- 无标题文档
查看论文信息

论文中文题名:

 导热环氧复合材料的制备及其性能    

姓名:

 曹国政    

学号:

 20213225034    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 功能环氧复合材料    

第一导师姓名:

 周文英    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation and properties of thermal conductivity epoxy composites    

论文中文关键词:

 聚合物基复合材料 ; 导热网络 ; 冰模板法 ; 盐模板法 ; 导热性能 ; 介电性能    

论文外文关键词:

 Polymer matrix composites ; Heat conduction network ; Ice template method ; Salt template method ; Thermal conductivity ; Dielectric property    

论文中文摘要:

随着5G时代到来及半导体和电子技术的快速发展,电子设备朝着小型化、高集成度、高频率和大功率方向日益发展,其产生的热量将呈指数级增长,随之带来严峻的散热问题。不能及时有效的散热将会导致设备的性能下降,降低工作稳定性和精度,缩短使用寿命。环氧树脂(EP)具有易加工、优异电绝缘和良好机械性能等综合特性已被广泛应用于微电子和电力设备封装等热管理材料领域。然而,由固化环氧的无序性诱发的声子散射使其热导率很低,这无法满足高性能电子设备和电力装备的散热发展需求。

通过向EP中添加高导热填料以制备具有高导热性和优异综合性能的环氧导热复合材料是一种有效的应对策略。但高导热的获得往往需要填充高含量的导热填料,这导致材料的加工性能、力学和电性能明显下降和劣化。因此,如何以更少的填料构建更高效的热传导路径来提升导热性能同时保证复合材料的良好综合性能,这对面向电子器件热管理的封装材料具有重要意义。

针对此,本文基于在EP内构建三维导热粒子的热传导网络的基础上,实现了综合性能良好的导热环氧复合材料的制备,主要研究内容如下:

(1) 以石墨相氮化碳(g-CN)为原料,采用高温氧化法制备了g-CN纳米片(g-CNNS),通过对g-CNNS进行了扫描电镜(SEM)、X射线衍射(XRD)和接触角的测试表明所制备的g-CNNS尺寸相比原始g-CN尺寸有所减少,且亲水性更强。随后以纤维素(CNF)水溶液为分散剂,通过冰模板法制备了g-CNNS/CNF骨架网络,最后采用真空浸渍法制备了相应的g-CNNS/CNF/EP复合材料。研究了g-CN与g-CNNS填料含量对环氧复合材料的导热与介电性能,结果表明,随着骨架中g-CNNS含量增加,g-CNNS/CNF/EP复合材料的导热性能显著提升。当填料量为10.4 wt%时,热导率为0.76 W/(m·K),相比纯EP(0.2 W/(m·K))明显提高。归因于冰晶的体积排斥效应和CNF、g-CNNS分子间作用力,最终形成垂直方向上的有序导热网络结构,导热网络的构筑有利于声子传输,提升了导热性能。此外,g-CNNS/CNF/EP复合材料具有良好的介电常数及损耗,如在10.4 wt%填料时,104 Hz下体系的介电常数和损耗分别为2.4和0.01。

(2) 以六方氮化硼(BN)为原料,通过机械球磨法制备了BN纳米片(BNNS),通过SEM、XRD等手段分析其剥离效果,证明了BNNS剥离成功。以聚偏氟乙烯(PVDF)为胶粘剂,采用牺牲盐模板法制备了BNNS/PVDF骨架,最后通过真空辅助浸渍策略制备了环氧复合材(BNNS/PVDF/EP)。研究了该材料的导热与介电性能,结果表明,复合材料的热导率随着填料量的增加而显著升高,当填料含量为55.0 wt%时,导热性能增大至2.21 W/(m·K),相比纯EP(0.2 W/(m·K))提升10倍。微观结构分析表明,成功制备了有序导热通道,归因于氯化钾盐颗粒的体积排斥效应和PVDF、BNNS分子间相互作用力两个因素。以制备的复合材料作为LED灯的热界面材料,考察动态散热性能,结果表明,BNNS/PVDF/EP具有优异的散热性能。此外,该复合材料具有较低的介电常数与介电损耗,如55.0 wt%填料时,体系在104 Hz下的介电常数和损耗分别为1.46和0.007。

本文通过两种方法制备了不同三维导热网络,研究了网络结构对环氧性能的影响,揭示了粒子尺寸与网络结构对环氧导热性能与介电性能的影响。所制备的环氧基复合材料具有较高热导率,较低介电常数以及高电绝缘性能,在热管理材料领域具有潜在的应用价值。

论文外文摘要:

With the advent of the 5G era and the rapid development of semiconductor and electronic technologies, electronic devices are increasingly moving towards miniaturization, high integration, high frequency, and high power, resulting in an exponential increase in heat generation and posing severe heat dissipation problems. Failure to dissipate heat in a timely and effective manner will result in decreased device performance, reduced work stability and accuracy, and shortened lifespan. Epoxy resin (EP), with its comprehensive properties such as easy processing, excellent electrical insulation, and good mechanical performance, has been widely applied in the field of thermal management materials such as microelectronics and power equipment packaging. However, the phonon scattering induced by the disorder of cured epoxy results in a low thermal conductivity, which cannot meet the heat dissipation requirements of high-performance electronic devices and power equipment.

The preparation of epoxy thermal conductive composites with high thermal conductivity and excellent comprehensive properties by adding high thermal conductivity fillers to EP is an effective coping strategy. However, obtaining high thermal conductivity requires filling with a high content of thermal conductivity fillers, which leads to a significant reduction and deterioration in the material's processing performance, mechanical and electrical properties. Therefore, how to construct a more efficient heat conduction path with less filler to improve the thermal conductivity while ensuring the good comprehensive performance of the composite material is of great significance for the packaging materials for thermal management of electronic devices.

Based on constructing a three-dimensional thermal conductive network of particles within EP, this thesis realizes the preparation of thermally conductive epoxy composites with good comprehensive performance. The main research contents are as follows.

(1) When graphite carbon nitride (g-CN) was used as the raw material, g-CN nanosheets (g-CNNS) was prepared by a high-temperature oxidation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and contact angle tests were carried out on g-CNNS, indicating that the prepared g-CNNS had smaller particle size and stronger hydrophilicity than that of the original g-CN. Then, g-CNNS/CNF skeleton was designed by ice-templating method using cellulose nanofibril (CNF) water solution as a dispersant, and corresponding g-CNNS/CNF/EP composite material was designed by a vacuum impregnation method. The effect of g-CN and g-CNNS filler content on the thermal and dielectric properties of epoxy composites was investigated, and the results showed that the thermal conductivity of the g-CNNS/CNF/EP composite material significantly increased with the increase of g-CNNS content in the skeleton. When the filler content was 10.4 wt%, the thermal conductivity was 0.76 W/(m·K), which was significantly higher than that of pure EP (0.2 W/(m·K)). Through the volume repulsion effect of ice crystals and the force between the CNF and g-CNNS molecules, an ordered thermal conductivity network structure is eventually formed in the vertical direction. The construction of the thermal conductivity network facilitates phonon transport and enhances the thermal conductivity. In addition, the g-CNNS/CNF/EP composite material had suitable dielectric constants and losses. For example, at 10.4 wt% filler content, the dielectric constant and loss of the system at 104 Hz were 2.4 and 0.01, respectively.

(2) When hexagonal boron nitride (BN) was used as a raw material, BN nanosheets (BNNS) was prepared through mechanical ball milling. The peeling effect of BNNS was analyzed by SEM, XRD, and other methods, which proved the successful exfoliation of BNNS. The BNNS/PVDF skeleton was prepared by the sacrificial salt template method using polyvinylidene fluoride (PVDF) as the adhesive, and finally the epoxy composite (BNNS/PVDF/EP) was prepared with a vacuum-assisted impregnation strategy. The thermal and dielectric properties of the material were investigated, and the results showed that the thermal conductivity of the composite increased significantly with the amount of filler, increasing to 2.21 W/(m·K) at a filler content of 55.0 wt%, a 10 times improvement compared to pure EP (0.2 W/(m·K)). Microstructural analysis showed that ordered thermal channels were successfully prepared, which was attributed to the volume exclusion effect of KCl salt particles and the interaction force between PVDF and BNNS molecules. The prepared composite material was used as a thermal interface material for LED lamps, and its dynamic heat dissipation performance was investigated, which showed excellent heat dissipation performance of BNNS/PVDF/EP. In addition, the composite material had low dielectric constant and dielectric loss. For example, at 55.0 wt% filler content, the dielectric constant and loss of the system at 104 Hz were distributed as 1.46 and 0.007, respectively.

In this thesis, different three-dimensional thermally conductive networks were prepared by two methods, and the effects of network structure on epoxy properties were investigated to reveal the effects of particle size and network structure on epoxy thermal conductivity and dielectric properties. The prepared epoxy composites have high thermal conductivity, low dielectric constant and high electrical insulation properties, which have potential application value in the field of thermal management materials.

参考文献:

[1] 周文英, 党智敏, 丁小卫. 聚合物基导热复合材料[M]. 北京: 国防工业出版社, 2017.

[2] Jiang H B, Wang Z F, Geng H Y, et al. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10078-10084.

[3] 周文英, 王蕴, 曹国政, 等.本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(07): 2038-2055.

[4] 王蕴, 周文英, 曹丹, 等. 本征导热液晶环氧及其复合材料的研究进展[J]. 复合材料学报, 2022, 39(05): 2060-2072.

[5] Leng Y, Xu M J, Sun Y, et al. Simultaneous enhancement of thermal conductivity and flame retardancy for epoxy resin thermosets through self‐assemble of ammonium polyphosphate surface with graphitic carbon nitride[J]. Polymers for Advanced Technologies, 2019, 30(9): 2468-2479.

[6] Guo Y Q, Qiu H, Ruan K P, et al. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding[J]. Composites Science and Technology, 2022, 219: 109253.

[7] Tanimoto M, Yamagata T, Miyata K, et al. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4374-4382.

[8] Ma P C, Siddiqui N, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367.

[9] Sun H, Deng N, Li J Q, et al. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders[J]. Journal of Materials Science & Technology, 2021, 61: 93-99.

[10] Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys[J]. Journal of Magnesium and Alloys, 2020, 8(1): 78-90.

[11] Zhou Y C, Liu F, Wang H, Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review[J]. Polymer Composites, 2017, 38(4): 803-813.

[12] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502/1-4.

[13] Si W Y, Sun J Y, He X X, et al. Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites[J]. Journal of Materials Chemistry C, 2020, 8(10): 3463-3475.

[14] Huang X Y, Jiang P K, Tanaka T. A review of dielectric polymer composites with high thermal conductivity[J]. IEEE Electrical Insulation Magazine, 2011, 27(4): 8-16.

[15] Lienhard J H. Heat transfer in flat-plate boundary layers: A correlation for laminar, transitional, and turbulent flow[J]. Journal of Heat Transfer, 2020, 142(6). 283-291

[16] Ishikawa T, Tsujikura K, Tanaka M., et al. Morphological changes and their thermal conductivities of MgO crystals containing various impurities (B, Ca, Si)[J]. International Journal of Applied Ceramic Technology, 2020, 17(6): 2734-2743.

[17] Jo I, Pettes M T, Kim J K, et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride[J]. Nano Letters, 2013, 13(2): 550-554.

[18] Hirao K, Zhou Y, Hyuga H, et al. High thermal conductivity silicon nitride ceramics[J]. Journal of the Korean Ceramic Society, 2012, 49(4): 380-384.

[19] Zeng J Z, Fu R L, Shen Y, et al. High thermal conductive epoxy molding compound with thermal conductive pathway[J]. Journal of Applied Polymer Science, 2009, 113(4): 2117-2125.

[20] Zhang Y, Heo Y, Son Y, et al. Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials[J]. Carbon, 2019, 142: 445-460.

[21] Su Y, Li J, Weng G J. Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance[J]. Carbon, 2018, 137: 222-233.

[22] Zhang H, Zhang X W, Fang Z, et al. Recent advances in preparation, mechanisms, and applications of thermally conductive polymer composites: a review[J]. Journal of Composites Science, 2020, 4(4): 180.

[23] Bai X, Zhang C X, Zeng X L, et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks[J]. Composites Communications, 2021, 24: 100650.

[24] Yun T S, Evans T M. Three-dimensional random network model for thermal conductivity in particulate materials[J]. Computers and Geotechnics, 2010, 37(7-8): 991-998.

[25] Agari Y, Ueda A, Nagai S. Thermal conductivity of a polymer composite[J]. Journal of Applied Polymer Science, 1993, 49(9): 1625-1634.

[26] Maxwell J. A treatise on electricity and magnetism[M]. Oxford: Clarendon Press, 1873.

[27] Gehr R J, Boyd R W, Optical properties of nanostructured optical materials[J]. Chemistry of Materials, 1996, 8(8): 1807-1819.

[28] Agari Y, Tanaka M, Nagai S, et al. Thermal conductivity of a polymer composite filled with mixtures of particles[J]. Journal of Applied Polymer Science, 1987, 34(4): 1429-1437.

[29] Foygel M, Morris R D, Anez D, et al. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity[J]. Physical Review B, 2005, 71(10): 104201.

[30] Bryning M B, Milkie D E, Islam M F, et al. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites[J], Applied Physics Letters, 2005, 87(16): 161909.1-161909.3.

[31] Fricke H. A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids[J]. Physical Review, 1924, 24(5):575-587.

[32] Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites[J]. Journal ofApplied Polymer Science, 1970, 14(6): 1449-1471.

[33] Liu Y R, Zhou Y J, Xu Y F. State-of-the-art, opportunities, and challenges in bottom-up synthesis of polymers with high thermal conductivity[J]. Polymer Chemistry, 2022. 13(31), 4462-4483.

[34] 温变英, 崔云超. 聚合物本征导热研究进展[J]. 高分子材料科学与工程, 2022, 38(07): 175-182.

[35] Zhou T H, Wu Z H, Chilukoti H K, et al. Sequence-engineering polyethylene–polypropylene copolymers with high thermal conductivity using a molecular-dynamics-based genetic algorithm[J]. Journal of Chemical Theory and Computation, 2021, 17(6): 3772-3782.

[36] Hummel P, Lechner A M, Herrmann K, et al. Thermal transport in ampholytic polymers: the role of hydrogen bonding and water uptake[J]. Macromolecules, 2020, 53(13): 5528-5537.

[37] Hashimoto M, Imoto H, Matsukawa K, et al. Coexistence of optical transparency, hydrophobicity, and high thermal conductivity in beads-on-string-shaped polyureas induced by disordered hydrogen-bond networks[J]. Macromolecules, 2020, 53(8): 2874-2881.

[38] Li Y, Li C G, Zhang L, et al. Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(9): 8329-8338.

[39] Mehra N, Kashfipour M A, Zhu J H. Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers[J]. Applied Materials Today, 2018, 13: 207-216.

[40] Ruan K P, Guo Y Q, Gu J. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness[J]. Macromolecules, 2021, 54(10): 4934-4944.

[41] Kim G H, Lee D, Shanker A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J]. Nature Materials, 2015, 14(3): 295-300.

[42] Xu Y F, Kraemer D, Song B, et al. Nanostructured polymer films with metal-like thermal conductivity[J]. Nature Communications, 2019, 10(1): 1771.

[43] Zhang R C, Huang Z H, Sun D, et al. New insights into thermal conductivity of uniaxially stretched high density polyethylene films[J]. Polymer, 2018, 154: 42-47.

[44] Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4): 251-255.

[45] Ryu M, Takezoe H, Haba O, et al. Photo-controllable thermal diffusivity and thermal conductivity driven by the orientation change of nematic liquid crystal with azo-dendrimers[J]. Applied Physics Letters, 2015, 107(22): 221901.

[46] Jiang Y L, Shi X J, Feng Y Z, et al. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 657-664.

[47] Pan C, Kou K C, Jia Q, et al. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent[J]. Composites Part B: Engineering, 2017, 111: 83-90.

[48] Xie Z, Wu K, Liu D Y, et al. One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss[J]. Composites Science and Technology, 2021, 208: 108756.

[49] Ding D L, Shang Z H, Zhang X, et al. Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure[J]. Ceramics International, 2020, 46(18): 28363-28372.

[50] Ge M N, Zhang J F, Zhao C L, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates[J]. Materials & Design, 2019, 182: 108028.

[51] Yang D, Ni Y F, Kong X X, et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant[J]. Composites Science and Technology, 2019, 177: 18-25.

[52] Guo B C, Tang Z H, Zhang L Q. Transport performance in novel elastomer nanocomposites: Mechanism, design and control[J]. Progress in Polymer Science, 2016, 61: 29-66.

[53] Hu B Y, Guo H, Wang Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly (vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106038.

[54] Ha S M, Kwon O H, Oh Y G, et al. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system[J]. Science and technology of advanced materials, 2015, 16(6): 065001.

[55] Mu Q H, Feng S Y, Diao G Z. Thermal conductivity of silicone rubber filled with ZnO[J]. Polymer Composites, 2007, 28(2): 125-130.

[56] Bian W C, Yao T, Chen M, et al. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin[J]. Composites Science and Technology, 2018, 168: 420-428.

[57] Xiao C, Chen L, Tang Y L, et al. Three-dimensional porous alumina network for polymer composites with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105511.

[58] Wu B Y, Liu H B, Fu R L, et al. Epoxy-matrix composite with low dielectric constant and high thermal conductivity fabricated by HGMs/Al2O3 co-continuous skeleton[J]. Journal of Alloys and Compounds, 2021, 869: 159332.

[59] Li S K, Liu B, Xu M, et al. Dopamine-mediated bacterial cellulose/hexagonal boron nitride composite films with enhanced thermal and mechanical performance[J]. Industrial & Engineering Chemistry Research, 2022, 61(13): 4601-4611.

[60] Zeng X L, Sun J J, Yao Y M, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano 2017; 11(5): 5167-5178.

[61] Guo H C, Zhao H Y, Niu H Y, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano, 2021, 15(4): 6917-6928.

[62] Royne A, Dey C, Mills D. Cooling of photovoltaic cells under concentrated illumination: a critical review[J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 451-483.

[63] Han J K, Du G L, Gao W W, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials, 2019, 29(13): 1900412.

[64] Chen J, Wei H, Bao H, et al. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31402-31410.

[65] Guo H C, Zhao H Y, Niu H Y, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano, 2021, 15(4): 6917-6928.

[66] Kinsey G S, Edmondson K M. Spectral response and energy output of concentrator multijunction solar cells[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(5): 279-288.

[67] Lee B, Liu J Z, Sun B, et al. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell[J]. Express Polymer Letters, 2008, 2(5): 357-363.

[68] An D, Cheng S S, Zhang Z Y, et al. A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections[J]. Carbon, 2019, 155: 258-267.

[69] Pan D, Yang G, Abo-Dief H M, et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites[J]. Nano-Micro Letters, 2022, 14(1): 118.

[70] Huang T Q, Li Y W, Chen M, et al. Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae[J]. Composites Science and Technology, 2020, 198: 108322.

[71] Han J K, Du G L, Gao W W, et al. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network[J]. Advanced Functional Materials, 2019, 29(13): 1900412.

[72] Li X S, Cai W W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12): 4268-4272.

[73] An H, Lee W, Jung J. Graphene synthesis on Fe foil using thermal CVD[J]. Current Applied Physics, 2011, 11(4): S81-S85.

[74] Zhan N, Wang G P, Liu J L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy[J]. Applied Physics A, 2011, 105(2): 341-345.

[75] Zhao Y H, Wu Z K, Bai S L. Study on thermal properties of graphene foam/graphene sheets filled polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 200-206.

[76] Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon, 2014, 70: 1-21.

[77] Gong J R, Liu Z D, Yu J H, et al. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2016, 87: 290-296.

[78] Zhao Y H, Wu Z K, Bai S L. Study on thermal properties of graphene foam/graphene sheets filled polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 200-206.

[79] Yang G Y, Chen L, Jiang P, et al. Fabrication of tunable 3D graphene mesh network with enhanced electrical and thermal properties for high-rate aluminum-ion battery application[J]. RSC Advances, 2016, 6(53): 47655-47660.

[80] Huang H N, Bi H, Zhou M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application[J]. Journal of Materials Chemistry A, 2014, 2(43): 18215-18218.

[81] Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics, 1997, 81(10): 6692-6699.

[82] Pan D, Li Q M, Zhang W, et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method[J]. Composites Part B: Engineering, 2021, 209: 108609.

[83] Chen X L, Lim J S K, Yan W L, et al. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16987-16996.

[84] Xu X W, Hu R C, Chen M Y, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal, 2020, 397: 125447.

[85] Wu Y M, Ye K, Liu Z D, et al. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44700-44707.

[86] Jiao E X, Wu K, Liu Y C, et al. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106417.

[87] Wu Y P, Xue Y, Qin S, et al. BN nanosheet/polymer films with highly anisotropic thermal conductivity for thermal management applications[J]. ACS Applied Materials &Interfaces, 2017, 9(49): 43163-43170.

[88] Qin Y, Li L H, Li M H, et al. Flexible MXene/copper/cellulose nanofiber heat spreader films with enhanced thermal conductivity[J]. Nanotechnology Reviews, 2022, 11(1): 1583-1591.

[89] Qin M M, Xu Y X, Cao R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge[J]. Advanced Functional Materials, 2018, 28(45): 1805053.

[90] Tao W J, Zeng S H, Xu Y, et al. 3D Graphene-sponge skeleton reinforced polysulfide rubber nanocomposites with improved electrical and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106293.

[91] Jiang F, Zhou S S, Xu T L, et al. Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton[J]. Composites Science and Technology, 2021, 208: 108779.

[92] Liu Z D, Shen D Y, Yu J H, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC Advances, 2016, 6(27): 22364-22369.

[93] Wu B Y, Chen R Y, Fu R L, et al. Low thermal expansion coefficient and high thermal conductivity epoxy/Al2O3/T-ZnOw composites with dual-scale interpenetrating network structure[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105993.

[94] Chen J, Huang X Y, Sun B, et al. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability[J]. ACS Nano, 2018, 13(1): 337-345.

[95] Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study[J]. Computational Materials Science, 2015, 99: 285-289.

[96] Niu P, Zhang L L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.

[97] Wang Z D, Priego P, Meziani M J, et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties[J]. Nanoscale Advances, 2020, 2(6): 2507-2513.

[98] Zhang Y H, Park S J. In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 40-48.

[99] Guo Y L, He J, Wang H, et al. Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation[J]. Polymer Composites, 2019, 40(S2): E1600-E1611.

[100] Fang L J, Wu C, Qian R, et al. Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength[J] RSC Advances. 2014, 4, 21010-21017.

[101] Yang X T, Guo Y Q, Han Y X, et al. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology[J]. Composites Part B: Engineering, 2019, 175: 107070.

[102] Lin Z Y, Mcnamara A, Liu Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation[J]. Composites Science and Technology, 2014, 90: 123-128.

[103] Cao G Z, Zhou W Y, Li Y, et al. Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(13): 9951-9965.

[104] Gu J W, Yang X T, Lv Z Y, et al. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2016, 92: 15-22.

[105] Guiney L M, Mansukhani N D, Jakus A E, et al. Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites[J]. Nano letters, 2018, 18(6): 3488-3493.

[106] Li Z, Ju D, Han L, et al. Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly (3-hydroxylbutyrate)[J]. Thermochemical Acta, 2017, 652: 9-16.

[107] Ren L L, Li Q, Lu J B, et al. Enhanced thermal conductivity for Ag-deposited alumina sphere/epoxy resin composites through manipulating interfacial thermal resistance[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 561-569.

[108] Akhtar M W, Lee Y S, Yoo D J, et al. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity[J]. Composites Part B: Engineering, 2017, 131: 184-195.

中图分类号:

 TQ325    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式