论文中文题名: | 高精度电子压力计的研究 |
姓名: | |
学号: | 05141 |
保密级别: | 公开 |
学科代码: | 081101 |
学科名称: | 控制理论与控制工程 |
学生类型: | 硕士 |
院系: | |
专业: | |
研究方向: | 智能仪器应用研究 |
第一导师姓名: | |
论文外文题名: | Research on High Precision Electronic Pressure Gauge |
论文中文关键词: | |
论文外文关键词: | Electronic pressure gauge ADuC834 Data fusion Artificial neural networks |
论文中文摘要: |
随着石油消费的急剧增加与石油矿藏的日益减小,试井技术在国民经济中的地位日趋重要。高精度电子压力计、计算机在试井领域的广泛应用,以及现代试井分析理论和方法的创立,使试井技术取得了重大突破。但是,目前国内外生产的电子压力计精度的提高均建立在使用高精度传感器的基础之上,而非采用先进的软件处理方法,故造成电子压力计价格昂贵、现场操作复杂,所以自主开发价格低廉、安装维护方便、性能稳定的电子压力计具有重要的意义。
本文首先通过分析电子压力计的工作环境及原理,提出了系统的功能与性能指标,并以这些指标为依据完成了系统的总体方案设计。根据电子压力计的功能要求,以单片机ADuC834为电子压力计的核心,设计了电源管理电路、压力和温度数据采集及存取电路、USB转UART通讯电路和定时唤醒时钟电路。
针对温度对压力传感器存在影响这一具体问题,采用了基于粒子群算法的人工神经网络对其进行数据融合,但粒子群算法容易陷入局部极值点,进一步采用“Stretching”技术对算法进行改进,融合结果表明,电子压力计的精度从满量程的4.2‰降至0.8‰,满足1‰的系统精度要求。
本文采用LabWindows/CVI构建数据管理平台,实现了对电子压力计的检测、工作参数设置、数据上传、曲线显示等功能,并使用LabWindows/CVI与Matlab混合编程技术,完成了数据融合算法。
最后,对电子压力计进行了调试与应用验证,结果表明,系统硬件工作正常,软件设计合理,现已成功应用于大庆等油田的开发中。
﹀
|
论文外文摘要: |
A new type of electronic pressure gauge used in oil-well has been researched and designed in this thesis. How to improve the accuracy of the pressure gauge? A great of pressure gauges use high precision sensors rather than using advanced software approaches in home and abroad. This type of electronic pressure gauge is cheap in price, stable in performance and easy in maintenance because of using software approaches to improve the accuracy.
Firstly, the working environments and principles of pressure gauge are analyzed, and the function and performance indicators of system are proposed in this thesis. Overall design has been finished according to these indicators.
Secondly, the electronic pressure gauge has been designed by using the MicroConverter ADuC834 as the core, which includes power and battery management circuit, the pressure and temperature sampling circuits, USB/UART communication interface circuit, data storage circuit and clock wake-up circuit.
In order to solve the problem of intercross sensitivity of pressure sensor by temperature, artificial neural network based on particle swarm optimization (PSO) has been adopted in this thesis. Because the PSO algorithm is easy to run into local minimal spot, the stretching technique has been applied to improved PSO algorithm. And the results of the data fusion shows that the method could improve the accuracy of pressure gauge from 4.2‰ to 0.8‰, meeting the requirement of gauge.
The data management platform is based on LabWindows/CVI, which realized many functions, such as data collecting, parameter settings of working, data uploading, curve showing, and so on. And the data fusion algorithms were implemented by using interface between LabWindows/CVI and Matlab.
Finally, the principle sample application verification shows that hardware worked properly and software was a rational design. Recently, this type of electronic pressure gauge has been successfully used in Daqing oil-wells.
﹀
|
中图分类号: | PT216 |
开放日期: | 2009-04-22 |