- 无标题文档
查看论文信息

论文中文题名:

 岩土介质氡气析出机制与影响因素研究    

姓名:

 李鹏飞    

学号:

 21109071010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 岩土体稳定与地质灾害防治    

第一导师姓名:

 孙强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Study on the exhalation mechanism and influencing factors of radon in geotechnical media    

论文中文关键词:

 氡气析出 ; 岩土介质 ; 温-压作用 ; 孔隙结构 ; 物性响应    

论文外文关键词:

 Radon exhalation ; Geotechnical media ; Temperature and pressure effects ; Pore structure ; Physical property response    

论文中文摘要:

       人类工程活动影响地下岩土体的原始结构,引起地下岩土层中的氡气沿裂隙通道向地表析出,改变氡气的正常析出特征。当前利用地表氡气浓度作为精准探测地下复杂地质状况的辅助指标,已成为一种高效且可靠的技术手段。揭示岩土体内部氡气的赋存状态及其析出机制,可为探测人类工程活动诱发的地下裂隙场发育特征提供重要的理论基础。

       本文运用室内试验和理论分析等方法开展了综合研究工作,分析了岩土介质性质及温压作用对氡气析出的影响,结合岩土介质的物理性质、孔隙结构等微-宏观响应特征,探讨了岩土介质氡气析出的主控因素,揭示了岩土介质氡气析出机制,构建了地下多层均匀多孔介质氡气析出的数理模型,阐明了应力扰动岩土组合地层的氡气析出规律,对室内尺度研究所得氡气析出主控因素进行验证。研究成果和结论如下:

      (1)通过X射线衍射试验、氮气吸附试验和测氡试验,获得了典型岩石的矿物含量和孔隙结构等物性参数,分析了典型岩石本底氡气特征的差异。不同岩石的孔隙结构和矿物含量对本底氡气特征影响显著,特别是岩石的本底氡气浓度与微孔孔隙存在明显的正相关关系,与孔隙结构的分形维数存在明显的负相关关系。

     (2)针对不同含水率岩土介质的氡气浓度结果,建立了含水状态下岩土介质氡气析出的理论模型,探究了不同含水率条件下岩土介质氡气析出的变化特征。结果表明:岩土介质的氡析出率均随含水率的增大呈先上升后下降的变化趋势。在含水率达到0.62 wmax之前,岩土介质的氡析出率均缓慢升高。当含水率增大至0.7 wmax附近时,岩土介质的氡析出率均增大至最大值。临近饱和后,岩土介质的氡析出率呈下降趋势。

     (3)基于低场核磁共振技术和氡气测试技术,分析了热处理后岩土介质物性参数、孔隙裂隙结构以及氡气析出特征随温度的变化规律。结果表明:热处理后石灰岩、千枚岩和砂岩的孔隙主要以微孔为主,中孔和大孔次之。花岗岩和黄土的孔隙以中孔为主,其次是大孔和微孔。在25~800 ℃的热处理过程中,花岗岩和黄土的氡析出率随温度变化属于“先增后减”类型,石灰岩和千枚岩则属于“逐渐增大”类型。花岗岩和黄土的氡析出率阶段性变化的温度临界值为400 ℃,砂岩氡析出率阶段性变化的温度临界值为500 ℃。

     (4)通过开展不同应力作用下岩石物理力学试验,阐释了岩石氡气析出的应力响应特征。结果表明:岩石处于压缩和弹性阶段时内部微孔(r<0.1 μm)、中孔(0.1 μm1.0 μm)孔隙度逐渐减小,岩石氡析出率显著下降。岩石进入破裂稳定发育阶段和裂隙的非稳定发展阶段后,内部微孔、中孔、大孔和总孔隙度显著增大,同时部分微孔向中孔转化,岩石内部孔隙分布更加均匀,氡析出率呈逐渐增大趋势。不同岩石的氡气析出特征随应力水平的变化趋势存在“先减小后增大”和“先增大后减小再增大”的两种类型。

      (5)根据岩土介质性质(岩性、含水率)和温-压作用对氡气析出的影响,结合岩土介质的微-宏观响应特征,揭示了氡气析出机理。研究表明:酸性岩浆岩中的铀含量高于变质岩和沉积岩,且长石和方解石含量与氡气析出特征关系显著。含水率对岩土介质氡气析出的影响主要与氡气的扩散系数和射气系数有关,扩散系数和射气系数的变化直接影响了氡气在岩土介质中的赋存状态。岩石的氡析出特征受温度影响主要分为3种类型:低温型(T<400 ℃)、吸附型(400 ℃<T<600 ℃)和爆裂型(600 ℃<T<800 ℃),微孔孔隙结构的变化造成了自由氡气的储存空间和析出通道发生改变,致使岩土介质氡气的析出特征随温度、应力作用呈现出差异性变化规律。

     (6)通过构建地下多层均匀多孔介质氡气析出的数理模型,结合理论分析与试验研究,阐述了陕北地区应力扰动岩土组合地层氡气析出的响应特征。同时,模型的构建和试验的研究均证明了地下多层岩土介质的氡气浓度总体呈指数分布规律,氡析出率随深度的增大表现出先增大后减小的变化趋势,且在岩土分界层中趋向最大值。微孔孔隙结构是影响陕北地区岩土组合地层氡气浓度分布差异的主控因素。

论文外文摘要:

        Human engineering activities affect the original structure of underground geotechnical bodies, causing radon in underground geotechnical layers to be precipitated to the surface along the fissure channels and changing the normal exhalation characteristics of radon. At present, it has become an efficient and reliable technical means to utilize the radon concentration on the surface as an auxiliary index to accurately detect the complex geological conditions underground. Revealing the storage state of radon inside the geotechnical body and its exhalation mechanism can provide an important theoretical basis for detecting the development characteristics of underground fissure field induced by human engineering activities.

        In this paper, we carried out a comprehensive research work by using indoor tests and theoretical analysis, analyzed the influence of the nature of geotechnical media and the effect of temperature and pressure on radon exhalation, combined with the physical properties, pore structure and other micro-macro response characteristics of geotechnical media, explored the main controlling factors of radon exhalation in geotechnical media, revealed the mechanism of radon exhalation in geotechnical media, and constructed a numerical and theoretical model for the exhalation of radon from the underground multilayered homogeneous porous media, and elucidated the radon gas exhalation law of stress-disturbed geotechnical combined strata. The radon exhalation law in stress-disturbed geotechnical strata was elucidated, and the main controlling factors of radon exhalation obtained from the indoor scale study were verified. The research results and conclusions are as follows:

        (1) Through X-ray diffraction test, nitrogen adsorption test and radon measurement test, physical parameters such as mineral content and pore structure of typical rocks were obtained, and the differences in background radon gas characteristics of typical rocks were analyzed. The pore structure and mineral content of different rocks have significant influence on the background radon gas characteristics, especially the background radon gas concentration of the rocks has obvious positive correlation with the microporous pore space and obvious negative correlation with the fractal dimension of the pore structure.

        (2) In view of the results of radon concentration in geotechnical media with different water content, a theoretical model of radon exhalation in geotechnical media under the water content state was established, and the change characteristics of radon exhalation in geotechnical media under different water content conditions were investigated. The results show that the radon exhalation rate of geotechnical media shows an increasing and then decreasing trend with the increase of water content. Before the water content reaches 0.62 wmax, the radon exhalation rate of geotechnical media increases slowly. When the water content increases to the vicinity of 0.7 wmax, the radon exhalation rates of geotechnical media increase to the maximum value. After approaching saturation, the radon exhalation rates of geotechnical media show a decreasing trend.

        (3) Based on the low-field nuclear magnetic resonance (NMR) technology and radon testing technology, the changing rules of physical parameters, pore and fissure structure, and radon exhalation characteristics of the geotechnical media with temperature after heat treatment were analyzed. The results show that the pores of limestone, millstone and sandstone after heat treatment are mainly dominated by micropores, followed by mesopores and macropores. The pores of granite and loess were dominated by mesopores, followed by macropores and micropores. During the heat treatment process from 25 to 800 ℃, the radon exhalation rates of granite and loess belong to the type of "increasing and then decreasing", while those of limestone and diamictite belong to the type of "gradually increasing". The temperature threshold for the phase change of radon exhalation rate in granite and loess is 400 ℃, and that for sandstone is 500 ℃.

         (4) The stress response characteristics of radon gas exhalation from rocks were elucidated by carrying out physical and mechanical tests of rocks under different stresses. The results show that the porosity of internal micropores (r<0.1 μm), mesopores (0.1 μm1.0 μm) decreases when the rocks are in the compression and elasticity stages, and the radon exhalation rate of the rocks decreases significantly. After the rock enters the stable development stage of fracture and the unstable development stage of cleavage, the internal microporosity, mesopore, macroporosity and total porosity increase significantly, while some micropores are transformed to mesopores, the internal pore distribution of the rock becomes more uniform, and the radon exhalation rate shows a trend of gradual increase. There are two types of radon exhalation characteristics of different rocks with the change of stress level: "decreasing and then increasing" and "increasing and then decreasing and then increasing".

         (5) Based on the effects of the nature of the geotechnical medium (lithology, water content) and temperature-pressure interaction on radon exhalation, combined with the micro-macro response characteristics of the geotechnical medium, the mechanism of radon exhalation was revealed. The study shows that the uranium content in acidic magmatic rocks is higher than that in metamorphic and sedimentary rocks, and the feldspar and calcite contents are significantly related to the radonexhalation characteristics. The influence of water content on radon exhalation in geotechnical media is mainly related to the diffusion coefficient and emission coefficient of radon, and the changes of diffusion coefficient and emission coefficient directly affect the state of radon in geotechnical media. The radon exhalation characteristics of rocks are mainly divided into three types by the influence of temperature: low-temperature type (T<400 ℃), adsorption type (400 ℃<T<600 ℃) and bursting type (600 ℃<T<800 ℃), and the change of microporous pore structure has caused the change of the free radon storage space and the exhalation channel, which results in the differential change rule of the exhalation characteristics of the radon gas in the geotechnical medium along with the temperature and the effect of stress. The change of microporous structure causes the change of free radon gas storage space and exhalation channel, resulting in the differential change of exhalation characteristics of geotechnical medium with temperature and stress.

        (6) By constructing a mathematical model of radon exhalation in underground multilayered uniform porous media, and combining theoretical analysis and experimental study, the response characteristics of radon exhalation in stress-disturbed geotechnical assemblage strata in northern Shaanxi are described. Meanwhile, the modeling and experimental studies proved that the radon concentration in the underground multilayer geotechnical media generally showed an exponential distribution law, and the radon exhalation rate showed a tendency of increasing and then decreasing with depth, and tended to be maximized in the geotechnical demarcation layer. The microporous pore structure is the main controlling factor influencing the difference in the distribution of radon gas concentration in the geotechnical composite strata in northern Shaanxi.

参考文献:

[1] 王伟, 李小春, 袁维, 等. 低渗透砂岩型铀矿床爆破增渗模型试验及增渗机制研究 [J]. 岩石力学与工程学报, 2016, 35(08): 1609-1617.

[2] 张卫强. 岩石热损伤微观机制与宏观物理力学性质演变特征研究 [D]. 徐州: 中国矿业大学, 2017.

[3] 杨建业. “多能源同盆共存”中铀的煤地球化学研究现状及思路 [J]. 煤炭学报, 2005, (06): 720-725.

[4] 邓虎成, 周文, 郭睿, 等. 伊拉克艾哈代布油田中-下白垩统碳酸盐岩储层孔隙结构及控制因素 [J]. 岩石学报, 2014, 30(03): 801-812.

[5] 叶万军, 强艳红, 景宏君, 等. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报, 2022, 30(01): 144-153.

[6] 黄超, 李渝生, 刘凯, 等. 氡气测量在川藏铁路板块结合带构造活动研究中的应用 [J]. 工程地质学报, 2018, 26(04): 1025-1034.

[7] 赵勇, 张桂锋. 氡析出迁移及覆盖控制研究进展 [J]. 辐射防护, 2024, 44(01): 1-9.

[8] 冯胜洋, 李策, 刘永, 等. 裂隙介质氡迁移的分形离散裂隙网络模型 [J]. 中国安全科学学报, 2022, 32(11): 97-104.

[9] 杨光. 寒武灰岩地热水中氡的赋存特征及影响因素研究 [D]. 河南: 河南理工大学, 2018.

[10] 钱畅, 余杰予, 汪迁迁, 等. 氡作为示踪剂在水科学研究中的应用 [J]. 生态学杂志, 2024, (03): 1-13.

[11] 谌宏伟, 杨瑶, 黄荷, 等. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究 [J]. 地学前缘, 2024, (03): 1-12.

[12] 王双明. 对我国煤炭主体能源地位与绿色开采的思考 [J]. 中国煤炭, 2020, 46(2): 6.

[13] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发 [J]. 煤炭学报, 2021, 46(05): 1365-1377.

[14] 王双明, 耿济世, 李鹏飞, 等. 煤炭绿色开发地质保障体系的构建 [J]. 煤田地质与勘探, 2023, 51(1): 33-43.

[15] 赵影, 陈志, 胡旭东, 等. 地震监测扩散式采样测氡仪测试装置研究及其初步应用 [J].辐射防护, 2022, 42(06): 571-578.

[16] 赵后越, 李霄龙, 崔迎龙. CSAMT结合氡气测量在吉林某地热勘查中的应用 [J]. 勘察科学技术, 2022, (05): 61-64.

[17] 周斌. 采空区煤自燃氡气析出机理及运移规律研究 [D]. 太原: 太原理工大学, 2021.

[18] 魏建平, 李恩福, 姚邦华, 等. 煤岩动力灾害的氡监测技术初探 [J]. 安全与环境学报, 2015, 15(06): 58-62.

[19] Huang P, Gao H, Su Q, et al. Identification of mixing water source and response mechanism of radium and radon under mining in limestone of coal seam floor [J]. Science of The Total Environment, 2023, 857: 159666.

[20] 张炜, 张东升, 胡文敏, 等. 中深部煤层开采条件下氡气探测应用初步探索 [J]. 采矿与安全工程学报, 2017, 34(05): 1008-1014.

[21] 杨斌, 仵阳. 综合物探方法在探测煤矿采空区上部覆岩结构上的应用-以宁东灵武矿区为例 [J]. 科技创新与应用, 2023, 13(13): 169-173.

[22] 刘海胜, 李雄. 测氡法在郭家湾煤矿火源位置探测中的应用 [J]. 山东煤炭科技, 2023, 41(03): 104-106.

[23] 李兆令, 郭文建, 王石. 氡气测量和瞬变电磁综合探测技术在煤炭采空区调查中的应用研究 [J].工程勘察, 2022, 50(05): 73-78.

[24] 张立, 李霞, 穆效治. 煤矿火灾区域同位素测氡探测技术研究 [J]. 能源技术与管理, 2020, 45(06): 111-112.

[25] 蔡思静. 氡及其子体运移模拟及可视化系统开发 [D]. 福州: 福建师范大学, 2008.

[26] Thomas M S, Pravin P P. The role of Radium distribution and porosity in radon emanation from solids [J]. Geophysical Research Letters, 1990, 17(6): 456-465.

[27] Gingrich J E. Radon as a geochemical exploration tool [J]. Journal of Geochemical Exploration, 1984, 21(2): 13-19.

[28] Nazarpff W W. Radon Transport from soil to air [J]. Reviews of Geophysics, 1992, 30(2): 137-160.

[29] Reimer G M. Reconnaissance Techniques for Determining Soil-gas Radon Concentrations: an Example from Prince Georges County, Maryland [J]. Geophysical Research Letters, 1990, 17(6): 809-812.

[30] Lennart M, Mats I, Krister K. Radon Migration through Soil and Bedrock [J]. Geoexploration, 1989, 26(4): 135-144.

[31] Соколов М М, идр. Омеханизме лереноса радона в горных лородах и глубинности эманационных ме-тодов поисков радиоактивных руд [J]. Атомная энер-гия, 1980, 49(3): 176-179.

[32] Clements W E, Wilkening M H. Atmospheric pressure effectson Radon-222 transport across the earth-air interface [J]. Geophysical Research Letters, 1974, 79: 5025-5029.

[33] 刘庆成, 陈业勋, 张华, 等. 介质中氡运移的模拟 [J]. 华东地质学院学报, 1995, 18(4): 366-370.

[34] 李韧杰. 氡析出率的测定及其影响因素的探讨 [J]. 铀矿冶, 2000, 19(1): 56-61.

[35] 徐文平, 丁德馨, 饶龙, 等. 松散破碎射气介质中氡运移的气液两相耦合数学模型及其数值解 [J]. 南华大学学报(自然科学版), 2009, 23(04): 1-4.

[36] 李良, 李忠伟. 应用气体扩散和氡蜕变理论讨论水氡异常的形成 [J]. 东北地震研究, 1999, 15(2): 22-28.

[37] 苏杭. 氡在颗粒堆积型射气介质中迁移及析出规律研究 [D]. 衡阳: 南华大学, 2018.

[38] 程业勋, 王南萍, 侯胜利, 等. 空气氡的大地来源理论研究 [J]. 辐射防护通讯, 2001, 21(2): 15-18.

[39] Mostafa A, JungHee S, Sasindu P, et al. Extended Darcy-Forchheimer law including inertial flow deflection effects [J]. Journal of Fluid Mechanics, 2024, 980(413): A13-A13.

[40] Nwonodi I R. A novel model for predicting the productivity index of horizontal/vertical wells based on Darcy's law, drainage radius, and flow convergence [J]. Heliyon, 2024, 10(3): e25073.

[41] Wilkening M H, Watkins D E. Air exchange and Radon-222 concentration in the Carlsbad cavens [J]. Health Physics, 1976, 31(2): 139-143.

[42] Lombardi S, Reimer G M. Radon and Helium in Soil Gases in The Phlegraean Fields, Central Italy [J]. Geophysical Research Letters, 1990, 17(6): 848-652.

[43] 李亚平, 许正繁. 氡的迁移富集及对环境的影响 [J]. 广东地质, 1999, 14(2): 75-78.

[44] 张莹, 张超宇, 彭玉芳, 等. 铀矿区地下水中氡迁移的室内模拟 [J]. 中国矿业, 2014, 23(6): 145-149.

[45] 戴华林, 胡建平, 包乾宗, 等. 关于浅层地震勘探和测氡定位隐伏断裂的初步探讨 [J]. 西安工程学院学报, 2001, 23(4): 65-68.

[46] Varhegyi A, Baranyi I, Somogyi G A. Model for the vertical subsurface Radon transport in "geogas" microbubbles [J]. Geophysical Transac-tions, 1986, 32(3): 235-253.

[47] Kristiansson K, Malmqvist L. Evidence for Nondiffusive Transport of 222Rn in the Ground and a New Physical Model for the Transport [J]. Geophysics, 1982, 47(8): 1444-1452.

[48] Etiope G, Martinelli G. Migration of carrier and trace gases in the geosphere: an overview [J]. Physics of the Earth and Planetary Interiors, 2002, 129(3): 185-204.

[49] Etiope G, Lombardi S. Laboratory simulation of geogas microbubble flow [J]. Environmental Geology, 1996, 27(3): 226-232.

[50] Hakl J, Csige I, Hunyadi, et al. Radon transport in fractured porous media-experimental study in caves [J]. Environment International, 1996, 22(S1): 433-437.

[51] 林效宾, 李西得, 刘武生, 等. 砂岩型铀矿床微生物多样性及铀成矿作用-以二连盆地哈达图铀矿床为例 [J]. 铀矿地质, 2023, 39(05): 743-757.

[52] 李盛富. 伊犁盆地中下侏罗统多种能源矿产富集特征与成藏条件分析 [D]. 四川: 成都理工大学, 2019.

[53] 韦红钢. 核素在高放废物地质处置预选场的迁移行为研究 [D]. 北京: 中国地质大学, 2012.

[54] Peter F F, Eileen P. 222Rn transport in fractured crystalline rock aquifer: result from numerical simulation [J]. Journal of Hydrology, 1997, 19(5): 45-57.

[55] 白云生, 林玉飞, 常桂兰. 铀矿找矿中氡的迁移机制探讨 [J]. 铀矿地质, 1995, 11(4): 224-231.

[56] 刘泰峰, 安海忠, 亢俊健, 等. 陷落柱地表氡气场成因的探讨 [J]. 煤炭工程, 2002, (12): 41-44.

[57] 吴慧山, 林玉飞, 白云生, 等. 氡迁移的接力传递作用 [J]. 地球物理学报, 1997, 40(1): 136-142.

[58] Dutta P K, Naskar M K, Mishra O P. Test of strain behavior model with Radon anomaly in earthquake prone zones [J]. Himalayan Geology, 2012, 33(1): 23-28.

[59] Wattananikorn K, Kanaree M, Wibool-Sake S. Soil gas Radon as an earthquake precursor: some considerations on data improvement [J]. Radiation Measurements, 1998, 29(6): 593-598.

[60] 马殿宙. 氡前兆的气载机理 [J]. 华北地震科学, 1987, 5(1): 159160.

[61] 贾文懿, 方方, 周蓉生, 等. 氡及其子体向上运移的内因与团筷现象 [J]. 成都理工大学学报, 1999, 26(2): 15-175.

[62] 乐仁昌, 贾文懿, 吴允平. 理想条件下氡及其子体运移新理论及其运移方程 [J]. 物理学报, 2003, 52(10): 2457-2461.

[63] 曾兵, 张金钊, 王青. 理想情况下氡及其子体在大气中运动的探讨 [J]. 核电子学与探测技术, 2010, 30(05): 673-675+711.

[64] 刘鸿福. 氡及其子体运移的实验研究与机理探讨 [D]. 四川: 成都理工大学, 1997.

[65] Ryzhakova N K, Almyakov P E, Stavickaya K O, et al. Radon Flux Density Measurement on Rock Surfaces [J]. Atomic Energy, 2022: 1-5.

[66] Karastathis V K, Eleftheriou G, Kafatos M, et al. Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece [J]. Scientific Reports, 2022, 12(1): 1-13.

[67] Adel S M, Hegazy T M, Abd E, et al. Analytical study of Radionuclide and Radon Concentrations in Rock Samples Collected from Um-Bogma and its Radiological Hazard Impact [J]. Arab Journal of Nuclear Sciences and Applications, 2022, 55(2): 1-8.

[68] Otoo F, Darko E O, Garavaglia M. Correlation Analysis of Natural Radionuclides, Radon Exposure, Soil Particles, and Moisture from Quarry Towns in Greater Accra Region, Ghana [J]. Water Air and Soil Pollution, 2022, 233(8): 1-16.

[69] Kennings T W, Noey J D, Mata L A, et al. Radon-222 Charcoal Canister Steady State Model Calibrations Performed in a Highly Controlled Environmental Chamber and a Natural Indoor Environment [J]. Health Physics, 2022, 123(3): 248-256.

[70] Kumar A, Chauhan R P. Measurement of optimal thickness of radon-resistant materials for insulation using diffusion coefficient [J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327(1): 425-431.

[71] Wang H, Zhang L, Wang Y, et al. New-designed in-situ measurement system for radon concentration in soil air and its application in vertical profile observation [J]. Journal of Nuclear Science and Technology, 2022, 59(2): 222-229.

[72] Sukanya S, Noble J, Joseph S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview [J]. Chemosphere, 2022: 135141.

[73] 杨增强, 曹明, 刘磊, 等. 采用氡气预测煤矿自然发火 [J]. 煤矿安全, 2010, 41(07): 45-47.

[74] Wen H, Cheng X, Fan S, et al. A method for detecting hidden fire source in deep mine goafs based on radon measurement and its experimental verification [J]. Applied Geochemistry, 2020, 117: 104603.

[75] Wysocka M, Skubacz K, Chmielewska I, et al. Radon migration in the area around the coal mine during closing process [J]. International Journal of Coal Geology, 2019, 212: 103253.

[76] Li P, Sun Q, Hu J, et al. Effect of the pore structure of granite and gabbro after heat treatment on the radon emission rate [J]. Environmental Science and Pollution Research, 2022, 29(24): 36801-36813.

[77] Catalano R, Immé G, Mangano G, et al. In situ and laboratory measurements for radon transport process study [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306: 673-684.

[78] Khan M S. Measurements of lung doses from radon and thoron in the dwellings of Al-Zulfi, Saudi Arabia, for the assessment of health risk due to ionizing radiation [J]. Arabian Journal of Geosciences, 2021, 14: 1101.

[79] Larionov A V, Sinitsky M Y, Druzhinin V G, et al. DNA excision repair and double-strand break repair gene polymorphisms and the level of chromosome aberration in children with long-term exposure to radon [J]. International Journal of Radiation Biology, 2016, 92(8): 466-474.

[80] Ajayi K M, Shahbazi K, Tukkaraja P, et al. Estimation of radon diffusivity tensor for fractured rocks in cave mines using a discrete fracture network model [J]. Journal of Environmental Radioactivity, 2019, 196: 104-112.

[81] Grattan J P, Gillmore G K, Gilbertson D D, et al. Radon and ‘King Solomon's Miners’: Faynan Orefield, Jordanian Desert [J]. Science of the Total Environment, 2004, 319(3): 99-113.

[82] Dulaiova H, Gonneea M E, Henderson P B, et al. Geochemical and physical sources of radon variation in a subterranean estuary-Implications for groundwater radon activities in submarine groundwater discharge studies [J]. Marine Chemistry, 2008, 110(2): 120-127.

[83] Hatungimana D, Taşköprü C, Ichedef M, et al. Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar [J]. Journal of Building Engineering, 2019, 23: 369-376.

[84] Lawal M K, Ayanlola P S, Oladapo O O, et al. Assessment of radon exhalation rates in mineral rocks used in building decoration in Nigeria [J]. Radiation Protection and Environment, 2021, 44(3): 161.

[85] Tuccimei P, Mollo S, Vinciguerra S, et al. Radon and thoron emission from lithophysae-rich tuff under in-creasing deformation: An experimental study [J]. Geophysical Research Letters, 2010, 37(5): 5305.

[86] Mollo S, Tuccimei P, Heap M J, et al. Increase in Radon emission due to rock failure: an experimental study [J]. Geophysical Research Letters, 2011, 38(14): 130-137.

[87] 徐立鹏. 单轴压力下花岗岩氡气析出量与扩散迁移的实验研究 [D]. 四川: 成都理工大学, 2013.

[88] 严俊, 葛良全, 邹功江, 等. 单轴压力下花岗岩氡析出量的探究 [J]. 核技术, 2013, 36(05): 27-30.

[89] 王立恒. 有限厚破碎射气介质氡运移规律研究及应用 [D]. 衡阳: 南华大学, 2014.

[90] 李伟涛, 刘鸿福, 张新军. 活性炭测氡法监测煤岩水力压裂裂缝的试验 [J]. 煤矿安全, 2018, 49(01): 5-8.

[91] 魏建平, 姚邦华, 王登科, 等. 煤岩单轴压缩氡析出特性试验研究 [J]. 采矿与安全工程学报, 2017, 34(4): 810-816.

[92] 魏建平, 蔡东林, 姚邦华, 等. 煤矿井下放射性活度水平及氡析出规律试验研究 [J]. 河南理工大学学报(自然科学版), 2017, 36(1): 1-6.

[93] 刘伟, 甘伏平, 张庆玉, 等. 岩溶区页岩气勘探中的近地表地球物理探测技术应用研究 [J]. 地质与勘探, 2023, 59(01): 113-121.

[94] 杨林, 姜国庆. 中浅层构造裂隙型地热资源勘查中的综合地球物理方法-以苏南地区为例 [J]. 地球物理学进展, 2020, 35(06): 2265-2275.

[95] 李昂. 煤层火源探测氡异常值分析处理技术研究 [D]. 西安: 西安科技大学, 2008.

[96] 张帅. 乌达矿区上覆火区测氡法探测技术的应用研究 [J]. 神华科技, 2018, 16(9): 20-25.

[97] 孟思佳, 高双庆, 李严严, 等. 测氡仪在煤矿中的应用及性能研究 [J]. 煤炭与化工, 2020, 43(7): 144-146.

[98] 金智新, 白希军, 王爱国. 煤矿地下多层火区探测技术研究与应用 [J]. 华北科技学院学报, 2006, 3(1): 9-13.

[99] 文虎, 张铎, 张辛亥, 等. 氡在侏罗纪煤中运移规律的实验研究 [J]. 西安科技大学学报, 2017, 37(04): 479-484.

[100] 刘洪福, 白春明, 舒祥泽, 等. 用测氡技术探测煤矿地下火区的研究 [J]. 煤炭学报, 1997, 22(04): 68-71.

[101] 唐岱茂, 刘鸿福, 段鸿杰, 等. 氡气测量用于地表探测岩溶陷落柱的位置与范围 [J]. 核技术, 1999, 22(4): 223-227.

[102] 安帮. 采空区遗煤自燃时氡析出及迁移机制研究与应用 [D]. 太原: 太原理工大学, 2018.

[103] 杨华, 刘鸿福. 测氡在煤矿采空区的应用 [J]. 山西煤炭, 2002, 23(2): 38-40.

[104] 孙树庭. 煤与瓦斯突出机理及无接触预测 [J]. 淮南职业技术学院学报, 2006, (01): 8-10.

[105] 王晓川. 受载含瓦斯煤体破裂氡析出规律实验研究 [D]. 河南: 河南理工大学, 2016.

[106] 刘汉彬, 尹金双, 崔勇辉. 土壤氡气测量在鄂尔多斯盆地西缘砂岩型铀矿勘查中的应用 [J]. 铀矿地质, 2006, 22(2): 115-120.

[107] 鲁祖惠, 陈冬荣, 赵维娟. 利用氨异常探测油气沉积的研究 [J]. 核技术, 1996, 19(12): 743-745.

[108] 刘行, 曲凯, 尹青青, 等. 活性炭吸附测氡法在北秦岭柳树湾铀矿床勘查中的应用 [J]. 铀矿地质, 2020, 36(3): 190-198.

[109] 曹创华, 文春华, 楼法生, 等. 湖南省典型稀有金属矿床地球物理响应特征及物探找矿方法研究 [J]. 大地构造与成矿学, 2020, 44(6): 1096-1112.

[110] 刘江平, 周斌, 李庆红. 氡(Rn)射气测量在胜利油田隐伏断裂研究中的应用 [J]. 华北地震科学, 2004, 22(1): 42-45.

[111] 唐岱茂, 刘鸿福, 段鸿杰, 等. 氡气测量用于地表探测岩溶陷落柱的位置与范围 [J]. 核技术, 1999, 22(4): 223-227.

[112] 郭鹏文, 王飞. 土壤氡气测量在调查矿山断裂中的应用 [J]. 世界有色金属, 2021, (6): 153-154.

[113] 马永, 高冰莹, 金大利, 等. 宝坻断裂土壤氡气观测技术与应用 [J]. 大地测量与地球动力学, 2019, 39(7): 756-759.

[114] Choubey V M, Bartarya S K, Ramola R C. Radon variations in an active landslide zone along the Pindar River, in Chamoli District, Garhwal Lesser Himalaya, India [J]. Environmental Geology, 2005, 47(6): 745-750.

[115] Muhammad A, Külahcı F, Akram P. Modeling radon time series on the North anatolian fault zone, Turkiye: Fourier transforms and Monte Carlo simulations [J]. Natural Hazards, 2020, 104(1): 979-996.

[116] Coletti C, Ciotoli G, Benà E, et al. The assessment of local geological factors for the construction of a Geogenic Radon Potential map using regression kriging. A case study from the Euganean Hills volcanic district (Italy) [J]. Science of the Total Environment, 2022, 808: 152064.

[117] 廖丽霞, 郑永通, 袁丽雯. 华安汰内井水氡对闽台地震的映震特征差异性分析 [J]. 地震, 2010, 30(4): 133-139.

[118] 刘耀炜, 任宏微. 汶川8.0级地震氡观测值震后效应特征初步分析 [J]. 地震, 2009, 29(1): 121-131.

[119] 林晨. 煤自燃采空区近地表土壤物理性质对氡气吸附滞留的影响研究 [D]. 太原: 太原理工大学, 2022.

[120] 薛东旭, 刘诚, 郭发, 等. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测 [J]. 物探与化探, 2023, 47(05): 1169-1178.

[121] 但炳良, 胡谍, 张金朝, 等. 土壤氡气测量技术在麻团断裂南段隐伏构造的应用研究-以鄂州岱家山地区为例 [J]. 科学技术创新, 2023, (23): 84-87.

[122] 李俊杰. 基于液体闪烁体氡测量探测器的设计与测量方法研究 [D]. 衡阳: 南华大学, 2022.

[123] 丁卫撑, 王义, 李元景, 等. 基于扩散累积法原理的一种空气测氡仪研制 [J]. 核电子学与探测技术, 2010, 30(03): 422-425+384.

[124] Dassekpo J B M, Zha X, Zhan J. Synthesis reaction and compressive strength behavior of loess-fly ash based geopolymers for the development of sustainable green materials [J]. Construction and Building Materials, 2017, 141: 491-500.

[125] 张炜. 覆岩采动裂隙及其含水性的氡气地表探测机理研究 [D]. 北京: 中国矿业大学, 2012.

[126] 陈艳. 基于氡气测量的地震作用下铀尾矿库坝体稳定性研究 [D]. 衡阳: 南华大学, 2022.

[127] 雷波, 兰明, 贺锋, 等. 基于熵-中位数子区滤波提取土壤氡气浓度异常-以甘肃省花海盆地为例 [J]. 物探与化探, 2021, 45(04): 1064-1070.

[128] 彦鹏, 胡全宏. 掘进工作面氡气来源分析和关键治理技术研究 [J]. 安全, 2020, 41(01): 23-26.

[129] 张东升, 张炜, 马立强, 等. 覆岩采动裂隙氡气探测研究进展及展望 [J]. 中国矿业大学学报, 2016, 45(06): 1082-1097.

[130] 张金钊. 不同压强下氡气运移的实验研究 [D]. 四川: 成都理工大学, 2011.

[131] 陈云. 煤样加载破裂过程中氡析出规律及矿用综合测氡仪研发 [D]. 安徽: 安徽理工大学, 2023.

[132] 蒋欢. 弱胶结地层重复采动裂隙演化与氡气响应特征研究 [D]. 北京: 中国矿业大学, 2022.

[133] 钟炎良. 基于分形方法的氡气测量在隐伏断裂及找矿中应用 [D]. 四川: 成都理工大学, 2014.

[134] 方孟. 活性炭吸附氡动力学研究 [D]. 太原: 太原理工大学, 2018.

[135] 李建辉, 闫双华. 氡气浓度变化趋势验证分析 [J]. 环境科学导刊, 2023, 42(01): 93-96.

[136] 甘光元, 蒲东. 某花岗岩质隧道放射性评价及工程措施 [J]. 高速铁路技术, 2022, 13(02): 53-56+66.

[137] 程立群, 刘亮, 孙建宏, 等. 河北昌黎平原区土壤中氡气浓度调查与环境影响评估 [J]. 物探化探计算技术, 2022, 44(01): 88-95.

[138] 刘洪涛. 土壤氡迁移数值模拟及土壤氡对流速度的研究 [D]. 北京: 中国地质大学, 2018.

[139] 周炬. 地浸采铀区下采煤区的饱和/非饱和氡运移模型及其应用研究 [D]. 衡阳: 南华大学, 2019.

[140] 柳博聪. 采空区遗煤自燃过程氡析出规律实验模拟研究 [D]. 内蒙古: 内蒙古科技大学, 2022.

[141] Cong M, Long Z C, Bing C. Analysis of strength development in soft clay stabilized with cement-based stabilizer [J]. Construction and Building Materials, 2014, 71: 354-362.

[142] Chowdhury S, Barman C, Deb A. Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar-Tantloi geothermal region of West Bengal and Jharkhand, India [J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319: 23-32.

[143] 甘睿琳, 高鹏, 李建杰, 等. 北京地区大气氡浓度日变化与气象要素影响分析 [J]. 辐射防护通讯, 2022, 42(03): 19-22.

[144] 孙海仁, 李毅, 曾晶荣, 等. 大气氡变化对航空伽马能谱测量的影响 [J]. 物探与化探, 2017, 41(02): 283-290.

[145] 周文强. 采空区垮落岩石在不同温度下氡气析出特性研究 [D]. 太原: 太原理工大学, 2020.

[146] 蒋复量, 张帅, 刘永, 等. 爆破动载作用下含放射性型岩内部损伤演化及表面氡析出率响应特征 [J]. 岩石力学与工程学报, 2020, 39(S1): 2741-2750.

[147] 廖福, 罗新, 谢月清, 等. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展 [J]. 地学前缘, 2022, 29(03): 76-87.

[148] 刘啸晨, 杨明理, 王攀, 等. 氡钍射气连续测量装置的研制及其现场验证 [J]. 铀矿冶, 2023, 42(03): 69-74+106.

[149] 黄俊尧, 叶勇军, 吴文浩. 圆管状多孔射气介质氡析出规律的理论研究 [J]. 南华大学学报(自然科学版), 2020, 34(01): 1-8+15.

[150] 刘凯旋. 超声作用对含水多孔射气介质氡析出的实验研究 [D]. 衡阳: 南华大学, 2017.

[151] 田伶. 双层介质中氡迁移动力学模型及控制研究 [D]. 衡阳: 南华大学, 2019.

[152] Ishimori Y, Lange K, Martin P, et al. Measurement and Calculation of Radon Releases From Norm Residues [R]. Vienna: International Atomic Energy Agency, 2013.

[153] Van G M T. A Closed form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

[154] Rogers V C, Nielson K K. Multiphase Radon Generation and Transport in Porous Materials [J]. Health Physics, 1991, 60(6): 807-815.

[155] Ongori J N, Lindsay R, Mvelase M J. Radon transfer velocity at the water-air interface [J]. Applied Radiation and Isotopes, 2015, 105(6): 144-149.

[156] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.

[157] Thommes M, Kaneko, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069.

[158] 安成, 柳广弟, 孙明亮, 等. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征-以鄂尔多斯盆地华池地区长7段为例 [J]. 石油实验地质, 2023, 45(03): 576-586.

[159] Luo C, Yang J, Chen W. Effect of biochar on soil properties on the Loess Plateau: Results from field experiments [J]. Geoderma, 2020, 369: 114323.

[160] 聂万才, 张廷山, 王铭伟, 等. 海陆过渡相煤系页岩孔隙分形特征及影响因素-以沁水盆地北部太原组为例 [J]. 沉积学报, 2024: 1-15.

[161] 张凤奇, 李宜浓, 罗菊兰, 等. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征 [J]. 岩性油气藏, 2022, 34(05): 50-62.

[162] Sakoda A, Hanamoto K, Ishimori Y, et al. Radioactivity and radon emanation fraction of the granites sampled at Misasa and Badgastein [J]. Applied Radiation and Isotopes, 2008, 66: 648-652.

[163] Bala P, Kumar V, Mehra R. Measurement of radon exhalation rate in various building materials and soil samples [J]. Earth System Science Data, 2017, 126: 1-8.

[164] Bezuidenhout J. Estimation of radon potential through measurement of uranium concentrations in granite geology [J]. South African Journal of Science, 2019, 115: 1-4.

[165] Otoo F, Darko E O, Garavaglia M, et al. Assessment of natural radioactivity and radon exhalation rate associated with rock properties used for construction in greater Accra region, Ghana [J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328: 911-923.

[166] Ennemoser O, Ambach W, Brunner P, et al. Unusually high indoor radon concentrations from a giant rock slide [J]. Science of the Total Environment, 1994, 151: 235-240.

[167] Righi S, Luigi B. Natural radioactivity and radon exhalation in building materials used in Italian dwellings [J]. Journal of Environmental Radioactivity, 2006, 88(2): 158-170.

[168] Haneberg W C, Wiggins A, Curl D C, et al. A geologically based indoor‐radon potential map of Kentucky [J]. GeoHealth, 2020, 4: e2020GH000263.

[169] Li P, Sun Q, Tang S, et al. Effect of heat treatment on the emission rate of radon from red sandstone [J]. Environmental Science and Pollution Research, 2021, 28: 62174-62184.

[170] Gogoi P P, Barooah D. Assessment of radon exhalation rates, effective radium content and radiological exposure dose, of coal and rocks in Tiru Valley Coal Field, India using track etched technique [J]. Physica Scripta, 2022, 97: 085005.

[171] Kobeissi M, El-Samad O, Rachidi I. Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon [J]. Radiation Protection Dosimetry, 2013, 153: 342-351.

[172] Aykamıs A S, Turhan S, Aysun Ugur, et al. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey [J]. Radiation Protection Dosimetry, 2013, 157: 105-111.

[173] Siegesmund S, Pereira A, Sousa L, et al. Is there any health danger by radioactivity on the use of dimensional stones [J]. Environmental Earth Sciences, 2022, 81: 1-24.

[174] Li P, Sun Q, Geng J, et al. Radon exhalation from temperature treated loess [J]. Science of the Total Environment, 2022, 832: 154925.

[175] Ding R, Sun Q, Jia H, et al. Study on the pore structure and radon release characteristics of coal in northern China [J]. Science of the Total Environment, 2022, 844: 157148.

[176] 曲国庆. 非线性大地测量信号小波分析理论与应用研究 [D]. 山东: 山东科技大学, 2008.

[177] 姜鑫, 乔佳, 王勋, 等. 基于小波分析的天然气价格预测 [J]. 煤气与热力, 2021, 41(06): 34-37+46.

[178] 巩建军, 杨海燕, 张凯, 等. 小波分析技术在放射性地球物理方法中的应用研究 [J]. 工程地球物理学报, 2016, 13(01): 116-121.

[179] 张新军, 刘鸿福, 张和生. 应用小波新阈值函数对低放射性活性炭测氡γ能谱的消噪 [J]. 原子能科学技术, 2010, 44(08): 897-901.

[180] Chau N D, Chruściel E, Prokólski Ł. Factors controlling measurements of radon mass exhalation rate [J]. Journal of Environmental Radioactivity, 2005, 82(3): 363-369.

[181] Papachristodoulou C, Ioannides K, Spathis S. The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments [J]. Health Physics, 2007, 92(3): 257-264.

[182] Abodunrin O P, Akinloye M K. Determination of radon exhalation rates from soil around buildings in Lagos environments using passive measurement technique [J]. Journal of Environmental Health Science and Engineering, 2020, 18: 129-135.

[183] Chitra N, Sundar S B, Valan I I, et al. Modeling and Experiments to Estimate Radon Emanation Factor in Soil-Grain Size and Moisture Effect [J]. Radiation Protection Dosimetry, 2021, 194(2-3): 104-112.

[184] Liu X, Li X, Lan M, et al. Experimental study on permeability characteristics and radon exhalation law of overburden soil in uranium tailings pond [J]. Environmental Science and Pollution Research, 2021, 28: 15248-15258.

[185] 赵再昆, 王铁行, 金鑫, 等. 高温作用下非饱和黄土水热迁移试验研究 [J]. 岩土工程学报, 2024, 46(01): 151-161.

[186] Hodot B B. Outburst of coal and coalbed gas (Chinese Transla-tion) [M]. Beijing: China Industry Press, 1966:10-50.

[187] 贺承祖, 华明琪. 储层孔隙结构的分形几何描述 [J]. 石油与天然气地质, 1998, (1): 17-25.

[188] 金强, 曾怡. 储集性砂岩粒度组成的分形结构 [J]. 石油大学学报: 自然科学版, 1995, 19(3): 12-16.

[189] 马新仿, 张士诚, 郎兆新. 用分段回归方法计算孔隙结构的分形维数 [J]. 石油大学学报: 自然科学版, 2004, 28(6): 54-56.

[190] Zhou L, Kang Z. Fractal characterization of pores in shales using NMR: A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 860-872.

[191] 余旭东, 康志宏, 周磊, 等. 核磁共振技术在页岩孔隙表征中的应用 [J]. 煤炭技术, 2018, 37(5): 129-131.

[192] 李志清, 王伟, 王晓明, 等. 页岩微纳米孔隙结构分形特征研究 [J]. 工程地质学报, 2018, 26(2): 494-503.

[193] 薛小杰. 基于核磁共振技术的岩土体孔隙分形特征 [D]. 桂林: 桂林理工大学, 2020.

[194] Wang Y, Li T, Zhao C. A study on the effect of pore and particle distributions on the soil water characteristic curve of compacted loess soil [J]. Environmental Earth Sciences, 2010, 80: 764.

[195] Zhao S, Zhao Y, Wu J, et al. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau [J]. Environmental Earth Sciences, 2010, 53: 617-625.

[196] Wei Y, Fan W, Yu N, et al. Permeability of loess from the South Jingyang Plateau under different consolidation pressures in terms of the three-dimensional microstructure [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 4841-4857.

[197] Osgouei Y T, Akin S. Experimental and numerical study of flow and thermal transport in fracturedrock [J]. Heat and Mass Transfer, 2021, 2: 1-16.

[198] Zafrir H, Horin Y B, Malik U, et al. Novel determination of radon-222 velocity in deep subsurfacerocks and the feasibility to using radon as an earthquake precursor [J]. Journal of Geophysical Research: SolidEarth, 2016, 121(9): 6346-6364.

[199] Jobbágy V, Somlai J, Kovács J, et al. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment [J]. Journal of Hazardous Materials, 2019, 172(2): 1258-1263.

[200] Sas Z, Somlai J, Szeiler G, et al. Radon emanation and exhalation characteristic of heat-treated clay samples [J]. Radiation Protection Dosimetry, 2015, 152(3): 51-54.

[201] 罗光伟, 石锡忠. 岩石标本受压时氡和钍射气量的实验结果 [J]. 地震学报, 1980, 2(2): 198-204.

[202] 李玲玉, 张传庆, 崔国建, 等. 大理岩三轴压缩试验过程中氡释放规律研究 [J]. 岩石力学与工程学报, 2022, 41(09): 1888-1897.

[203] 罗光伟, 石锡忠, 王基华. 单轴压力下样品破裂过程中几种化学参数变化的实验结果 [J]. 地球物理学报, 1981, 24(1): 117-122.

[204] Wei J, Cui P, Chen Z, et al. Experimental study on radon exhalation characteristics of coal samples under varying gas pressures [J]. Results in Physics, 2018, 10: 1006-1014.

[205] 武旭阳, 孙娟, 连国玺, 等. 地浸采铀钻孔场区氡致周边辐射环境影响研究 [J]. 辐射防护, 2023, 43(06): 611-619.

[206] 李英宾, 张伟, 邱崇涛. 综合地球物理在内蒙古多伦县核桃坝地区铀矿勘查中的应用 [J]. 地质科技通报, 2024, 43(01): 352-359.

[207] 叶勇军, 张英朋, 陈代嘉, 等. 铀矿通风网络中氡及氡子体浓度的解算与调控 [J]. 辐射防护, 2023, 43(03): 257-264.

[208] 张字龙, 贺锋, 李子颖, 等. 鄂尔多斯盆地西北部特拉敖包矿产地铀矿石物质组成特征 [J]. 铀矿地质, 2024, 40(01): 16-28.

[209] 党飞鹏, 吕川, 唐湘生, 等. 赣西北洞上铀矿床产铀花岗岩的时代、岩石地球化学特征及其地质意义 [J]. 地质力学学报, 2023, 29(06): 898-914.

[210] 李研, 李宏宇. 岫岩县陶家隈子铀矿成矿地质条件及找矿前景 [J]. 中国资源综合利用, 2023, 41(08): 90-92.

[211] 杨志强, 刘玉龙, 孙永硕, 等. 山西省左云县马道头地区铀矿地质特征分析 [J]. 华北自然资源, 2020, (05): 59-60+63.

[212] 龙淑琴. 花岗岩氡析出的岩石学因素影响研究 [D]. 衡阳: 南华大学, 2022.

[213] 张栋泰. 内蒙古阿拉善右旗塔木素铀矿床矿石特征及成因研究 [D]. 南昌: 东华理工大学, 2018.

[214] 叶传永. 尕斯库勒盐湖卤水与沉积物中铀的分布及富集机理 [D]. 核工业北京地质研究院, 2013.

[215] 单芝波, 雷安贵, 宋柏荣, 等. 松辽盆地钱家店地区姚家组砂岩黏土矿物特征及其与铀矿化的关系 [J]. 中国地质, 2022, 49(01): 271-283.

[216] Hu X, Sun Q, Geng J, et al. Study on influencing factors of radon exhalation from coal measures in the northern margin of Ordos Basin [J]. Process Safety and Environmental Protection, 2023, 178: 807-817.

[217] 宋照亮, 刘丛强, 韩贵琳, 等. 乌江流域沉积岩风化过程中铀的富集与释放 [J]. 环境科学, 2006, (11): 2273-2278.

[218] Thu H N P, Van T N. The effects of some soil characteristics on radon emanation and diffusion [J]. Journal of Environmental Radioactivity, 2020, 216: 106189.

[219] Sahu P, Panigrahi D C, Mishra D P. A comprehensive review on sources of radon and factors affecting radon concentration in underground uranium mines [J]. Environmental Earth Sciences, 2016, 75: 1-19.

[220] Albert J, Schärf M, Enzmann F, et al. Local radon flux maxima in the quaternary sediments of Schleswig-Holstein (Germany) [J]. International Journal of Earth Sciences, 2021, 110(4): 1501-1516.

[221] Nazaroff W W. Radon transport from soil to air [J]. Reviews of Geophysics, 1992, 30(2): 137-160.

[222] Hilal M A, Elafifi E M, Nayl A A. Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing [J]. Journal of Environmental Radioactivity, 2015, 145: 40-47.

[223] 郝家旺, 李庆文, 乔兰, 等. 高温作用后砂岩的孔隙分形特征与岩石本构模型研究 [J]. 华中科技大学学报(自然科学版), 2024, 52(02): 142-148.

[224] 何娅兰, 宁麟, 李炀, 等. 基于核磁共振技术对水泥砂浆高温后孔隙结构及水分迁移特征的研究 [J]. 硅酸盐通报, 2023, 42(07): 2336-2343.

[225] 古启雄, 黄震, 钟文, 等. 高温循环后花岗岩孔隙结构与物理力学特性演化规律研究 [J]. 岩石力学与工程学报, 2023, 42(06): 1450-1465.

[226] 曾圣聪, 金灿, 高培虎, 等. 多尺度孔隙结构热障涂层高温服役导热演变模拟 [J]. 西安工业大学学报, 2021, 41(06): 667-672.

[227] 江俊廷. 湿传递作用下多孔射气介质中氡迁移模型及其解算 [D]. 衡阳: 南华大学, 2016.

[228] 潘文鑫, 刘永, 吕方可, 等. 毛细阻滞型覆土层对铀尾矿库氡析出影响的初步研究 [J]. 中国科技信息, 2014, (Z1): 47-49.

[229] Rong G, Sha S, Li B, et al. Experimental Investigation on Physical and Mechanical Properties of Granite Subjected to Cyclic Heating and Liquid Nitrogen Cooling [J]. Rock Mechanics and Rock Engineering, 2021, 54: 2383-2403.

[230] Ghasemi S, Khamehchiyan M, Taheri A, et al. Microcracking Behavior of Gabbro During Monotonic and Cyclic Loading [J]. Rock Mechanics and Rock Engineering, 2021, 54: 2441-2463.

[231] 封胤镕. 液氮射流冲击作用下高温花岗岩应力演化与损伤特征研究 [D]. 北京: 中国矿业大学, 2023.

[232] 吴秋红, 夏宇浩, 赵延林, 等. 不同温度及冷却速率下花岗岩动态拉伸力学特性 [J]. 煤炭学报, 2023, 48(05): 2179-2193.

[233] 刘辉. 循环热冲击作用下干热岩力学特性及损伤机理研究 [D]. 北京: 中国矿业大学, 2022.

[234] 董硕, 沙松, 蒙世仟, 等. 液氮冷却作用下三类高温岩石力学性能试验研究 [J]. 东北大学学报(自然科学版), 2021, 42(11): 1591-1599.

[235] Abbas Y M, Hegazy T M, Nassif M S, et al. Measurement of 226Ra concentration and radon exhalation rate in rock samples from Al-Qusair area using CR-39 [J]. Journal of Radiation Research and Applied Sciences, 2020, 13(1): 102-110.

[236] Shahrokhi A, Kovacs T. Radiological survey on radon entry path in an underground mine and implementation of an optimized mitigation system [J]. Environmental Sciences Europe, 2021, 33(1): 1-14.

[237] Yan C S, Jing L W, Bing S, et al. Study on a new charcoal closed chamber method for measuring radon exhalation rate of building materials [J]. Radiation Measurements, 2020, 134: 106308.

[238] Zhang T, Li X, Hong C, et al. Study on the Influence of Dry Density and Particle Size Fractal Distribution on the Radon Control Performance of Overlying Soil in Uranium Tailings Pond [J]. Radiation Protection Dosimetry, 2021, 197(3-4): 183-194.

[239] Nikolopoulos D, Matsoukas C, Yannakopoulos P H, et al. Long-memory and fractal trends in variations of environmental radon in soil: results from measurements in Lesvos Island in Greece [J]. Journal of Earth Science, 2018, 9: 1-11.

[240] Ye Y, Wang Z, Liang T, et al. Experimental study on radon exhalation behavior of heap leaching uranium ore column with dilute sulfuric acid [J]. Environmental Science and Pollution Research, 2019, 26(20): 20308-20315.

[241] Zhou Y, Wang X, Chen Y, et al. Specific emitter identification via bispectrum-radon transform and hybrid deep model [J]. Mathematical Problems in Engineering, 2020: 7646527.

[242] 李振球, 胡久生, 刘慈英, 等. 热释氡释放过程的实验研究及其结果的讨论 [J]. 矿物岩石地球化学通讯, 1984: (02): 34-40.

[243] Sakoda A, Ishimori Y. Calculation of temperature dependence of radon emanation due to alpha recoil [J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299: 2013-2017.

[244] Cinelli G, Tondeur F, Dehandschutter B. Development of an indoor radon risk map of the Walloon region of Belgium, integrating geological information [J]. Environmental Earth Sciences, 2011, 62: 809-819.

[245] 朱晓玄. 高温作用下非饱和黄土蒸发影响因素及评价方法研究 [D]. 西安: 西安建筑科技大学, 2022.

[246] 郑晓琛. 火灾高温下含湿黄土热湿迁移中温度场-湿度场-蒸汽压力场分布研究 [D]. 太原: 太原理工大学, 2016.

[247] 吕汉江. 岩石材料破坏过程中的氡射气变化特征 [J]. 应用基础与工程科学学报, 2014, 22(1): 45-52.

[248] Sabbarese C, Ambrosino F, D'Onofrio A. Development of radon transport model in different types of dwellings to assess indoor activity concentration [J]. Journal of Environmental Radioactivity, 2021, 227: 106501.

[249] Florică Ş, Burghele B D, Bican-Brişan N, et al. The path from geology to indoor radon [J]. Environmental Geochemistry and Health, 2020, 42(9): 2655-2665.

[250] Schekotov A, Hayakawa M, Potirakis S M. Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors [J]. Natural Hazards, 2021, 106(1): 701-714.

[251] 郑志恒, 宣益民. 薄膜和半无限大介质间的近场辐射换热研究 [J]. 工程热物理学报, 2012, 33(03): 489-492.

[252] 黄耀英, 王润富, 吴中如. 无限均布压力作用下弹性地基的应力和位移 [J]. 河海大学学报(自然科学版), 2007, (05): 518-523.

[253] 张海燕, 邵善根, 邵庆. 半无限大介质中非稳态扩散模型的精确解 [J]. 化学工业与工程, 2003, (02): 80-83+94.

[254] 刘池洋, 张龙, 黄雷, 等. 砂岩型铀矿形成的新模式: 来自深部有机流体的成矿作用 [J]. 地学前缘, 2024, 03: 1-16.

[255] 吴占伟, 黄炳香, 赵兴龙, 等. 我国煤系共伴生矿产赋存特征及分布规律 [J]. 采矿与安全工程学报, 2024, 41(01): 29-46.

[256] 刘持恒, 李子颖, 贺锋, 等. 鄂尔多斯盆地西南部古构造指示的构造-沉积过程及砂岩型铀成矿意义 [J]. 铀矿地质, 2024, 40(01): 29-40.

[257] 李文灏, 许德如, 颜照坤, 等. 鄂尔多斯盆地与四川盆地砂岩型铀矿铀成矿条件对比初探 [J]. 东华理工大学学报(自然科学版), 2024, 03: 1-15.

[258] 陈靖霖. 鄂尔多斯盆地泾川地区风成砂岩型铀矿成矿氧化还原环境 [D]. 长春: 吉林大学, 2023.

[259] 乐亮. 鄂尔多斯盆地北部直罗组铀储层中黄铁矿的形成过程与演化规律 [D]. 北京: 中国地质大学, 2021.

[260] 刘亢. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究 [D]. 北京: 中国矿业大学, 2016.

[261] 俞礽安, 李彤, 杨桐旭, 等. 鄂尔多斯盆地西南缘中下侏罗统地层物源及构造演化对铀成矿的制约 [J]. 地球科学, 2024, 03: 1-21.

[262] Cao Y, Yuan G, Li X, et al. Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China [J]. Petroleum Science, 2014, 11(3): 346-362.

[263] Chen F, Zhao H, Lu S, et al. The effects of composition, laminar structure and burial depth on connected pore characteristics in a shale oil reservoir, the Raoyang Sag of the Bohai Bay Basin, China [J]. Marine and Petroleum Geology, 2019, 101: 290-302.

[264] Ehrenberg S N, Nadeau P H. Sandstone vs carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships [J]. AAPG bulletin, 2005, 89(4): 435-445.

[265] Freiburg J T, Ritzi R W, Kehoe K S. Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO2 storage reservoir-The Cambrian Mt. Simon Sandstone, Illinois Basin, USA [J]. International Journal of Greenhouse Gas Control, 2016, 55: 42-54.

[266] Monsees A C, Busch B, Hilgers C. Compaction control on diagenesis and reservoir quality development in red bed sandstones: a case study of Permian Rotliegend sandstones [J]. International Journal of Earth Sciences, 2021, 110(5): 1683-1711.

[267] Liao H M, Yang X G, Lu G D, et al. Experimental study on the formation of landslide dams by fragmentary materials from successive rock slides [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1591-1604.

[268] Mahur A K, Kumar R, Sonkawade R G, et al. Measurement of natural radioactivity and radon exhalation rate from rock samples of Jaduguda uranium mines and its radiological implications [J]. Nuclear Instruments and Methods in Physics Research, 2008, 266(8): 1591-1597.

中图分类号:

 P642.5    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式