- 无标题文档
查看论文信息

题名:

 非均匀荷载作用下隧道衬砌变形破坏机理与加固方法研究    

作者:

 聂红宾    

学号:

 18104053003    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 0814    

学科:

 工学 - 土木工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 结构工程    

导师姓名:

 董书宁    

导师单位:

 中煤科工西安研究院(集团)有限公司    

第二导师姓名:

 谷拴成    

提交日期:

 2023-12-18    

答辩日期:

 2023-12-08    

外文题名:

 Research on the Deformation Mechanism and Reinforcement Method of Tunnel Lining under Inhomogeneous Load    

关键词:

 非均匀荷载 ; 复合式衬砌 ; 碳纤维复合材料 ; 加固范围 ; 受力模型 ; 屈服准则    

外文关键词:

 Inhomogeneous load ; Anamorphic lining ; Carbon fiber reinforced plastics ; Reinforcement range ; Force model ; Yield criterion    

摘要:

衬砌作为隧道永久性支护结构,因附加荷载、岩层缺陷及施工等因素形成非均匀荷载,可造成衬砌开裂、错台,严重影响隧道的稳定性。因此,以拉林铁路隧道群项目为依托,采用理论分析、现场观测、数值模拟和室内试验等方法,研究非均匀荷载作用下隧道衬砌变形破坏机理,确定治理范围并提出碳纤维加固措施,保障结构安全。主要研究工作如下:

(1)确定了非均匀荷载取值及分布模型。对《铁路隧道设计规范》中主要荷载分析,归纳出非均匀荷载种类、取值及分布模型。通过理论方法对其中未明确的非均匀荷载进行分析,按照太沙基围岩压力求解思路,建立非连续边界条件影响下围岩压力计算方法;针对太沙基理论连续可积限制,结合层间力学理论,提出大倾角及岩层影响下围岩压力计算方法,并用拉林铁路进行模型参数化处理,系统归纳并建立了非均匀荷载取值及分布模型。

(2)揭示并确定了非均匀荷载作用下圆弧衬砌变形破坏机理及治理范围。通过弹性理论及荷载效应组合方法,建立了不同非均匀工况作用下圆弧衬砌应力模型,揭示应力与荷载、衬砌尺寸及截面系数之间的关系;通过双剪统一强度理论,建立了圆弧衬砌塑性发展模型,研究非均匀荷载与破坏位置、范围的关系,确定荷载临界值及圆弧衬砌各区段损伤模型,并利用数值模拟验证理论的可行性。

(3)揭示并确定了非均匀荷载作用下多段弧衬砌变形破坏机理及治理范围。依据拉林铁路工程参数确定非均匀不利荷载,通过力法解算多段弧衬砌弹性内力。利用塑性穷举及截面系数方法确定内力塑性发展系数,从而得到多段弧衬砌破坏内力值;将多段弧衬砌等效为平面曲梁,建立塑性发展模型,确定内力控制要素、破坏位置及治理范围。

(4)针对破坏范围内衬砌的受力特点,提出相应碳纤维治理方法,确定了加固过程中隧道环境影响参数。按照非均匀荷载作用下衬砌破损段受力特性及损伤情况,划分治理等级,提出了碳纤维加固方法。针对拉林铁路环境特征,分别设计了冻融损伤试验、碳纤维滑移试验及其加固冻融/持载混凝土强度试验,建立了相关模型并结合衬砌内材料强度限值,确定了加固过程中隧道环境影响参数。

(5)通过室内模型试验及曲梁理论模型,建立了隧道环境影响下碳纤维加固破损衬砌承载力计算方法,并研发了压阻监测系统,及时掌握受力状况,保障了加固体的稳定。通过对隧道环境影响下碳纤维加固破损衬砌进行室内试验,揭示了承载力与加固参数、结构损伤及环境参数之间的变化规律,确定了承载力的提高率;依据组合曲梁模型,提出隧道环境影响下碳纤维加固破损衬砌承载力计算方法;针对拉林铁路隧道衬砌破损情况,通过模拟、理论、监测等方法,分析碳纤维加固段荷载取值、裂缝等级、治理方案、加固前后承载力的提高率以及再次受力压阻变化规律等,确保加固体的稳定性。

外文摘要:

As a permanent tunnel support structure, the lining, due to additional load, rock defects, construction quality, and other factors that form a inhomogeneous load, can cause lining cracking and misalignment, severely influencing the stability of the tunnel. Therefore, based on the Lhasa-Nyingchi Railway Tunnel Group Project, theoretical analysis, on-site measurement, numerical simulation, and in-house test were used to study the deformation and damage evolution law of the tunnel lining under inhomogeneous load, determine the scope of treatment, and guarantee the structure's safety by using carbon fiber reinforced plastics reinforcement technology. The following results have been achieved:

(1) Determined the value and distribution model of inhomogeneous loads. The main loads in the “Railway Tunnel Design Specifications” were analyzed to summarize the types, values, and distribution models of inhomogeneous loads. Through the theoretical method to analyze the unspecified inhomogeneous load, according to the idea of solving Terzaghi’s surrounding rock pressure, establish the calculation method of surrounding rock pressure under the influence of non-continuous boundary conditions; given the limitations of the continuous accumulation of Terzaghi’s Theory, combining with the theory of interlayer mechanics, put forward the method of calculating the surrounding rock pressure under the influence of large inclination angle and rock strata, and parameterize the model by using Lhasa–Nyingchi Railway, and then systematically generalize and establish a model of taking value and distribution of inhomogeneous loads.

(2) The deformation and damage mechanism of circular arc lining under inhomogeneous load is revealed, and the scope of treatment is determined as well. Through the elasticity theory and load effect combination method, the stress model of circular arc lining under inhomogeneous load is established to reveal the relationship between stress and load, lining size and section coefficient, and the like. Through twin shear unified strength theory, the development model of deformation and damage of circular arc lining is established to examine the relationship between  inhomogeneous load and damage location and range, to determine the critical value of load and damage model of each segment of circular arc lining and to verify the feasibility of the theory with the use of numerical simulation.

(3) The deformation and damage mechanism of multi-segment arc lining under inhomogeneous load is revealed, and the scope of treatment is determined. Based on the engineering parameters of the Lhasa–Nyingchi Railway, the unfavorable inhomogeneous load is determined, and the elastic internal force of multi-segment arc lining is solved by the force method. The plastic hinge and section coefficient methods are used to determine the plastic development coefficient of the internal force, to obtain the value of the destructive internal force of the multi-segment arc lining. The multi-segment arc lining is equivalent to a plane curved beam, and the plastic development model is established as well, so as to determine the control elements of the internal force, the damage location, and the scope of the treatment.

(4) Given the scope of damage and force characteristics, the corresponding carbon fiber reinforced plastics reinforcement treatment method is proposed, and the tunnel environmental impact parameters in the reinforcement process are determined. According to the force characteristics and damage situation of the damaged lining section under inhomogeneous load, the management level is divided, with the carbon fiber reinforced plastics reinforcement method proposed. For the environmental characteristics of Lhasa–Nyingchi Railway, freeze-thaw damage test, carbon fiber reinforced plastics slip test, and carbon fiber reinforced plastics reinforcement freeze-thaw/load-holding concrete strength test were designed, and relevant models were established combined with the strength of materials in the lining to determine the environmental impact parameters of the tunnel in the reinforcement process.

(5) Through the in-house model test and curved beam model, the calculation method of bearing capacity of carbon fiber reinforced plastics reinforced damaged lining under the influence of the tunnel environment is established, and the piezoresistive monitoring system is developed, which can grasp the force condition in time and guarantee the stability of the reinforcement. Through the in-house test of carbon fiber reinforced plastics reinforced damaged lining under the environmental impact of the tunnel, the change rules of bearing capacity, reinforcement parameters, structural damage, and environmental parameters, are revealed, with the improvement rate of bearing capacity determined. Based on the combined curved beam model, it puts forward the method of calculating the bearing capacity of carbon fiber reinforced plastics reinforced damaged lining under the environmental impact of the tunnel. For the situation of the damaged lining of Lhasa–Nyingchi Railway, it analyzes the carbon fiber reinforced plastics reinforced section load value, crack grade, management program, before and after reinforcement bearing increase rate, and again the change rule of pressure resistance, by means of simulation, theory, and monitoring, to ensure the stability of the reinforcement.

参考文献:

[1]杨晓强,孙振岳.西安城市轨道交通绿色技术应用研究[J].隧道建设(中英文),2023,43(S1):1-5.

[2]巩江峰, 王伟, 黎旭等. 截至2022年底中国铁路隧道情况统计及2022年新开通项目重点隧道概况 [J]. 隧道建设(中英文), 2023, 43(04): 721-738.

[3]田四明, 王伟, 杨昌宇等. 中国铁路隧道40年发展与展望 [J]. 隧道建设(中英文), 2021, 41(11): 1903-1930.

[4]中华人民共和国交通运输部政府信息. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202205/t20220524_3656659.html.

[5]洪开荣, 冯欢欢. 中国公路隧道近10年的发展趋势与思考 [J]. 中国公路学报, 2020, 33(12): 62-76.

[6]周杰.智慧城市轨道交通发展模型的构建及其发展趋势探讨[J].城市轨道交通研究,2023,26(06):7-11.

[7]中国城市轨道交通协会. 城市轨道交通2022年度统计和分析报告[R].北京:中国城市轨道交通协会,2023.

[8]Zhao Y, Li P. A statistical analysis of china’s traffic tunnel development data [J]. Engineering, 2018, 4(01): 11-17.

[9] Li S, Hu C, Li L, et al. Bidirectional construction process mechanics for tunnels in dipping layered formation [J]. Tunnelling and Underground Space Technology, 2013, 36(03): 57-65.

[10]丁文其, 杨林德. 隧道工程 [M]. 北京: 人民交通出版社, 2012.

[11]Chaipanna P, Jongpradist P. 3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model [J]. Tunnelling and Underground Space Technology, 2019, 90(05): 369-382.

[12]宋秀清. 隧道施工 [M]. 北京: 人民交通出版社, 2020.

[13] Li S, Hu C, Li L, et al. Bidirectional construction process mechanics for tunnels in dipping layered formation [J]. Tunnelling and Underground Space Technology, 2013, 36(03): 57-65.

[14]Wang S, Ruan L, Shen X, et al. Investigation of the mechanical properties of double lining structure of shield tunnel with different joint surface [J]. Tunnelling and Underground Space Technology, 2019, 90(05): 404-419.

[15]Shin Y, Song K, Lee I, et al. Interaction between tunnel supports and ground convergence—Consideration of seepage forces [J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(03): 394-405.

[16]陶彪. 不同埋深的圆形隧道在径向非均匀荷载下的瞬态响应研究 [D]. 南昌:华东交通大学, 2019.

[17]周爱兆, 李国富. 圆形隧洞复合衬砌应力变形弹性解 [J]. 工业建筑, 2012, 42(12): 58-61+90.

[18]王睢,钟祖良,刘新荣等.基于D-P准则有压圆形衬砌隧洞弹塑性解[J].现代隧道技术,2019,56(04):74-80.

[19]宋玉香, 刘勇, 齐键旭. 铁路隧道复合衬砌内力计算方法研究 [J]. 铁道工程学报, 2015, 32(08): 73-85+110.

[20]柏谦, 赵文, 王鑫等. 既有改扩建浅埋岩石隧道的围岩压力计算方法研究 [J]. 中南大学学报(自然科学版), 2021, 52(05): 1562-1571.

[21]刘志春, 李国良. 挤压性围岩隧道围岩压力计算方法研究 [J]. 铁道工程学报, 2020, 37(11): 69-76.

[22]陈志敏, 刘耀辉, 郭利民等. 松散岩堆细-宏观强度关系与围岩压力 [J]. 湖南大学学报(自然科学版), 2023, 50(01): 189-97.

[23]铁路隧道设计规范: TB 10003-2016[S]. 北京: 中国铁道出版社, 2017.

[24]公路隧道设计规范: JTG 3370.1-2018[S]. 北京: 人民交通出版社, 2018.

[25]Lunardi P. Design and construction of tunnels: Analysis of controlled deformation in rocks and soils(ADECO-RS)[M]. Berlin: Springer Press, 2006.

[26]Iasiello C, Torralbo J, Fernández C. Large deformations in deep tunnels excavated in weak rocks: Study on Y-Basque high-speed railway tunnels in northern Spain [J]. Underground Space, 2021, 43 (05) : 404-419.

[27]Lyu C, Zeng Z. Upper bound limit analysis of unsymmetrical progressive collapse of shallow tunnels in inclined rock stratum [J]. Computers and Geotechnics, 2019, 116: 103199.

[28]洪开荣. 近2年我国隧道及地下工程发展与思考(2017—2018年) [J]. 隧道建设(中英文), 2019, 39(05): 710-723.

[29]12.974 km京张高铁最长隧道贯通 [J]. 隧道建设(中英文), 2018, 38(11): 1784.

[30]广东应急管理厅官方网站.http://yjgl.gd.gov.cn/zt/wd/content/post_3585743.html.

[31]中华人民共和国住房城乡建设部标准规范库官方网站.https://www.mohurd.gov.cn/gongkai/zhengce/zhengceguifan/index.html.

[32]贾良, 聂红宾. CFRP布修复隧道中冻融损伤混凝土抗弯构件力学性能研究 [J]. 隧道建设, 2016, 36(07): 819-825.

[33]Laura P, Gutierrez R H, Sonzogin V, et al. Buckling of circular, annular plates of non-uniform thickness [J]. Ocean Engineering, 1997, 24(1): 51-61.

[34]文志杰, 张瑞新, 杨涛等. 基于应力梯度理论的锚杆合理预紧力 [J]. 煤炭学报, 2018, 43(12): 3309-3315.

[35]Wei R, Zhou K, Keer L M, et al. Modeling surface pressure, interfacial stresses and stress intensity factors for layered materials containing multiple cracks and inhomogeneous inclusions under contact loading [J]. Mechanics of Materials, 2016, 92(09): 8-17.

[36]Houmat A. A coupled finite–hierarchic infinite element method for an inhomogeneous transversely isotropic soil layer under irregularly distributed strip load [J]. Applied Mathematical Modelling, 2015, 39(12): 3341-3356.

[37]Spathis G, Maggana C. A non-linear viscoelastic model for predicting the yield stress of amorphous polymers [J]. Polymer, 1997, 38(10): 2371-2377.

[38]Rubiogonzalez C, Maso J J. Dynamic stress intensity factors at the tip of a uniformly loaded semi-infinite crack in an orthotropic material [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(05): 899-925.

[39]Elishakoff I, Guédé Z. Novel closed – form solutions in buckling of inhomogeneous columns under distributed variable loading [J]. Chaos, Solitons & Fractals, 2001, 12(06): 1075-1089.

[40]Favier E, Lazarus V, Leblond J B. Statistics of the deformation of the front of a tunnel-crack propagating in some inhomogeneous medium [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(07): 1449-1478.

[41]涂忠仁, 夏金平. 应力梯度作用下非均质岩体材料变形参数的研究 [J]. 重庆交通大学学报(自然科学版), 2011, 30(01): 69-73.

[42]金解放, 张雅晨, 刘康等. 梯度应力对红砂岩应力波传播特性的影响研究 [J]. 岩土力学, 2023, 44(04): 952-64.

[43]左建平, 魏旭, 王军等. 深部巷道围岩梯度破坏机理及模型研究 [J]. 中国矿业大学学报, 2018, 47(03): 478-85.

[44]夏元友, 张宏伟, 吝曼卿等. 基于数据预处理技术并考虑围岩应力梯度影响的隧洞岩爆预测 [J/OL]. 岩土工程学报: 1-8.

[45]王明年, 郭军, 罗禄森等.高速铁路大断面深埋黄土隧道围岩压力计算方法[J].中国铁道科学,2009,30(05):53-58.

[46]来弘鹏, 王斌, 刘禹阳. 考虑地层开裂的浅埋黄土隧道围岩压力计算方法 [J]. 现代隧道技术, 2021, 58(06): 95-101.

[47]徐强, 刘勇, 宋玉香等. 基于松动圈理论深埋黄土隧道围岩压力计算方法 [J]. 科学技术与工程, 2021, 21(23): 10054-10060.

[48]罗彦斌, 董方方, 王传武等. 考虑分部开挖的超大跨度公路隧道围岩压力计算方法研究[J]. 岩石力学与工程学报, 2022, 41(08): 1637-1646.

[49]董建华, 于小燕. 膨胀岩隧道围岩压力简化计算方法 [J]. 应用基础与工程科学学报, 2022, 30(03): 712-735.

[50]钟祖良, 涂义亮, 刘新荣等. 浅埋双侧偏压小净距隧道衬砌荷载及其参数敏感性分析 [J]. 土木工程学报, 2013, 46(01): 119-125.

[51]聂红宾, 谷拴成, 周志强等. 非连续边界荷载影响下隧道围岩压力计算方法 [J]. 隧道建设(中英文), 2022, 42(08): 1435-1442.

[52]Zhou K, Keer L, Jane W, et al. Interaction of multiple inhomogeneous inclusions beneath a surface [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 217(01): 25-33.

[53]Jones S, Hunt H. Predicting surface vibration from underground railways through inhomogeneous soil [J]. Journal of Sound and Vibration, 2012, 331(09): 2055-2069.

[54]Simanjuntak T, Marence M, Mynett A, et al. Pressure tunnels in non-uniform in situ stress conditions [J]. Tunnelling and Underground Space Technology, 2014, 42(04): 227-236.

[55]钟波波, 张永彬, 白象元等. 非均匀介质在动荷载作用下的裂缝扩展研究 [J]. 长江科学院院报, 2014, 31(11): 26-30.

[56]Cheshmehkani S, Eskandarighadi M. Three-dimensional dynamic ring load and point load Green's functions for continuously inhomogeneous viscoelastic transversely isotropic half-space [J]. Engineering Analysis with Boundary Elements, 2017, 76(01): 10-25.

[57]Deng K, Liu W, Xia T, et al. Experimental study the collapse failure mechanismof cemented casing under non-uniform load [J]. Engineering Failure Analysis, 2017(01), 73: 1-10.

[58]Zhang Z, Zhang M, Jiang Y, et al. Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism [J]. Soils and Foundations, 2017, 57(02): 211-226.

[59]凌道盛, 张凡, 赵云等. 飞机荷载作用下非均匀道基动力响应分析 [J]. 土木工程学报, 2017, 50(02): 97-109.

[60]刘波, 高霞, 陶龙光. 考虑接头影响的地铁盾构隧道管环力学模型研究 [J]. 中国矿业大学学报, 2009, 38(04): 494-502.

[61]徐栓强, 俞茂宏, 胡小荣. 基于双剪统一强度理论的地下圆形洞室稳定性的研究 [J]. 煤炭学报, 2003, (05): 522-526.

[62]赵均海, 姜志琳, 张常光等. 不同拉压特性的厚壁圆筒极限内压统一解 [J]. 力学学报, 2017, 49(04): 836-847.

[63]俞茂宏. 强度理论新体系理论发展和应用[M]. 西安: 西安交通大学出版社, 2011.

[64]吴旭, 孙明社, 夏勇等. 基于截面极限承载力曲线的衬砌结构安全性评价方法研究 [J]. 中国公路学报, 2020, 33(03): 160-169.

[65]孙明社, 韩贺庚, 吴旭等. 基于截面极限承载力曲线的衬砌厚度减薄研究 [J]. 土木工程学报, 2020, 53(S1): 325-331+54.

[66]王照雯. 在非均匀荷载作用下半圆环变截面小曲率曲杆的位移分析 [J]. 焦作大学学报, 2012, 26(01): 78-80.

[67]侯公羽, 杨悦, 刘波. 盾构管片设计改进惯用法模型及其内力解析解 [J]. 岩土力学, 2008, (01): 161-167.

[68]黄荣宾. 考虑黄土蠕变作用的隧道衬砌结构荷载传递规律研究[D]. 西安:西安科技大学, 2018.

[69]Aleksandrova N. A constitutive model of concrete based on Ottosen yield criterion [J]. European Journal of Mechanics - A/Solids, 2019, 73(07): 373-380.

[70]Tu H, Zhou H, Lu J, et al. Elastoplastic coupling analysis of high-strength concrete based on tests and the Mohr-Coulomb criterion [J]. Construction and Building Materials, 2020, 255(08): 119375.

[71]Aleksandrova N. Efficiency of the Tresca yield criterion in modeling of annular plates with rigid constraint [J]. Applied Mathematical Modelling, 2019, 75(05): 371-384.

[72]Manafi F, Fakoor M. Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects [J]. Theoretical and Applied Fracture Mechanics, 2019, 99(02): 147-160.

[73]Romanowicz M. A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness [J]. Engineering Fracture Mechanics, 2019, 214(05): 544-557.

[74]Wang Q, Feng Y, Zhou W, et al. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370(07): 113270.

[75]Yu S, Cai L, Yao D, et al. Critical ductile fracture criterion based on first principal stress and stress triaxiality [J]. Theoretical and Applied Fracture Mechanics, 2020, 109(07): 102696.

[76]Yu M, Kolupaev V, Li Y, et al. Advances in Unified Strength Theory and its Generalization [J]. Procedia Engineering, 2011, 413(04): 2508-2521.

[77]Aliha M, Ayatollahi M. Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion [J].International Journal of Solids and Structures, 2012, 49(13): 1877-1883.

[78]李远, 乔兰, 隋智力等. 岩石材料脆性剪切破坏模式下的强度分析 [J]. 北京科技大学学报, 2012, 34(12): 1364-1370.

[79]惠强, 姜海波, 张玉洁. 基于统一强度理论的热-力耦合作用下圆形隧洞的弹塑性解析解 [J]. 石河子大学学报(自然科学版), 2021, 39(06): 697-705.

[80]曾开华, 李学军, 鹿守山等. 两向不等压圆形隧道塑性统一解及其应用 [J]. 岩土工程学报: 1-8.

[81]关晓迪, 何盛东, 曹周阳等. 基于统一强度的非轴对称荷载隧道围岩弹塑性分析 [J]. 建筑结构, 2021, 51(S2): 1728-1733.

[82]蒙春贵, 彭林欣, 滕晓丹. 基于统一强度理论的钢管自应力混凝土柱极限承载力研究 [J]. 工业建筑, 2022, 52(01): 26-30+8.

[83]蒋望涛, 姜海强, 马勤国等. 考虑损伤和不均匀冻胀的寒区隧道弹塑性统一解 [J]. 华南理工大学学报(自然科学版), 2022, 50(01): 69-79+100.

[84]苏生瑞, 朱合华, 李国峰. 连拱隧道衬砌病害及其处治 [J]. 岩石力学与工程学报, 2003, (S1): 2510-2515.

[85]冯志刚,李夕兵. 可伸缩胀管式锚杆在大变形巷道支护中的应用 [J]. 湖南有色金属, 1994, (02): 65-72.

[86]Nehdi M, Soliman A. Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages [J]. Engineering Structures, 2015, 08(101): 733-742.

[87]董贺祥, Greenhalph J, 作田恭一等. 深排隧道钢纤维补强衬砌混凝土-伦敦Lee Tunnel [J]. 土木工程学报, 2020, 53(S1): 312-319+24.

[88]刘学增,桑运龙,师刚等. 公路隧道衬砌开裂损伤机理与加固补强方法 [M]. 上海:同济大学出版社, 2018.

[89]刘学增, 刘文艺, 桑运龙等. 叠合式套拱加固带裂损衬砌的破坏机制研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 4244-4251.

[90]俞文生, 桑运龙. 分离式套拱加固带裂缝衬砌的变形规律试验研究 [J]. 现代隧道技术, 2014, 51(04): 141-149+60.

[91]刘学增, 王煦霖, 何本国. 隧道不同损伤衬砌套拱加固对比试验研究 [J]. 中南大学学报(自然科学版), 2015, 46(12): 4610-4617.

[92]李晓琴, 张田, 丁祖德等. ECC套拱加固不同损伤衬砌的数值模拟研究 [J]. 岩石力学与工程学报, 2019, 38(S2): 3654-3664.

[93]谭勇. 峪园隧道衬砌破裂检测评价及演化机理分析 [D]. 长沙: 长沙理工大学, 2007.

[94]彭世红, 周思源, 董卓越等. 新旧混凝土植筋界面抗剪承载力影响因素研究及规范对比 [J]. 工程力学, 2023, 40(S1): 167-173.

[95]张海燕, 李绮玉, 江伟铵等. 地聚物砂浆植筋的粘结锚固性能 [J]. 华南理工大学学报(自然科学版), 2021, 49(08): 65-74+84.

[96]陆洲导, 苏诗雅, 余江滔. 植筋连接混凝土梁耐火极限计算方法 [J]. 湖南大学学报(自然科学版), 2018, 45(05): 46-52.

[97]方志, 吴荣杰, 裴炳志等. 新旧混凝土结合面抗剪性能的尺寸效应 [J]. 中国公路学报, 2021, 34(11): 92-103.

[98]张建荣, 吴进, 杨建华等. 植筋搭接混凝土梁静力及疲劳受弯试验研究 [J]. 建筑结构学报, 2005, (05): 96-103.

[99]朱常春.公路隧道衬砌裂缝病害治理技术[J].岩土工程界,2004(09):67-68.

[100]卢亦焱. 纤维增强复合材料与钢材复合加固混凝土结构研究进展 [J]. 建筑结构学报, 2018, 39(10): 138-146.

[101]黄海林, 高亚强, 徐勇逵等. 耐碱玻纤网格与聚丙烯混凝土复合加固方柱的轴压试验研究及承载力计算 [J]. 建筑科学与工程学报, 2023, 40(03): 70-82.

[102]赵苏政, 张文. 温度对不同掺量纤维混凝土孔隙结构劣化影响分析 [J]. 复合材料科学与工程, 2023, (05): 59-64.

[103]Kurkov. V, 高志强. 新型织物-玄武石纤维织物 [J]. 国外纺织技术, 2004, (04): 18-30.

[104] Li Y, Li C, He J, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint [J]. Construction and Building Materials, 2020, 244(06): 118400.

[105] Xu S, Li H, Wang Y, et al. Influence of corrosion on the bond behavior in CFRP-steel single lap joints [J]. Construction and Building Materials, 2020, 236(02): 117607.

[106]Yurdakul Ö, Tunaboyu O, Routil L, et al. Parameter sensitivity of CFRP retrofitted substandard joints by stochastic computational mechanics [J]. Composite Structures, 2020,238(06): 112003.

[107]Alhassan M, Alrousan R Taha H. Precise finite element modelling of the bond-slip contact behavior between CFRP composites and concrete [J]. Construction and Building Materials, 2020, 240(04): 117943.

[108]钱伯章. 上海石化碳纤维材料首次用于隧道加固 [J]. 合成纤维, 2018, 47(07): 10.

[109]刘德军, 黄宏伟, 岳清瑞等. 隧道衬砌张拉裂缝开裂机制及快速修复方法初探 [J]. 土木工程学报, 2015, 48(S1): 236-243.

[110]Lin J, Huang P, Guo Y, et al. Fatigue behavior of RC beams strengthened with CFRP laminate under hot-wet environments and vehicle random loads coupling [J]. International Journal of Fatigue, 2020, 131(04): 105329.

[111]Alsaad A, Hassan G. Utilization of CFRP for strengthening RC columns in marine environment [J]. Case Studies in Construction Materials, 2017,7(05): 30-35.

[112] Garzónroca J, Senacruz J M, Fernandes P, et al. Effect of wet-dry cycles on the bond behaviour of concrete elements strengthened with NSM CFRP laminate strips [J]. Composite Structures, 2015, 132(05): 331-340.

[113]王苏岩, 张所东, 李璐希等. 海水干湿循环作用下CFRP-高强混凝土黏结性能研究 [J]. 大连理工大学学报, 2015, 55(02): 165-170.

[114]张玲玲, 张陵, 马建勋. 外粘贴CFRP加固混凝土结构在海洋环境下的耐久性试验研究 [J]. 土木工程学报, 2010, 43(01): 77-81.

[115]邹今航, 叶斌, 陈永贵. 湿热环境下碳纤维增强复合材料加固钢筋混凝土梁的耐久性能试验 [J]. 科学技术与工程, 2020, 20(33): 13839-13846.

[116]刘宇森, 姚国文, 向文等. 湿热耦合环境下碳纤维布加固混凝土界面耐久性能 [J]. 科学技术与工程, 2019, 19(15): 266-271.

[117]Heshmati M, Haghani R, Alemrani M. Durability of CFRP/steel joints under cyclic wet-dry and freeze-thaw conditions [J]. Composites Part B: Engineering, 2017, 126(06): 211-226.

[118]Li J, Deng J, Wang Y, et al. Experimental study of notched steel beams strengthened with a CFRP plate subjected to overloading fatigue and wetting/drying cycles [J]. Composite Structures, 2019, 209(05): 634-643.

[119]Song F, Chen Q, Jiang Z, et al. Piezoresistive properties of ultra high performancefiber reinforced concrete incorporating few layer graphene [J]. Construction and Building Materials, 2021, 305(06): 124362.

[120]Xu C, Fu J, Sun L, et al. Fatigue damage self-sensing of bridge deck component with built-in giant piezoresistive cementitious carbon fiber composites [J]. Composite Structures, 2021, 276(06): 114459.

[121]曹东岳. 碳纤维混凝土力敏特性及在井壁受力监测中的初步应用[D]. 徐州:中国矿业大学, 2018.

[122]Xu J, Yin T, Wang Y, et al. Anisotropic electrical and piezoresistive sensing properties of cement-based sensors with aligned carbon fibers [J]. Cement and Concrete Composites, 2021, 116(06): 103873.

[123]Zhu J, Li X, Liang J. 3D seismic responses of a long lined tunnel in layered poro-viscoelastic half-space by a hybrid FE-BE method [J]. Engineering Analysis with Boundary Elements, 2020, 114(08): 94-113.

[124]孙钧,俞书华,王华牢等. 隧道结构设计关键技术研究与应用[M].北京:人民交通出版社,2014.

[125]谢家烋. 浅埋隧道的地层压力 [J]. 土木工程学报, 1964, (06): 58-70.

[126]铁道部第三设计院. 铁路工程设计技术手册.隧道[M]. 北京:中国铁道出版社,1999.

[127]建筑结构荷载规范:GB50009-2012[S]. 北京: 中国建筑工业出版社, 2012.

[128]曹净, 普琼香, 刘海明等. 地面非对称填载对既有明挖隧道围岩压力的影响分析 [J]. 防灾减灾工程学报, 2016, 36(06): 950-958.

[129]魏纲, 张书鸣, 崔允亮等. 地面堆载下盾构隧道不同加固方法的加固效果研究 [J]. 隧道建设(中英文), 2022, 42(S1): 85-92.

[130]铁路列车荷载图式:TB/T3466-2016 [S]. 北京: 中国铁道出版社, 2017.

[131]郭子红, 钟祖良. 浅埋隧道破裂面的极限平衡分析法 [J]. 地下空间与工程学报, 2017, 13(05): 1228-1233.

[132]陈松. 上软下硬岩质地层中浅埋大跨地铁隧道围岩压力统计特征研究[D]. 北京: 北京交通大学, 2020.

[133]雷明锋, 彭立敏, 施成华等. 浅埋偏压隧道衬砌受力特征及破坏机制试验研究 [J]. 中南大学学报(自然科学版), 2013, 44(08): 3316-3325.

[134]建筑地基基础设计规范:GB50007-2011[S]. 北京: 中国建筑工业出版社, 2011.

[135]卜万奎, 董正筑, 卢爱红等. 弹性理论中半无限平面问题的应力解答 [J]. 黑龙江大学自然科学学报, 2008, (04): 452-456+8.

[136] Lurie S. Biharmonic problem in the theory of elasticity [M]. CRC Press, 2020.

[137] Sanderson F. Theory of continuum mechanics and elasticity structural mechanics [M]. Tritech Digital Media Press, 1989.

[138] Bap, J, Sfo A. Soil movements induced by tunnelling and their efforts on pipelines and structures [M]. New York: Chapman and Hall Press, 2001.

[139]阳军生, 刘宝琛. 城市隧道施工引起的地表移动及变形 [M]. 北京:中国铁道出版社, 2002.

[140]郭大智. 层状弹性体系力学 [M]. 哈尔滨: 哈尔滨工业大学出版社,2001.

[141]刘科. 层状与非均质岩体中隧道围岩变形和衬砌结构力学特性研究 [D]. 成都: 西南交通大学, 2016.

[142]林韵梅. 地压讲座 [M]. 北京: 煤炭工业出版社,1981.

[143]丁选明, 刘汉龙. 大直径管桩在瞬态集中荷载作用下的振动响应时域解析解 [J]. 岩土工程学报, 2013, 35(06): 1010-1017.

[144]刘汉龙, 丁选明. 现浇薄壁管桩在低应变瞬态集中荷载作用下的动力响应解析解 [J]. 岩土工程学报, 2007, (11): 1611-1618.

[145]李春良, 王国强, 赵凯军等. 地面荷载作用盾构隧道纵向力学行为 [J]. 吉林大学学报(工学版), 2011, 41(S2): 180-184.

[146]刘寒冰, 马辉, 刘天明等. 竖向集中荷载作用下钢-混凝土组合梁的解析解 [J]. 中国公路学报, 2010, 23(04): 39-44.

[147]Chaipanna P, Jongpradist P. 3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model [J]. Tunnelling and Underground Space Technology, 2019, 90(05): 369-382.

[148]Mitelman A, Elmo D. Analysis of tunnel-support interaction using an equivalent boundary beam [J]. Tunnelling and Underground Space Technology, 2019, 84(04): 218-226.

[149]杜建明, 房倩, 海路等. 地表变坡下浅埋偏压隧道围岩压力计算方法[J].中南大学学报(自然科学版) , 2021, 52(11): 4088-4098.

[150]余莲英, 张亮亮, 尚兰歌等. 功能梯度曲梁弯曲问题的解析解 [J]. 工程力学, 2014, 31(12): 4-10.

[151]李围. 隧道及地下工程FLAC解析方法 [M]. 北京: 中国水利水电出版社, 2009.

[152]水工隧洞设计规范:SL279-2016 [S]. 北京:中国水利水电出版社,2016.

[153]李廉锟. 结构力学上、下册 [M]. 北京: 高等教育出版社,2010.

[154]钢结构设计标准:GB 50017-2017 [S]. 北京:中国建筑工业出版社,2017.

[155]刘牧天. 钢纤维混凝土盾构管片抗弯性能试验研究 [J]. 建筑结构, 2022, 52(S2): 1417-1421.

[156]马立成, 史庆轩, 王朋等. 高强钢筋混凝土柱小偏心受压性能试验研究 [J]. 工程力学:2023,15(10): 1-10.

[157]铁道部工务局. 铁路工务培训技术手册 [M]. 北京: 中国铁道出版社, 1997.

[158]铁路桥隧建筑物劣化评定标准. 隧道:TB/T 2820.2-1997[S]. 北京: 中国铁道出版社,1997.

[159]荣耀, 许锡宾, 蔡晓鸿. 基于弹性地基梁法的隧道衬砌裂缝间距和宽度的计算 [J]. 重庆建筑大学学报, 2006, (05): 23-29.

[160]张玉伟, 谢永利, 李又云等. 基于温度场时空分布特征的寒区隧道冻胀模型 [J]. 岩土力学, 2018, 39(05):1625-1632.

[161]罗彦斌, 陈建勋, 乔雄等. 基于温度效应的隧道二次衬砌混凝土结构力学状态分析 [J]. 中国公路学报, 2010, 23(02): 64-70.

[162]刘洪涛. 碳纤维混凝土力学性能试验与理论研究 [D]. 沈阳: 沈阳大学, 2012.

[163]普通混凝土配合比设计规程:JGJ55-2011[S]. 北京: 中国建筑工业出版社, 2011.

[164]周乐, 王晓初, 刘洪涛. 碳纤维混凝土力学性能与破坏形态试验研究 [J]. 工程力学, 2013, 30(S1): 226-231.

[165]混凝土结构耐久性设计标准:GBT50476-2019[S]. 北京: 中国建筑工业出版社,2019 .

[166]池寅, 尹从儒, 徐礼华等. 钢–聚丙烯混杂纤维增强超高性能混凝土单轴循环受压力学性能 [J]. 硅酸盐学报, 2021, 49(11): 2331-2345.

[167]王晓初, 刘洪涛. 碳纤维长度对CFRC力学性能影响试验研究 [J]. 混凝土, 2013, (03): 60-63.

[168]纤维混凝土应用技术规程:JGJ-T221-2010 [S]. 北京: 光明日报出版社,2010.

[169]方恩权, 刘桂凤, 张雷顺. CFRP-混凝土界面粘结性能试验研究 [J]. 建筑材料学报, 2007,10 (01): 32-38.

[170]张慧梅, 孟祥振, 彭川等. 冻融-荷载作用下基于残余强度特征的岩石损伤模型 [J]. 煤炭学报, 2019, 44(11): 3404-3415.

[171]周晓敏, 胡启胜, 马成炫等. 围岩对竖井井壁承载能力影响的对比研究 [J]. 煤炭学报, 2012, 37(S1): 26-32.

[172]煤矿立井井筒及硐室设计规范:GB 50384-2016 [S]. 北京: 中国计划出版社, 2016.

[173]混凝土结构设计规范: GB-50010-2010 [S]. 北京: 中国建筑工业出版社, 2010.

[174]混凝土结构加固设计规范: GB50367-2013 [S]. 北京:中国建筑工业出版社, 2013.

[175]谢剑, 赵彤, 王亨. 碳纤维布加固钢筋混凝土梁受弯承载力设计方法的研究 [J]. 建筑技术, 2002, (06): 411-414.

[176]锚杆喷射混凝土支护技术规范:GB50086-2001[S]. 北京: 中国计划出版社, 2001.

[177]郑宗溪, 孙其清. 川藏铁路隧道工程 [J]. 隧道建设, 2017, 37(08): 1049-1054.

[178]铁路隧道监控量测技术规程:Q/CR9218-2015 [S]. 北京: 中国铁道工业出版社,2015.

[179]Li W, Dong W, Guo Y, et al. Advances in multifunctional cementitious composites with conductive carbon nanomaterials for smart infrastructure [J]. Cement and Concrete Composites, 2022, 128(06): 104454.

[180]王志峰. 碳纳米管/聚合物复合材料力敏特性及柔性传感器研究[D]. 清华: 清华大学, 2013.

[181]丛宗杰, 申培芳, 张月义等. 国产PAN基碳纤维发展现状及建议 [J]. 高科技纤维与应用, 2022, 47(05): 61-65.

[182]沈世云, 朱伟. 高等数学[M].重庆: 重庆大学出版社, 2020.

中图分类号:

 TU599    

开放日期:

 2025-12-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式