的监测,存在成本高、效率低下、监测面有限等不足之处,很难满足矿区地表形变监测的要求。近年来随着空间对地观测技术的不断发展,InSAR作为一种成熟的地表形变监测技术,具有不受云雨天气和时间影响的优势,能够实现全天候的对地观测。由于传统D-InSAR技术在监测时易存在大气延迟误差且易受时空失相干影响,本文基于时序InSAR技术和多源InSAR数据对矿区地表形变监测展开研究,并利用矿区地表三维解算模型提取地表三维形变场,将InSAR监测结果与改进后的SVR模型结合进行矿区开采沉陷预测,论文主要研究工作和成果如下:
|
论文外文摘要: |
Coal resources are an important energy source to support rapid economic development. Extensive mining of coal resources will lead to surface subsidence and horizontal deformation in mining areas. Carrying out efficient and accurate monitoring of surface deformation in mining areas can provide a data basis and scientific basis for the prevention and management of geological disasters in mining areas. Most of the traditional monitoring methods of surface deformation in mining areas are based on point monitoring, which have disadvantages such as high cost, low efficiency, and limited monitoring surface, making it difficult to meet the requirements of surface deformation monitoring in mining areas. In recent years, with the continuous development of space earth observation technology, InSAR as a mature surface deformation monitoring technology, has the advantage of not being affected by cloud and rain weather and time, and can realize all-weather earth observation. Since traditional D-InSAR technology is susceptible to decoherence and atmospheric delay during monitoring, this paper studies the surface deformation monitoring of mining areas based on time-series InSAR technology and multi-source InSAR data. The three-dimensional deformation field of the surface is extracted by using the three-dimensional solution model of the mining area, and the InSAR monitoring results are combined with the improved SVR model to predict the mining subsidence of the mining area. The main research work of the paper is as follows: (1) The study area is the Songhe mining area in the north of Panzhou City, Guizhou Province. Selected 29 scenes of Sentinel-1 ascending images (2017-2018), 29 scenes of Sentinel-1 descending images (2017-2018) and 7 scenes of ALOS-2 ascending images (2017-2018) for research monitoring of surface deformation in the area. Based on SBAS-IPTA technology, the multi-source InSAR data is processed to detect the deformation position and range in the study area, and obtain the annual average deformation rate and time series cumulative deformation along the radar line-of-sight in the study area. The multi-source data results show that the maximum deformation rate and time series cumulative deformation in the study area are 823mm/a and 690mm/a, respectively. By consulting the data, the distribution range of Songhe coal mine and the distribution of coal mine resources in Guizhou Province are obtained. The deformation area detected by SBAS-IPTA technology is in good agreement with the distribution location of Songhe mine and coal mine resources. The cross-validation of the monitoring results of the multi-source InSAR data further confirmed the reliability of the SBAS-IPTA technology applied to the surface deformation monitoring of the Songhe mining area, and provided a data basis for the next step in the calculation of the three-dimensional surface deformation of the mining area. (2) Based on the deformation monitoring results of multi-source InSAR data, a surface deformation area with severe deformation is selected to carry out 3D surface deformation calculation. The data is resampled to establish a three-dimensional deformation solution model of the surface. The annual average deformation rate and time series cumulative deformation value of the LOS direction obtained from the multi-source data are used to obtain the annual average deformation rate and time series cumulative deformation value of the surface of the mining area in the study area in the vertical, east-west and north-south directions. The maximum deformation rates of the study area in the vertical, east-west and north-south directions are 865mm/a, 107mm/a, and 604mm/a. By analyzing the monitoring results of the three-dimensional surface deformation in the mining area, it is known that the deformation law of the three-dimensional deformation field obtained by the method in this paper is consistent with the mining deformation law of the mining area, that is, it conforms to the mining subsidence law. The three-dimensional surface deformation can reflect the surface deformation characteristics of the mining area more comprehensively. (3) The 32 scenes Sentinel-1 ascending images (2020-2021) covering the study area were selected, and the SBAS-InSAR technology was used to obtain the cumulative surface subsidence in time series. The 32-period subsidence data obtained by SBAS-InSAR technology was used as a sample set, combined with the improved SVR algorithm to predict the surface mining subsidence in the mining area. The experimental results show that the WOA-SVR prediction model combined with SBAS-InSAR technology has a good performance in the prediction of mining subsidence in the Songhe mining area, and the model prediction accuracy is high, which provides a reliable method for the prediction of surface subsidence in this mining area. |
参考文献: |
[1] 朱煜峰. 矿区地面沉降的InSAR监测及参数反演[D]. 中南大学, 2013. [2] 田华,杨嘉懿,韩强强,等. 煤炭开采对地下水的影响预测[J]. 煤炭技术, 2021, 40(12): 110-114. [3] 王刘宇. 联合SAR影像相位和强度信息的矿区形变监测关键技术研究[D]. 中国矿业大学, 2020. [4] 王海宁. 中国煤炭资源分布特征及其基础性作用新思考[J]. 中国煤炭地质, 2018, 30(7): 5-9. [5] 程伟,杨瑞东,张覃,等. 毕节地区晚二叠世煤中微量元素的分布赋存规律及控因分析[J]. 煤炭学报, 2013, 38(1): 103-113. [6] 李俊刚. 盘县煤矿区土地退化演变[D]. 中国矿业大学, 2017. [7] 陈斐儿,马伟杰,木勋. 贵州盘县煤矿地质灾害危险性评估[J]. 西部探矿工程, 2016, 28(9): 126-128, 132. [8] 司江福,谢涛. 贵州盘县地质灾害特征及防治对策[J]. 现代矿业, 2016, 32(8): 227-231, 283. [9] 陈林,姚志勇,李宏志,等. 贵州省矿产资源总体规划(2008~2015年)[Z], 2010. [10] 胡友彪,张治国,郑永红,等. 安徽两淮矿区采煤沉陷区综合治理现状与展望[J]. 中国煤炭地质, 2018, 30(11): 5-8. [11] 余学义,张恩强.开采损害学[M]. 北京:煤炭工业出版社, 2010:3-24. [12] 刘潇鹏,郭广礼,徐良骥,等. 采动区建筑物损害综合评价技术研究[J]. 中国矿业, 2019, 28(4): 168-172. [13] 王文娜,吴侃,陈冉丽,等. 基于GIS和随机森林的采动区建筑物损害综合评价[J]. 煤炭科学技术: 1-8. [14] 于启升. 采动区建筑物移动变形与地表移动变形关系研究[J]. 地矿测绘, 2020, 36(1): 14-16, 23. [15] 杨旭. 采空区地面塌陷地质环境影响预测与综合评价研究[D]. 长安大学, 2012. [16] 栗智,赵明宣,白冬,等. 矿区开采沉陷监测方法对比[J]. 测绘通报, 2021(S1): 270-273. [17] 蒲川豪,许强,蒋亚楠,等. 延安新区地面沉降分布及影响因素的时序InSAR监测分析[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1728-1738. [18] 姚佳明,姚鑫,吴作启,等. 基于InSAR三维分解技术的贵州省贞丰某煤矿地下采空区反演[J]. 工程地质学报, 2020, 28(4): 852-866. [19] 王磊,蒋创,张鲜妮,等. 基于单视线向D-InSAR技术的倾斜煤层开采地表沉陷监测方法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 814-820. [20] 董龙凯. 基于沉陷对称特征的矿区地表InSAR三维位移反演模型[D]. 西安科技大学, 2019. [22] 胡邦国. 基于InSAR技术的矿区地表形变场研究与应用[D]. 河北工程大学, 2020. [23] 朱建军,李志伟,胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. [24] 何平. 时序InSAR的误差分析及应用研究[D]. 武汉大学, 2014. [30] 王哲,赵超英,刘晓杰,等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1569-1578. [31] 李林,杨莹辉,许强,等. 利用InSAR形变反演滑坡滑面运动特征—以汶川县布瓦村滑坡为例[J]. 工程地质学报: 1-14. [34] 韩宇飞,宋小刚,单新建,等. D-InSAR技术在长白山天池火山形变监测中的误差分析与应用[J]. 地球物理学报, 2010, 53(7): 1571-1579. [36] 胡俊,李志伟,朱建军,等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报, 2013, 56(1): 117-126. [37] Ca wiley. Pulsed doppler radar methods and apparatus[J], 1965. [39] Elachi charles. Radar Images of the Earth From Space[J]. Scientific American, 1982, 247(6). [42] 匡燕,李安,李子扬,等. ENVISAT卫星综述[J]. 遥感信息, 2007, 89(1): 90-92. [43] 杨维垣,魏玫凌. 日本地球资源卫星一号(JERS-1)概况[J]. 航天器工程, 1992(3): 49-58. [44] 王树根. 日本ALOS卫星简介[J]. 测绘信息与工程, 2000(1): 45-46. [46] 姚天宇. 长征四号丙运载火箭成功发射高分三号卫星[J]. 中国航天, 2016(8): 8. [51] H fan,K deng,C ju,et al. Land subsidence monitoring by D-InSAR technique[J], 2011. [54] 张洋,汪云甲,闫世勇. 基于Stacking InSAR技术的沛北矿区沉降监测[J], 2016. [60] 李德仁,廖明生,王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004(8): 664-668. [61] 陈强,丁晓利,刘国祥,等. 雷达干涉PS网络的基线识别与解算方法[J]. 地球物理学报, 2009, 52(9): 2229-2236. [62] 朱叶飞,陈火根,张登明,等. 基于PS-InSAR的1995—2000年苏州地面沉降监测[J]. 地球科学进展, 2010, 25(4): 428-434. [63] 刘国祥,张瑞,李陶,等. 基于多卫星平台永久散射体雷达干涉提取三维地表形变速度场[J]. 地球物理学报, 2012, 55(8): 2598-2610. [64] 秦晓琼,杨梦诗,廖明生,等. 应用PSInSAR技术分析上海道路网沉降时空特性[J]. 武汉大学学报(信息科学版), 2017, 42(2): 170-177. [69] 赵超英,张勤,朱武. 采用TerraSAR-X数据监测西安地裂缝形变[J]. 武汉大学学报(信息科学版), 2012, 37(1): 81-85. [70] 李珊珊,李志伟,胡俊,等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486. [71] 熊文秀,冯光财,李志伟,等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报, 2015, 44(11): 1246-1254. [72] 李达,邓喀中,高晓雄,等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018, 43(10): 1531-1537. [73] 许强,蒲川豪,赵宽耀,等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7): 957-969. [74] 张海波,李宗春,许兵,等. IPTA方法在地面沉降监测中的应用[J]. 测绘科学技术学报, 2016(2): 145-149. [75] 曹群,陈蓓蓓,宫辉力,等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学), 2019, 55(3): 381-391. [77] 于冰,谭青雪,刘国祥,等. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33. [83] 杨旺,何毅,张立峰,等. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感: 1-14. [84] 朱建军,杨泽发,李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144. [85] 杜学领. 贵州六盘水地区煤系地层地质特征的统计研究[J]. 煤炭与化工, 2020, 43(9): 33-42. [86] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D], 2013. |
中图分类号: | P237 |
开放日期: | 2022-06-27 |