- 无标题文档
查看论文信息

论文中文题名:

 地下工程围岩张剪变形监测技术研究    

姓名:

 赵兴民    

学号:

 20204053020    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 水工岩体力学与工程应用    

第一导师姓名:

 陈兴周    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-30    

论文答辩日期:

 2023-05-28    

论文外文题名:

 Study on Deformation monitoring technology of surrounding rock in underground engineering    

论文中文关键词:

 地下工程 ; 剪切变形监测技术 ; 岩体变形模式 ; MEMS加速度传感器 ; 数值模拟    

论文外文关键词:

 underground engineering ; shear deformation monitoring technology ; rock mass deformation mode ; MEMS acceleration sensor ; numerical simulation    

论文中文摘要:

岩体剪切变形是重大地质灾害和岩体工程灾害的根本原因之一,断层错动或岩体变形对隧道、地下洞室等结构的稳定性存在巨大影响。岩体变形模式对地下工程的影响是科学应对相关灾害的关键,现有研究表明采用一定监测手段获取岩体内部剪切变形,可以有效的减少地下工程围岩破坏所带来的影响。目前对于判别岩体变形模式的研究不够深入,缺乏科学可靠的岩体剪切变形监测识别方法,对滑动面剪切错动变形位置的判断尚未完善。

因此,本文以水电站地下洞室为研究背景,针对地下洞室群不连续面引起的岩体剪切变形问题,采用理论分析、数值模拟和室内试验等手段,结合离散元数值模拟方法,提出了三维位移辨识岩体变形模式与结构面产状的方法,根据室内变形监测数据验证岩体变形感知系统的可靠性与准确性。主要研究内容如下:

(1)以雅砻江中游某水电站地下洞室为工程依托,采用离散元方法开展地下洞室开挖数值模拟,按工程常用多点位移计的布置方式在围岩中设置了若干监测点,对监测点的位移进行了三维空间位移轨迹分析,全面挖掘了围岩内部发生的压缩/拉伸、剪切变形等信息,探索了基于测点三维位移辨识结构面产状的方法,归纳了岩体的变形模式,研究成果将为岩体内部剪切变形感知系统提供理论基础。

(2)为更好的保障监测过程的稳定,使用MEMS加速度传感器作为监测系统核心,其利用MEMS技术(Micro Electromechanical System),即微机电系统加工制作而成,结合加速度计工作原理与适用范围,针对性能参数提出了加速度计的选型方法,为主要元件的选择提供依据;在此基础上提出了基于MEMS加速度积分法的围岩变形监测方法,并结合坐标转换对重力加速度偏量进行滤除。

(3)岩体变形感知系统主要由硬件模块和软件客户端两部分组成。硬件模块主要包括三轴加速度模块、陀螺仪模块、微处理器模块以及电源供应模块,通过电路板印刷设计将硬件模块进行组装,结合监测功能需求对软件客户端的数据采集接收功能、数据存储功能以及界面显示功能进行设计,将硬件模块和软件客户端相结合形成岩体变形感知系统。

(4)结合加速度传感器的误差来源,分析加速度传感器不同误差产生的原因,提出了相应的处理方案,以提高系统的精度和稳定性。开展岩体变形感知系统试验,得到试验实测值均接近于真实值,测量误差低于10%,验证了基于MEMS加速度传感器的变形感知系统的可靠性与准确性,给出岩体变形感知系统的适用范围。

论文外文摘要:

Rock mass shear deformation is one of the fundamental causes of major geological and engineering disasters, and fault displacement or rock mass deformation has a significant impact on the stability of structures such as tunnels and underground chambers. The impact of rock deformation patterns on underground engineering is the key to scientific response to related disasters. Existing research has shown that using certain monitoring methods to obtain internal shear deformation of rock masses can effectively reduce the impact of underground engineering surrounding rock failure. At present, the research on identifying the deformation mode of rock mass is not deep enough, there is no scientific and reliable identification method of rock mass shear Deformation monitoring and the judgment of the shear dislocation deformation position of the sliding surface is not perfect.

Therefore, this paper takes the underground cavern of hydropower station as the research background, aiming at the problem of rock mass shear deformation caused by the discontinuity of underground cavern group, by means of theoretical analysis, numerical simulation and indoor test, combined with the discrete element numerical simulation method, proposes a method of three-dimensional displacement identification of rock mass deformation mode and structural plane occurrence, and verifies the reliability and accuracy of the rock mass deformation sensing system according to the indoor Deformation monitoring data. The main research content is as follows:

(1) Based on the underground cavern of a hydropower station in the middle reaches of the Yalong River, a discrete element method was used to carry out numerical simulation of underground cavern excavation. Several monitoring points were set up in the surrounding rock according to the layout of commonly used multi-point displacement meters in the project. The displacement trajectory of the monitoring points was analyzed in three-dimensional space, and information such as compression/tension, shear deformation, etc. inside the surrounding rock was comprehensively excavated, Explored a method for identifying the occurrence of structural planes based on the three-dimensional displacement of measurement points, summarized the deformation modes of rock masses, and the research results will provide a theoretical basis for the internal shear deformation perception system of rock masses.

(2) To better ensure the stability of the monitoring process, MEMS acceleration sensors are used as the core of the monitoring system, which is manufactured using MEMS technology (Micro Electrical System), that is, micro electromechanical systems. Combined with the working principle and application range of the accelerometer, a selection method for the performance parameters of the accelerometer is proposed, providing a basis for the selection of main components; On this basis, the surrounding rock Deformation monitoring method based on MEMS acceleration integration method is proposed, and the gravity acceleration bias is filtered by coordinate transformation.

(3) The rock deformation perception system mainly consists of two parts: a hardware module and a software client. The hardware module mainly includes a three-axis acceleration module, gyroscope module, microprocessor module, and power supply module. The hardware module is assembled through circuit board printing design, and the data collection and reception function, data storage function, and interface display function of the software client are designed based on monitoring functional requirements. The hardware module and software client are combined to form a rock deformation perception system.

(4) Based on the error sources of acceleration sensors, the reasons for different errors in acceleration sensors are analyzed, and corresponding processing plans are proposed to improve the accuracy and stability of the system. Conducting a rock mass deformation sensing system experiment, the measured values were all close to the true values, and the measurement error was less than 10%. This verified the reliability and accuracy of the deformation sensing system based on MEMS acceleration sensors, and provided the applicable range of the rock mass deformation sensing system.

参考文献:

参考文献

[1]钱七虎,戎晓力. 中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,(4): 649-655.

[2]赵勇,刘建友,田四明. 深埋隧道软弱围岩支护体系受力特征的试验研究[J]. 岩石力学与工程学报, 2011, 30(8): 1663-1670.

[3]沙鹏,伍法权,李响,等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414.

[4]戴永浩,陈卫忠,田洪铭,等. 大梁隧道软岩大变形及其支护方案研究_戴永浩[J]. 岩石力学与工程学报,2015, 34(S2): 4149-4156.

[5]李永林. 二郎山隧道在高地应力条件下大变形破坏机理的研究及治理原则[J]. 公路, 2000, (12): 2-5.

[6]陈浩,任伟中,李丹,等. 深隧道围岩稳定性的数值模拟与模型试验研究_陈浩[J]. 岩土力学, 2011, 32(S2): 615-620.

[7]林乐彬,刘寒冰,刘辉. 隧道围岩压力的应力分析方法_林乐彬[J]. 土木工程学报, 2007, (8): 85-89.

[8]王孝健. 高地应力区地下工程围岩变形破坏模式研究[D]. 长安大学, 2013.

[9]李栋伟,汪仁和,范菊红. 软岩屈服面流变本构模型及围岩稳定性分析[J]. 煤炭学报, 2010, 35(10): 1604-1608.

[10]袁文华,马芹永. 煤矿深部岩石力学性能试验分析与硬岩巷道快速掘进方法研究[J]. 岩石力学与工程学报, 2010, 29(S1): 2853-2857.

[11]张晓东. 矿山测量中地面勘探与地下工程扣合设计[J]. 矿山测量, 2009, (1): 18-19, 22, 4.

[12]康健,胡耀青. 矿山地下工程施工中水害预测与防治[J]. 辽宁工程技术大学学报(自然科学版), 2001, (6): 758-760.

[13]丁昌银. 矿山地下工程渗漏水的防治[J]. 煤炭科学技术, 1997, (6): 10-13.

[14]胡建平. 矿山地下工程开挖诱发系统地压灾害的研究[D]. 中南大学, 2005.

[15]王兰生,李天斌,徐进,等. 二郎山隧道围岩变形破裂的调研与监测[J]. 公路, 2000, (12): 8-12.

[16]严鹏,卢文波,陈明,等. 初始地应力场对钻爆开挖过程中围岩振动的影响研究[J]. 岩石力学与工程学报, 2008, (5): 1036-1045.

[17]张宜虎,卢轶然,周火明,等. 围岩破坏特征与地应力方向关系研究[J]. 岩石力学与工程学报, 2010, 29(S2): 3526-3535.

[18]丁春林,朱世友,周顺华. 地应力释放对盾构隧道围岩稳定性和地表沉降变形的影响[J]. 岩石力学与工程学报, 2002, (11): 1633-1638.

[19]胡玉银. 大埋深软岩巷道围岩变形破坏力学机制分析[J]. 水文地质工程地质, 1994, (6): 4-6.

[20]陶波,伍法权,郭启良,等. 高地应力作用下乌鞘岭深埋长隧道软弱围岩流变规律研究[J]. 地球与环境, 2005, (S1): 304-308.

[21]江权. 高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[D]. 中国科学院研究生院(武汉岩土力学研究所), 2007.

[22]张书华,蒋瑞波. 基于测量机器人的隧道变形自动监测系统的设计与实现[J]. 测绘科学, 2009, 34(3): 192-194.

[23]Yang Li,Wei Jia Guo,Hao Qiang Zhang,et al.The Application of Combined GPS.RTK with Electronic Level on High-Precision Surface Monitoring[J]. Advanced Materials Research, 2013,718:1191-1194.

[24]余加勇. 基于GNSS和RTS技术的桥梁结构健康监测[J]. 测绘学报, 2015, 44(10): 1177.

[25]刘志强,岳东杰,郑德华. 大跨径桥梁运营期GPS/BDS动态形变监测及分析[J]. 测绘通报, 2018, (10): 107-112.

[26]张文,黄声享,李洋洋. 基于测量机器人的自动化变形监测系统设计与实现[J]. 测绘工程, 2018, 27(2): 37-41.

[27]Xiangyang Xu,Hao Yang. Network method for deformation analysis of three dimensional point cloud with terrestrial laser scanning sensor[J]. International Journal of Distributed Sensor Networks, 2018, 14(11): 155014771881413.

[28]祝明然. 三维激光测量技术在大型复杂钢结构工程建造中的应用[J]. 测绘通报, 2019, (8): 92-95.

[29]高洪,李凯,马全明,等. 移动三维激光测量系统在地铁运营隧道病害监测中的应用研究[J]. 测绘通报, 2019, (8): 96-101, 161.

[30]张丽,丛晓明,赵生良. 移动三维激光扫描技术在隧道结构监测中应用[J]. 测绘通报, 2020, (8): 153-156.

[31]樊廷立,唐超,王柄强. 移动三维激光扫描技术在盾构隧道收敛监测中的应用[J]. 测绘通报, 2020, (9): 50-53.

[32]Yuanyuan Gu,Dawei Zhou,Demin Zhang, et al. Study on subsidence monitoring technology using terrestrial 3D laser scanning without a target in a mining area: an example of Wangjiata coal mine, China[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3575-3583.

[33]莫淑华,韩刚,丁延彬,等. 桥梁结构智能监测新技术研究[J]. 黑龙江工程学院学报, 2002, (4): 7-10.

[34]朱鸿鹄,殷建华,张林,等. 大坝模型试验的光纤传感变形监测[J]. 岩石力学与工程学报, 2008, (6): 1188-1194.

[35]裴华富,殷建华,朱鸿鹄,等. 基于光纤光栅传感技术的边坡原位测斜及稳定性评估方法[J]. 岩石力学与工程学报, 2010, 29(8): 1570-1576.

[36]黎剑华,张鸿,刘优平,等. 光纤Bragg光栅在公路软基沉降监测中的应用[J]. 中南大学学报(自然科学版), 2011, 42(5): 1442-1446.

[37]毛学军,张鸿,旷小林,等. 边坡岩土体变形监测的光纤光栅测斜仪研发与工程应用[J]. 公路工程, 2015, 40(5): 231-235.

[38]Zhengfang Wang,Jing Wang,Qingmei Sui.Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors[J].Journal of Sensors, 2015:108209.

[39]An-Bin Huang,Chien-Chih Wang,Jui-Ting Lee,et al.Applications of FBG based sensors to ground stability monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4): 513-520.

[40]Yong Zheng,Da Huang.Lin Shi. A New Deflection Solution and Application of a Fiber BraggGrating-based Inclinometer for Monitoring Internal Displacements in Slopes[J]. MeasurementScience and Technology, 2018,29(5): 055008.

[41]Yongqiang Hu,Chengyu Hong,Yifan Zhang, et al. A monitoring and warning system for expressway slopes using FBG sensing technology[J].International Journal of Distributed Sensor Networks,2018, 14(5):1550147718776228.

[42]Yongxing Guo,Dongsheng Zhang,Shaobo Liu,et al.Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation[J]Sensor Review, 2015,35(4):348-356.

[43]朱赵辉,任大春,李秀文,等. 光纤光栅位移计组在围岩变形连续监测中的应用研究[J]. 岩土工程学报, 2016, 38(11): 2093-2100.

[44]Nilei Li, ShaoFei Jiang, MingHao Wu, et al. Deformation Monitoring for Chinese Traditional Timber Buildings Using Fiber Bragg Grating Sensors[J].Sensors, 2018, 18(6): 1968.

[45]Yongxing Guo, Jianjun Fu, Longqi Li, et al.Fiber Bragg grating sensor-based monitoring strategy for slope deformation in centrifugal model test[J].Sensor Review, 2019, 39(1): 71-77.

[46]许滨华,何宁,何斌,等. 基于分布式光纤传感器的管道受弯变形监测试验研究[J]. 仪器仪表学报, 2019, 40(8): 20-30.

[47]李林芮,邓建辉,郑洪春,等. 黄金坪水电站进水口边坡稳定监测分析[J]. 四川大学学报(工程科学版), 2014, 46(S1): 116-121.

[48]黄秋香,汪家林,邓建辉. 基于多点位移计监测成果的坡体变形特征分析[J]. 岩石力学与工程学报, 2009, 28(S1): 2667-2673.

[49]郑达,王宇,姚青,等. 某水电站坝肩边坡碎裂松动岩体发育特征及开挖变形响应分析[J]. 长江科学院院报, 2019, 36(11): 50-56.

[50]刘甲奇,万磊,肖小玲,等. 岩滩扩建工程进水口边坡多点位移计监测资料分析[J]. 三峡大学学报(自然科学版), 2017, 39(6): 20-24.

[51]陈佳伟,邓建辉,魏进兵,等. 长河坝水电站右坝肩边坡裂缝成因分析[J]. 岩石力学与工程学报, 2012, 31(6): 1121-1127.

[52]Xiaoying Kong. INS algorithm using quaternion model for low cost IMU[J]. Robotics and Autonomous Systems, 2004, 46(4): 221-246.

[53]靳振宇,吴建德,范玉刚,等. 基于MEMS加速度计的管道位移检测系统设计[J]. 传感器与微系统, 2012, 31(1): 140-142, 145.

[54]郭虎生,颜冰,吴志东. 基于微机电加速度传感器的海底地震仪[J]. 探测与控制学报, 2013, 35(3): 29-32, 50.

[55]胡星星,滕云田,谢凡,等. 基于MEMS传感器的速度型地震计技术研究[J]. 地球物理学进展, 2013, 28(1): 515-522.

[56]范术娟,赵维刚. 桥梁动位移测试的数字处理方法研究[J]. 国防交通工程与技术, 2011, 9(1): 15-18.

[57]雷凌毅,唐恭富,姚毅. 基于MEMS加速度计的倾斜姿态角传感器设计[J]. 兵工自动化, 2014, 33(6): 71-73, 77.

[58]王少华,李宏伟,欧进萍. 基于MEMS的微电容式无线加速度传感器的研究[J]. 传感器与微系统, 2007, (6): 94-96.

[59]刘晓宇,樊智勇,吴疆. 土质滑坡地表倾斜变形特征与基于MEMS的倾斜变形监测技术初探[J]. 中国地质灾害与防治学报, 2020, 31(6): 69-77.

[60]Shuang Hou,Chuangshuo Zeng,Haibin Zhang, et al. Monitoring interstory drift in buildings under seismic loading using MEMS inclinometers[J]. Construction and Building Materials, 2018, 185: 453-467.

[61]Kang Rao, Huafeng Liu, Xiaoli Wei, et al. A high-resolution area-change-based capacitive MEMS tilt sensor[J]. Sensors and Actuators A: Physical, 2020, 313: 112191.

[62]Nuwen xu, Feng Dai, Biao Li, et-al. Comprehensive evaluation of excavation-damaged zones[J]. Bulletin of engineering geology and the environment, 2017, 76(1): 275-293.

[63]李志鹏,徐光黎,董家兴,等. 猴子岩水电站地下厂房洞室群施工期围岩变形与破坏特征[J]. 岩石力学与工程学报, 2014, 33(11): 2291-2300.

[64]宋丽君. 基于MEMS器件的航向姿态测量系统的研究[D]. 西北工业大学, 2007.

[65]胡三庆. 基于MEMS加速度传感器的空间运动轨迹追踪系统设计与实现[D]. 华中科技大学, 2009.

[66]Minha Park,Yang Gao. Error Analysis and Stochastic Modeling of Low-cost MEMS Accelerometer[J]. Journal of Intelligent and Robotic Systems, 2006, 46: 1-15.2006,46(1):27-41.

中图分类号:

 TU452    

开放日期:

 2024-06-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式