- 无标题文档
查看论文信息

论文中文题名:

 水浸氧化风干煤体微观结构与自燃特性研究    

姓名:

 张敏    

学号:

 18220089045    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 邓军    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Study on the microstructure and spontaneous combustion characteristics of air-dried coal body by water leaching and oxidation    

论文中文关键词:

 煤自燃 ; 微观结构 ; 低温氧化 ; 动力学参数    

论文外文关键词:

 Coal spontaneous combustion ; Microstructure ; Low-temperature oxidation ; Kinetic parameters    

论文中文摘要:

本论文以铜川陈家山矿的新鲜原煤、水浸煤、氧化煤、水浸氧化风干煤作为研究对象,对四个煤样的微观物理、化学结构以及在低温氧化阶段的热分解特征参数进行研究。分析四个煤样的自燃倾向性,为煤炭安全开采提供更多的理论依据。

通过工业、元素实验与扫描电镜实验,分析了各煤样的挥发分、灰分、水分、元素成分含量以及表面结构变化,得出:工业、元素分析中,各煤样的参数均发生了不同程度的变化。水浸煤表面则出现了微小级孔、裂隙结构;氧化煤与水浸氧化风干煤孔裂隙结构明显增多,结构宽度程度增大。

通过XRD实验对各煤样的矿物质成分、微晶结构进行了分析,得出:实验煤样中主要含有的矿物质为石英。且与原煤相比,其他三个煤样的衍射峰均发生了偏移。水浸氧化风干煤体较其他煤样中,dm、Lc、Mc、P出现不同程度的减小趋势。但与原煤相比水浸煤与水浸氧化风干煤的La出现增大。

通过红外光谱实验对各煤样中的主要官能团进行了分析,可知:原煤中羟基多以分子内氢键的形式存在,而氧化煤、水浸煤与水浸氧化风干煤中,羟基多以游离的羟基存在。煤分子中脂肪烃主要在2975-2915cm-1间存在。原煤、水浸煤、氧化煤、水浸氧化风干煤的主要官能团吸收峰面积依次增大。

通过热物性与C80实验,分别研究了在不同氧浓度条件下,各煤样的热物性参数、热流曲线与活化能等参数。得到:热扩散系数随着温度的升高而降低。而比热容与导热系数均随着温度的增大而增大。但四个实验煤样的热物性参数均没有随着氧浓度的增加或减小呈现出较明显的变化规律。实验煤样热流值与温度、氧浓度均呈现正相关关系。其中,水浸氧化风干煤活化能随着氧浓度的增加而减小。

论文外文摘要:

In this thesis, fresh raw coal, water-soaked coal, oxidized coal and water-soaked oxidized air-dried coal from Chenjiashan mine in Tongchuan.They were used as the research objects to investigate the micro-physical and chemical structures of the four coal samples as well as the characteristic parameters of thermal decomposition in the low temperature oxidation stage. The spontaneous combustion propensity of the four coal samples was analyzed to provide a more theoretical basis for safe coal mining.

The volatile matter, ash, moisture, elemental composition content, and surface structure changes of each coal sample were analyzed by industrial and elemental experiments and scanning electron microscopy experiments, and it was concluded that: the parameters of each coal sample changed to different degrees in industrial and elemental analysis. The surface of water-soaked coal, on the other hand, showed tiny grade pore and fissure structures; the pore and fissure structures of oxidized coal and water-soaked oxidized air-dried coal increased significantly and the degree of structure width increased.

The mineral composition and the microcrystalline structure of each coal sample were analyzed by XRD experiments, and it was concluded that: the main mineral contained in the experimental coal samples was quartz. And opposed to the original coal, the diffraction peaks of the other three coal samples were shifted. The dm, Lc, Mc, and P showed different decreasing trends in the water-leached oxidized air-dried coal body compared with the other coal samples. However, La appeared to increase in the water-soaked coal compared with the water-soaked oxidized air-dried coal compared with the raw coal.

The main functional groups in each coal sample were analyzed by infrared spectroscopy experiments, and it was found that the hydroxyl groups in raw coal mostly existed as intramolecular hydrogen bonds, while in oxidized coal, water-leached coal and water-leached oxidized air-dried coal, the hydroxyl groups mostly existed as free hydroxyl groups. Aliphatic hydrocarbons in coal molecules are mainly present between 2975-2915 cm-1. The absorption peak areas of the principal functional groups of raw coal, water-leached coal, oxidized coal and water-leached oxidized air-dried coal increased in order.

The parameters of thermal properties, heat flow curves and activation energy of each coal sample were investigated by thermal properties and C80 experiments under different oxygen concentration conditions, respectively. It was obtained that the thermal diffusion coefficient decreased with the increase of temperature. The specific heat capacity and thermal conductivity both increase with the increase of temperature. However, the thermal properties of the four experimental coal samples did not show any obvious change with the increase or decrease in oxygen concentration. The heat flow value of each coal sample showed positive correlation with temperature and oxygen concentration. Among them, the activation energy of water-oxidized air-dried coal reduced with the increase of oxygen concentration

参考文献:

[1]国务院办公厅关于印发《能源发展战略行动计划(2014-2020 年)》的通知,国办发(2014) 31号.

[2]郑纪武.采空区漏风对煤自燃特性的影响研究[D].西安科技大学,2018.

[3]《中国矿产资源报告(2014)》.中华人民共和国国土资源部,2014.

[4]徐悉.《我国煤炭行业的发展现状》[EB/OL]. http://www.cwestc.com/newsh ml/2014- 12-21/355698.shtml.2015,5.

[5]全国煤矿安全生产工作会议要求:改革创新担当作为奋力提升煤矿安全生产水平[J].中国煤炭工业,2019(02):4-5.

[6]王师节.我国煤炭安全形势与国外发达国家的差距分析[J].中国煤炭工业,2018(05):68-70.

[7]吕慧菲.咪唑类离子液体对抑制煤自燃热效应及动力学研究[D].西安科技大学,2018.

[8]阚罗.浸水作用对低阶煤低温氧化促进作用的实验研究[D].徐州:中国矿业大学,2019.

[9]宋亚伟.浸水风干煤吸附及甲烷气氛下自燃特性研究[D].徐州:中国矿业大学,2020.

[10]Marinov V N. Self-ignition and mechanisms of interaction of coal with oxygen at low temperatures[J]. Fuel,1977,56(2):153-164.

[11]Wang H, Dlugogorski B Z, Kennedy E M. Analys is of the mec hanismof the low temperature oxidation of coal[J]. Combustion and Flame,2003,134(1):107-117.

[12]Swann P D, Evans D G. Low-temperature oxidation of brown coal.3.Reaction with molecular oxygen at temperatures close to ambient[J]. Fuel,1979,58(4):276-280.

[13]Baris K, Kizgut S, Didari V. Low-temperature oxidation of some Turkish coals [J].Fuel, 2012,93:423-432.

[14]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114.

[15]Lopez D, Sanada Y, Mondragon F, et al. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel,1998,77(14):1623-1628.

[16]Wang H, Dlugogorski B Z, Kennedy E M. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel,1999,78(9):1073-1081.

[17]Wang H, Dlugogorski B Z, Kennedy E M .Thermal decomposition of solid oxygenated omplexes formed by coal oxidation at low temperatures[J]. Fuel, 2002,81(15):1913-1923.

[18]陆伟.煤自燃逐步自活化反应过程研究[D].徐州:中国矿业大学,2006.

[19]陆伟,胡千庭,仲晓星,等.煤自燃逐步自活化反应理论[J]中国矿业大学学报,2007.

[20]李林,Beamish B B,姜德义.煤自然活化反应理论[J].煤炭学报,2009,34(4):505-508.

[21]徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001.

[22]Wang B L, Tsai Y T, Liu S H,et al. Effects of 1-butyl-3-methylimidazolium nitrate on the thermal hazardous properties of lignitous and long flame coal through a green approach and thermokinetic models[J]. Process Safety and Environmental Protection,2019,131: 127-134.

[23]李锋,安世岗,邢真强.水浸煤孔隙结构及自燃特性试验研究[J].煤炭科学技术,2019,47(S2):208-212.

[24]Hao H D, Zhang Y L, Lv N,et al. Experimentalstudy on microscopic action of different form moistureon coal spontaneous combustion[J]. Journal of Fuel Chemistry and Technology,2021,49(3):283-292.

[25]Zhao J W, Wang W C, Fu P, et al. Evaluation of the spontaneous combustion of soaked coal based on a temperature-programmed test system and in-situ FTIR[J]. Fuel,2021, 294(15):1-10.

[26]Zhu H Q, Huo Y J, Wang W, et al. Quantum chemical calculation of reaction characteristics of hydroxyl at different positions during coal spontaneous combustion[J]. Process Safety and Environmental Protection,2021,148:624- 635.

[27]Lu W, Guo B L, Qi G S, et al. Experimental study on the effect of preinhibition temperatu re on the spontaneous combustion of coal based on an MgCl2 solution[J]. Fuel,2020,265: 117032.

[28]Xue D, Hu X M, Cheng W M, et al. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel[J]. Fuel,2020,266:117036.

[29]Zhang Y N, Chen L, Zhao J Y, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature- programmed oil bath experimental system[J]. Journal of Loss Prevention in the Process Industries,2019,60:17-27.

[30]Zhang Y T, Yang C P, Li Y Q, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion[J]. Fuel,2019,242:287-294.

[31]Ma L Y, Wang D M, Kang W J, et al. Comparison of the staged inhibitory effects of two ionic liquids on spontaneous combustion of coal based on in situ FTIR and micro- calorimetric kinetic analyses[J]. Process Safety and Environmental Protection,2019,121: 326-337.

[32]姜波,秦勇著.变形煤的结构演化机理及其地质意义[M].徐州:中国矿业大学出版社,1998.

[33]克鲁格,亚历山大合,盛世雄. X射线衍射技术:多晶体和非晶质材料[M]. 冶金工业出版社,1986.

[34]Cai J W, Yang S Q, Hu X C, et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation[J]. Fuel,2019,253:339-348.

[35]Xiao Y, Meng X, Yin L,et al. Influence of element composition and microcrystalline structure on thermal properties of bituminous coal under nitrogen atmosphere[J]. Process Safety and Environmental Protection,2021, 147:846-856.

[36]Ban Y P, Tang Y H, Wang J, et al. Effect of inorganic acid elution on microcrystalline structure and spontaneous combustion tendency of Shengli lignite[J]. Journal of Fuel Chemistry and Technology,2016,44(9):1059-1065.

[37]Liu W Y,Wen H,Xiao Ya,et al. Inhibiting effects of layered double hydroxides containing the rare-earth element lanthanum on coal spontaneous combustion [J]. Thermochimica Acta,2020,687:1-10.

[38]Yin L, Xiao Y, Zhong K Q,et al. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere[J]. Fuel,2021,288: 1-8.

[39]Zhong X X, Kan L, Xin H H, et al. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion[J]. Fuel,2019,236:1204-1212.

[40]Zhai X W, Ge H, Wang T Y, et al. Effect of water immersion on active function al groups and characteristic temperatures of bituminous coal[J].Energy,2020, 205:118076.

[41]朱建国,戴广龙,唐明云,等.水浸长焰煤自燃预测预报指标气体试验研究[J].煤炭科学技术,2020,48(05):89-94.

[42]贾廷贵,娄和壮,刘剑,等.不同水分含量煤自燃过程热特性实验研究[J].煤炭学报,2020,45(S1):346-352.

[43]翟小伟,蒋上荣,王博.水分对煤孔隙结构及自燃特性的影响研究现状[J].煤矿安全,2020,51(02):38-42.

[44]Zhao J W,Wang W C, Fu P, et al. Evaluation of the spontaneous combustion of soaked coal based on a temperature-programmed test system and in-situ FTIR [J]. Fuel,2021, 294:1-10.

[45]Li P R, Yang Y L, Li J H, et al. Study on the oxidation thermal kinetics of the spontaneous combustion characteristics of water-immersed coal[J]. Thermochimica Acta, 2021,699:1-10.

[46]张九零,朱壮,范酒源,等.基于DSC测试的含水煤自燃规律实验研究[J].煤矿安全,2019,50(06):41-44.

[47]Deng J,Li Q, Xiao Y,et al. Experimental study on the thermal properties of coal duringpyrolysis,oxidation,and re-oxidation[J]. Applied Thermal Engineering,2017,110:11 37-1152.

[48]Deng J, Li Q, Xiao Y,et al. Predictive models for thermal diffusivity and speci fic heatcapacity of coals in Huainan mining area,China [J]. Thermochimica Acta,2017,656: 101-111.

[49]Yang Y L,Li Z H,Si L L,et al.Study on test method of heat release intensity and thermophysical parameters of loose coal[J]. Fuel,2018,229:34-43.

[50]Zhong K Q, Xiao Y,Zhao X,et al. Predictive ability of four statistical models for determining the influence of coal thermophysical properties during the initial phase of coal spontaneous combustion[J]. Fuel,2021,292:120348.

[51]Li B,Wang J H,Bi M S,et al.Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion[J].Journal of Hazard ous Materials, 2020,400:123251.

[52]Deng J, Ren S J, Xiao Y, et al. Thermophysical properties of coal during low temperature oxidation under different oxygen concentrations[J]. Thermochimica Acta,2019,676:186- 197.

[53]Ren S J, Wang C P, Xiao Y, et al. Thermal properties of coal during low tempe rature oxidation using a grey correlation method[J]. Fuel,2020,260:116287.

[54]Yin L, Xiao Y, Zhong K Q, et al. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphe re[J]. Fuel,2021,288: 119640.

[55]Deng J, Li Q W, Xiao Y,et al. Thermal diffusivity of coal and its predictive model in nitrogen and air atmospheres[J]. Applied Thermal Engineering,2018,130:1233-1245.

[56]曲国娜,贾廷贵,娄和壮,等.基于热线法的不同水分含量松散煤体热物性实验与模拟研究[J].中国安全生产科学技术,2021,3(17):1-6.

[57]张辛亥,周山林,拓龙龙,等.不同程度预氧化煤传热特性[J].西安科技大学学报,2019,39(05):761-766.

[58]鲁军辉.煤田火区煤岩体热物性参数及热破坏特性研究[D].西安科技大学,2016.

[59]张帆.煤自然发火实验及数值模拟研究[D].西安科技大学,2019.

[60]贺敦良.徐精彩.煤炭表面反应热与自燃性探讨[J].煤矿安全,1990(6):31-36.

[61]徐精彩,文虎,葛岭梅,等.松散煤体低温氧化放热强度的测定和计算,煤炭学报,2000,25 (1) :287-390.

[62]邓军,张敏,雷昌奎,等.不同变质程度煤自燃特性及低温氧化动力学分析[J].安全与环境学报,2021,21(01):94-100.

[63]邓军,赵婧昱,张嬿妮,等.不同变质程度煤二次氧化自燃的微观特性试验[J].煤炭学报,2016,41(05):1164-1172.

[64]Zhu J F, He N, Li D J, et al. The relationship between oxygen consumption rate and temperature during coal spontaneous combustion[J]. Safety Science,2012,50(4):842-845.

[65]Deng J,Zhao J Y,Huang A C,et al. Thermal behavior and microcharacterization analysisof second-oxidized coal[J]. J Therm Anal Calorim,2016:1-10.

[66]Shi X Q,Zhang Y T,Chen X K,et al. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions[J]. Fuel Processing Technology,2021,213:106671.

[67]Lü H F, Deng J, Li D J, et al. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process[J].Energy, 2021:120431.

[68]Chen L Z, Qi X Y, Yang J, et al. Thermogravimetric and infrared spectral analysi s of candle coal pyrolysis under low-oxygen concentration[J]. Thermochimica Acta,2021,696: 178840.

[69]Su H T,Kang N,Shi B B,et al. Simultaneous thermal analysis on the dynamical oxygen-lean combustion behaviors of coal in a O2/N2/CO2 atmosphere[J]. Journal of the Energy Institute,2021,96:128-139.

[70]Li Y Q, Shi X Q, Zhang Y T, et al. Numerical investigation on the gas and temperature evolutions during the spontaneous combustion of coal in a large- scale furnace[J]. Fuel, 2021,287:119557.

[71]Zheng H Y,Li Y T,Zhang L J,et al. Study on the effect of organic sulfur on coal spontaneous combustion based on model compounds[J].Fuel,2021,289:119846.

[72]Wang H Y,Tan B, Shao Z Z,et al. Influence of different content of FeS2 on spontaneous combustion characteristics of coal[J]. Fuel,2021,288:119582

[73]Wang C P, Xiao Y, Li Q W, et al. Free radicals,apparent activation energy,and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi[J]. International Journal of Mining Science and Technology,2018,28(3):469-475.

[74]Cheng J, Wang X, Si T T, et al. Ignition temperature and activation energy of power coal blends predicted with back-propagation neural network models[J]. Fuel,2016,173:230- 238.

[75]Srishti Mittal, Shailesh Pathak, Heena Dhawan, et al. A machine learning approach to improve ignition properties of high-ash Indian coals by solvent extraction and coal blending[J]. Chemical Engineering Journal,2021,413:127385.

[76]Song J J,Deng J,Zhao J Y,et al.Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation[J].Fue,2021,289:119942.

[77]Deng J, Ren L F, Ma Li, et al. Effect of oxygen concentration on low-tempera ture exothermic oxidation of pulverized coal[J].Thermochimica Acta,2018,667:102-110.

[78]Li D J, Xiao Y, Lü H F, et al. Effects of 1-butyl-3-methylimidazolium tetrafluo borate on the exothermic and heat transfer characteristics of coal during low-temperature oxidation[J]. Fuel,2020,273:117589.

[79]Li B, Liu G, Bi M S, et al. Self-ignition risk classification for coal dust layers of three coal types on a hot surface[J]. Energy,2021,216:119197.

[80]Chen X K, Ma T, Zhai X W, et al. Thermogravimetric and infrared spectrosco pic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics[J]. Thermochimica Acta,2019,676:84-93.

[81]Zhang H, Dou B L, Li J J, et al. Thermogravimetric kinetics on catalytic comb ustion of bituminous coal[J]. Journal of the Energy Institute,2020,93(6):2526-2535.

[82]Han J, Zhang L, Hee Joon Kim,et al.Fast pyrolysis and combustion characteris tic of three different brown coals[J].Fuel Processing Technology,2018,176:15- 20.

[83]Yang F Q, Lai Y, Song Y Z, et al. Determination of the influence of pyrite on coal spontaneous combustion by thermodynamics analysis[J]. Process Safety and Environmen tal Protection,2019,129:163-167.

[84]肖旸,吕慧菲,任帅京,等.咪唑类离子液体抑制煤自燃特性的研究[J].中国矿业大学学报,2019,48(01):175-181.

[85]邓军,张宇轩,赵婧昱,等.基于程序升温的不同粒径煤氧化活化能试验研究[J].煤炭科学技术,2019,47(01):214-219.

[86]张嬿妮,陈龙,邓军,等.基于程序升温实验的同组煤氧化动力学分析[J].煤矿安全,2018,49(05):31-34+39.

[87]何勇军.水浸烟煤低温氧化过程中微观结构变化规律研究[D].西安科技大学,2016.

[88]白祖锦.离子液体抑制褐煤低温氧化的微观特性研究[D].西安科技大学,2018.

[89]王庭焱.水浸干燥烟煤活性基团及自然特征温度变化规律研究[D].西安科技大学,2018.

[90]陈龙.煤低温氧化热效应影响规律研究[D].西安科技大学,2019.

刘钦甫,崔晓南,徐占杰,等.煤热解气体主产物及热解动力学分析[J].煤田地质与勘探,2016,44(6):27-32.

中图分类号:

 TD752.2    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式