论文中文题名: | 综采液压支架双伸缩立柱结构强度分析和寿命预测相关理论 |
姓名: | |
学号: | 20205224099 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机械系统可靠性 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Research on Strength Analysis and Fatigue Life Prediction of Double Telescopic Column of Hydraulic Support |
论文中文关键词: | |
论文外文关键词: | Hydraulic support ; Double telescopic column ; Load spectrum ; Finite element analysis |
论文中文摘要: |
煤炭是我国的主体能源和重要原料,为国民经济的持续快速健康发展做出了不可磨灭的历史贡献。液压支架是重要的综采装备之一,是现代采煤安全防护、作业空间扩大和采煤效率提高的关键。立柱作为液压支架的主要支撑部件,具有升降推移、保持平衡、缓冲过载冲击等作用,其安全性和可靠性决定了液压支架的承载特性,因此,对立柱进行寿命预测,为制定合理的检修维修计划提供理论指导,对降低煤炭企业生产运营成本,提高煤矿开采效率具有重要意义。 目前常采用理论计算或疲劳试验对立柱的疲劳寿命进行预测,但传统理论计算忽略了材料性能、外部载荷等不确定因素带来的风险,进行疲劳试验只能获得几个或多个点的试验数据,不能全面确认其疲劳寿命且耗费大量时间,所以需要研究一种考虑立柱实际载荷条件的疲劳寿命预测方法,本文主要研究内容如下: 为了确定立柱的危险部位,对立柱进行受力分析,分析过程中考虑由于存在配合间隙而产生的偏移问题,进而考虑附加弯矩对立柱受力的影响。依据立柱的结构特点和受力状态,提出具有初始变形和初始挠度的简支梁模型,结合胡克定律和挠曲轴微分方程综合计算得到立柱各段最大挠度和最大弯矩。通过对立柱各段受力分析,求出各段的最大应力,确定立柱的危险部位同时对强度进行校核,结果表明立柱即使承受1.5倍载荷也不会发生强度破坏,最大应力位于中缸偏上与活柱底部接近处。通过对比求解临界载荷方法,选择能量法对立柱稳定性进行校核,结果表明在立柱完全伸出的情况下不会失稳。 基于某工作面综采液压支架立柱内腔压力实测数据编制程序载荷谱,利用雨流计数法对载荷数据进行统计分析,通过假设检验确定统计结果的数学模型,应用核密度估计确定概率密度函数,在此基础上得到能够代表立柱载荷时间历程的二维载荷谱。为了得到可直接实施疲劳试验的程序载荷谱,利用波动中心法对二维谱进行降维处理,得到可直接用于疲劳寿命计算的一维载荷谱。 结合立柱结构的特点,用Solidworks建立了立柱三维模型,同时利用ABAQUS建立了立柱的有限元模型。通过材料设置、网格划分和施加接近于缸体实际受载工况的约束条件,构件合理的离散化模型,计算得到静载过载压力下的结果,进而确定立柱的最大位移和最大应力都发生在中缸。得到了各部件的应力应变云图,并与第三章理论计算得到的结果进行对比,各构件最大应力值大小几乎相同,立柱易发生危险部位也相同,表明有限元模型是正确的。使用局部应力应变法,基于线性累积损伤理论,结合材料的疲劳特性曲线和立柱的载荷谱,通过FE-safe软件定义材料属性和疲劳累积算法,实现对立柱疲劳寿命预估,根据立柱整体寿命云图,确定在工作过程中易发生疲劳破坏的部位主要集中是在中缸。 |
论文外文摘要: |
Coal is the main energy source and the important raw material in China, which has made an indelible historical contribution to the sustained, rapid and healthy development of the national economy. Hydraulic support is one of the most important fully mechanized coal mining equipment, and it is the key to modern coal mine safety protection, expanding working space and improving mining efficiency. As the main supporting component of the hydraulic support, the upright post has the functions of lifting and moving, maintaining balance and buffering overload impact. Its security and reliability determine the bearing characteristics of the hydraulic support. Therefore, the life prediction of the pillar provides theoretical guidance for making a reasonable maintenance plans, and is of great significance for reducing the operating costs of coal enterprises and improve the efficiency of coal mining. At present, theoretical calculation or fatigue test is usually used to predict the fatigue life of the column, but the traditional theoretical calculation ignores the risks caused by uncertain factors such as material properties and external loads. Fatigue tests can only obtain test data from several points or points, and it cann't completely confirm the fatigue life, and it takes a lot of time. Therefore, it is necessary to study a method of fatigue life prediction considering the actual load of the column. The main contents of this paper is as follows. In order to determine the dangerous position of the column, the stress of the column is analyzed. In the process of analysis, the deviation caused by the matching gap is considered, and then the influence of additional bending moment on the stress of the column is considered. According to the structural characteristics and stress state of the column, a simply supported beam model considering initial deformation and initial deflection was proposed, and the maximum deflection and bending moment of each section of the column are obtained by combining Hooke's law and crankshaft bending differential equation. Through the stress analysis of each section of the column, the maximum stress of each section is found out, and the dangerous position of the column is determined. At the same time, the strength of the column is checked. The results show that the strength of the column will not be destroyed even under the load of 1.5 times, and the middle column is the most dangerous position of the column. By comparing the solutions of critical load, the most suitable method is selected, and the stability of the column is checked. The results show that when the column is fully extended, it will not lose stability. Based on the measured load spectrum of fully mechanized mining hydraulic support column in a working face, the rain-flow counting method is used to statistically analyze the load data, the mathematical model of the statistical results was determined by the hypothesis testing method, and the probability density function was determined by the maximum likelihood estimation method. On this basis, the two-dimensional load spectrum representing the column load history is obtained. In order to obtain the programmed load spectrum which can be used for fatigue test directly, the one-dimensional load spectrum which can be used for fatigue life calculation is obtained by using the wave center method to reduce the dimension of the two-dimensional spectrum. Combined with the characteristics of the column structure in this paper, the three-dimensional model of the column is established by Solidworks and the finite element model of the column is established with ABAQUS. By setting materials, meshing and imposing constraints close to the actual stress situation of the cylinder, the members are discretized, analyzed and calculated reasonably, and the results under static overload pressure are obtained, and then it is determined that the maximum displacement and maximum stress of the column occur in the middle cylinder. The reasonable discrete model of the member is analyzed and calculated, and the results under static load and overload pressure are obtained, so as to determine the maximum displacement and stress of the center column. The accuracy of the finite element model is verified theoretically and experimentally, which provides data support for the later life prediction of the column. Based on the results of static strength analysis, combined with the one-dimensional load spectrum compiled according to the measured load, the material properties and fatigue accumulation algorithm are defined by FE-SAFE software, and the fatigue life prediction of columns is realized. The results show that the cylinder is the weakest part of the column, so attention should be paid to the use of the cylinder in the design and use. Based on the research work of the paper, a strength analysis method considering the column under off-load condition is proposed. Taking the load spectrum compiled by the measured load as the theoretical basis for calculating the fatigue damage of the column, it provides theoretical and data support for the use and maintenance of the hydraulic support column under actual service conditions. |
参考文献: |
[1] 刘建功,李新旺,何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1): 141-150. [2] 王国法,刘峰,庞义辉,任怀伟,马英. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(02): 349-357. [3] 廉自生,袁祥,高飞,等. 液压支架网络化智能感控方法[J]. 煤炭学报,2020,45(06): 2078-2089. [4] 苑成城. 液压支架双伸缩立柱的应力分析和疲劳寿命预测[D]. 太原理工大学,2011. [8] 王文海,蒋力帅,王庆伟,等. 煤矿综采工作面智能开采技术现状与展望[J]. 中国煤炭,2021,47(11): 51-55. [9] 权学利. 煤矿智能设备维修能力提升的探索与实践[J]. 陕西煤炭,2022,41(04): 227-231. [10] Barczak T M, Burton W S. Three Dimensional Shield Mechanics[M]. BuMines RI9091, 1987. [11] Barczak T M. Rigid Body and Elastic Solutions to Shield Mechanics[M]. BuMines RI9144, 1987. [13] 王国法,傅京昱. 液压支架空间力学模型及受力计算方法的研究[J]. 煤炭学报,1992(04): 66-74. [15] 缪协兴. 综合机械化固体充填采煤矿压控制原理与支架受力分析[J]. 中国矿业大学学报,2010,39(06): 795-801. [16] 姚贵英,杜小勇,李秋生,等. 二柱掩护式液压支架受力分析及优化[J]. 煤矿机械,2013,34(01): 100-102. [18] 黄显智. 煤矿液压支架空间力系分析方法研究[D]. 武汉:华中科技大学,2012. [19] 刘国柱. 8.8m大采高液压支架承载能力分析及实验研究[D]. 北京:中国矿业大学2019. [21] 刘新华,王国法,刘成峰,等. 两柱大采高液压支架的整架有限元分析[J]. 煤炭科学技术,2010,38(08): 93-96. [22] 郝玲,王德友. 支架立柱理论计算与有限元分析的对比[J]. 煤矿机械,2012,33(12): 95-96. [23] 蔺宏岩. 基于能量耗散的金属疲劳性能研究[D]. 大连:大连理工大学,2017. [25] 李蒙. 钢结构构件拉—压疲劳损伤有限元数值模拟及实验研究[D]. 西安建筑科技大学,2016. [26] Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. 1963. [28] 孙训方. 材质不均匀性引起的突进型裂纹亚临界扩展问题的探讨[J]. 力学学报,1978(02): 167-170. [30] 刘德刚,侯卫星,王凤洲,等. 基于有限元技术的构件疲劳寿命计算[J]. 铁道学报,2004(02): 47-51. [33] 王露. 轮毂轴承多工况疲劳寿命建模与数值仿真[D]. 浙江:浙江工业大学,2009. [34] 郝英. 基于智能技术的民航发动机故障诊断和寿命预测研究[D]. 南京:南京航空航天大学,2006. [38] 阳光武. 机车车辆零部件的疲劳寿命预测仿真[D]. 成都:西南交通大学,2005. [40] 杨少康. 三参数威布尔分布轴向柱塞泵寿命预测研究[D]. 河北:燕山大学,2018. [41] 陆兴华,宋道柱. 基于腐蚀疲劳损伤理论和PSO算法的液压缸体寿命预测与优化[J]. 矿山机械,2015,43(11): 28-32. [46] 陈爱雅,高镇同. 二维随机疲劳载荷的统计处理及其应用[J]. 北京航空学院学报,1986(01): 75-85. [47] 朱剑峰,张君媛,陈潇凯,等. 汽车控制臂台架疲劳试验载荷块编制[J]. 吉林大学学报(工学版),2017,47(05): 1367-1372. [48] 戚广枫,陈建芳,肖晓晖,等. 高速铁路接触网关键零件的疲劳载荷谱编制[J]. 铁道学报,2015,37(10): 48-53. [49] 范小宁,徐格宁,王爱红. 基于人工神经网络获取起重机当量载荷谱的疲劳剩余寿命估算方法[J]. 机械工程学报,2011,47(20): 69-74. [50] 马忠昌. 熔覆铜合金再制造技术修复立柱缸体的研究与应用[J]. 中国煤炭,2020,46(10): 92-95. [51] 袁林,刘浩伟,余志兵. 双金属复合管液压成形[J]. 塑性工程学报,2022,29(01): 26-34. [52] 叶菲. 随机振动荷载下结构的疲劳寿命研究[D]. 天津:天津大学,2017. [53] 王彬文,陈先民,苏运来,等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报,2021,42(05): 6-44. [54] 李珊珊. CRH2046动车枕梁结构剩余寿命预测及补强方案分析[D]. 东北大学,2015. [55] 李明忠. 榆神矿区坚硬特厚煤层大采高综放开采关键技术研究[D]. 煤炭科学研究总院,2018. [56] 艾芳芳,陈义庆,钟彬,等. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报,2020,40(05): 469-473. [57] 杜敏杰,黄雪,杨前进,等. 基于雨流频次外推的液压挖掘机斗杆程序载荷谱编制[J]. 机械设计,2019,36(06): 87-93. [58] 刘海鸥,张文胜,徐宜,等. 基于核密度估计的履带车辆传动轴载荷谱编制[J]. 兵工学报,2017,38(09): 1830-1838. [59] 熊仲明,韦俊,郭亚雷,等. 非一致性地震作用下跨越地裂缝结构的动力响应研究[J]. 振动与冲击,2018,37(04): 197-202. [60] 李旭. 回转油缸载荷谱的编制[J]. 煤炭学报,2019,44(06): 1923-1929. [61] 徐灏. 概率疲劳[M]. 沈阳: 东北大学出版社,1994. [62] 高镇同. 疲劳可靠性[M]. 北京: 北京航空航天大学出版社,2000. [63] 惠晓龙,王文静. 动车组构架垂向载荷统计特性研究[J]. 铁道机车车辆,2015,35(S1): 91-95. [64] 万一品,宋绪丁,员征文,等.装载机工作装置随机载荷统计特性分析[J]. 合肥工业大学学报(自然科学版),2018,41(10): 1302-1308. [65] 于佳伟,郑松林,赵礼辉,等. 基于非参数核密度估计法的车辆大数据服役载荷外推方法[J]. 中国机械工程,2021,32(11): 1307-1314. [66] 陈观慈,贾平,毛范海,等. 风电轴承多工况试验载荷谱的编制[J]. 轴承,2011(10): 21-25+30. [67] 王国法,赵志礼. 液压支架双伸缩抗冲击立柱动态分析[J]. 煤矿开采,2010,15(02): 62-65+40 [68] ABAQUS 6.14 超级学习手册[M]. 人民邮电出版社: 201606.673. [69] 高有进,梁承元,谢德东,等. 超高端液压支架立柱强度性能有限元分析[J]. 中国煤炭, 2015, 41(04): 92-95 |
中图分类号: | TH355 |
开放日期: | 2023-06-16 |