论文中文题名: | Fe基非晶/纳米晶软磁材料的制备及性能研究 |
姓名: | |
学号: | 20211225048 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 金属功能材料 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Study on preparation and properties of Fe-Based amorophous/nanocrystalline soft magnetic materials |
论文中文关键词: | |
论文外文关键词: | amorophous ; nanocrystalline ; water-gas atomization ; collocation of particle size ; thermal treatment |
论文中文摘要: |
为适应高性能电子器件低能耗、高功率、小型化和高频化的发展趋势,制备综合性能优异的非晶/纳米晶软磁粉体是行业的迫切需求。本文采用水气联合雾化工艺成功制备了Fe77Si8.4B13.6C1和Fe73Si15.7B7.5Cu0.9Nb2.9非晶粉体。对Fe77Si8.4B13.6C1非晶粉体进行粒度和粒度级配实验,研究了粒度和粒度级配对试样性能的影响,确定了最佳粒度配比;对Fe73Si15.7B7.5Cu0.9Nb2.9非晶粉体进行热处理工艺研究,获取了最佳晶化工艺。所制备的非晶/纳米晶粉体,已实现规模化量产。 用水气联合雾化工艺制备非晶粉体,系统研究了漏眼尺寸、雾化水压力和熔体温度等工艺参数对粉体性能的影响,制备了12组Fe77Si8.4B13.6C1粉体。研究结果表明:漏眼尺寸从4 mm增大到6 mm,粉体平均粒径由20.53 μm增大到27.83 μm,振实密度由4.47 g/cm3增大到4.91 g/cm3,松装密度由3.61 g/cm3增大到4.23 g/cm3,流动性提升,粉体球形度逐渐提高;雾化水压力从60 MPa增大到120 MPa,粉体平均粒径由17.4 μm减小到7.8 μm,振实密度由4.54 g/cm3减小到4.23 g/cm3,松装密度由3.63 g/cm3减小到3.11 g/cm3,粉体颗粒间的团聚现象逐渐明显;熔体温度从1350 ℃增大到1650 ℃,粉体平均粒径由10.34 μm减小到5.69 μm,振实密度由4.35 g/cm3减小到3.87 g/cm3,松装密度由3.27 g/cm3减小到2.96 g/cm3,流动性较差,粉体颗粒间的团聚现象更加突出。 从12组Fe77Si8.4B13.6C1粉体中优选出3组工业上常用的粒度粉体,研究粒度对其性能的影响。研究结果表明:随着粉体粒度增大,振实密度由4.19 g/cm3增大到4.89 g/cm3,,松装密度由3.06 g/cm3增大到4.17 g/cm3;在100 kHz下测得的磁导率由17.6增大到20.83,在100 mT,100 kHz下测得的损耗由1600 mW/cm3增大到1954 mW/cm3;粒度对粉体的物相结构、热力学性能和饱和磁感应强度Bs等的影响较小。 对上述Fe77Si8.4B13.6C1非晶粉体做粒度级配研究,正交实验研究结果表明:当200目:500目:1000目=6:1:4时,性能最优:在100 kHz下测得的磁导率为24.84;在100 mT,100 kHz下测得的损耗为837 mW/cm3。 对Fe73Si15.7B7.5Cu0.9Nb2.9非晶前驱体进行纳米晶化热处理,研究热处理工艺对纳米晶性能影响。研究结果表明:随着热处理温度逐渐升高,纳米晶相逐渐析出完全,一次剩余晶化焓逐渐接近于0,饱和磁感应强度Bs由142.6 emu/g增大到159.9 emu/g,矫顽力由55.7 A/m下降到48.6 A/m,在100 kHz下测得的磁导率由20.79增大到39.37,在100 kHz,Bm=100 mT下测试磁环总损耗由1550 mW/cm3下降到510 mW/cm3。在10℃/min的加热速率下,将非晶前驱体加热到560 ℃保温1 h,可获得综合软磁性能较为优异的纳米晶结构:Bs=159.9 emu/g,Hc=48.6 A/m,在100 kHz下,μe=39.37,在100 kHz,Bm=100 mT下测试磁环总损耗Pcv=510 mW/cm3。 |
论文外文摘要: |
To adapt to the development trend of low level energy consumption, superpower, miniaturization and high frequency, the preparation of amorphous/nanocrystalline soft magnetic powders with excellent comprehensive properties is an urgent demand of the industry. In this paper, the amorphous powders Fe77Si8.4B13.6C1 and Fe73Si15.7B7.5Cu0.9Nb2.9 were successfully fabricated by the water-gas atomization. The particle size and gradation experiments of Fe77Si8.4B13.6C1 amorphous powder were carried out to research the effects of particle size and gradation on the performance of the sample, and the optimal particle size ratio was determined. The heat treatment of Fe73Si15.7B7.5Cu0.9Nb2.9 amorphous powder was studied and the best crystallization process was obtained. The amorphous/nanocrystalline powders have been mass-produced. 12 groups of Fe77Si8.4B13.6C1 powders were prepared by water-gas atomization. Meanwhile, the influence of process parameters such as nozzle diameter, atomizing water pressure and melting temperature on the physical properties of the powders were studied. The results show that with the increase of the nozzle diameter from 4 mm to 6 mm, the D50 of the powder increases from 20.53 μm to 27.83 μm, the tap density increases from 4.47 g/cm3 to 4.91 g/cm3, the apparent density increases from 3.61 g/cm3 to 4.23 g/cm3, and the fluidity increases, as well as the sphericity of the powder increases gradually. With the increase of atomizing water pressure from 60 MPa to 120 MPa, the D50 of the powder decreases from 17.4 μm to 7.8 μm, the tap density decreases from 4.54 g/cm3 to 4.23 g/cm3, the apparent density decreases from 3.63 g/cm3 to 3.11 g/cm3, and the agglomeration phenomenon among particles is gradually obvious. With the increase of melting temperature from 1350 ℃ to 1650 ℃, the D50 of the powder decreases from 10.34 μm to 5.69 μm, the tap density decreases from 4.35 g/cm3 to 3.87 g/cm3, and the apparent density decreases from 3.27 g/cm3 to 2.96 g/cm3. The fluidity is terrible, and the agglomeration between particles is more prominent. Three groups of commonly used industrial particle size powders were selected from 12 groups of Fe77Si8.4B13.6C1 powders and the effects of particle size on the properties of the powders were studied. The results showed that: With the increase of particle size, the tap density increases from 4.19 g/cm3 to 4.89 g/cm3, the apparent density increases from 3.06 g/cm3 to 4.17 g/cm3, the sphericity is slightly lower, the permeability increases from 17.6 to 20.83(100 kHz), the core loss increases from 1600 mW/cm3 to 1954 mW/cm3 (100 mT, 100 kHz). The particle size has little influence on the phase structure, thermodynamic properties and saturation magnetic induction intensity Bs. The particle size gradation of the above amorphous powder Fe77Si8.4B13.6C1 is researched, and the orthogonal experiment results show that: when 200 mesh:500 mesh:1000 mesh=6:1:4, the optimal performance: the permeability is 24.84(100 kHz), the core loss is 837 mW/cm3 (100 mT, 100 kHz). The effect of heat treatment on the properties of nanocrystalline precursor Fe73Si15.7B7.5Cu0.9Nb2.9 was researched. The results show that with the heat treatment temperature augments bit by bit, the nanocrystalline phase gradually precipitates completely, the primary residual crystallization enthalpy increasingly approaches 0, the saturation magnetic induction increases from 142.6 emu/g to 159.9 emu/g, the coercivity gradually reduces from 55.7 A/m to 48.6 A/m, the permeability enhances from 20.79 to 39.37(100kHz), and the core loss gradually descends from 1550 mW/cm3 to 510 mW/cm3. At the heating rate of 10 ℃/min, the amorphous precursor was heated to 560 ℃ for 1 h, the nanocrystal structure with excellent comprehensive soft magnetic properties was obtained: Bs=159.9 emu/g, Hc=48.6 A/m, μe=39.37(100 kHz), and the core loss was 510 mW/cm3 (100 mT, 100 kHz). |
参考文献: |
[1] 毕见强,孙康宁,尹衍升.磁性材料的研究和发展趋势[J].山东大学学报(工学版),2003,33(3):225-228. [2] 王新林,孙桂琴.金属功能材料发展概况[J].金属功能材料,1999,6(4):145-155. [4] Luborsky F. Applications of amorphous alloys [J]. IEEET MAGN, 1978, 14(5): 1008-1012. [7] 卢志超,李德仁,周少雄.非晶/纳米晶合金的国内外发展概况及应用展望[J].新材料产业,2002,(3):20-23. [8] 汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(05):177-351. [9] 严密,彭晓领.磁学基础与磁性材料[M].北京:科学出版社,2006. [13] Luborsky F E. Amorphous metallic alloys [M]. London: Butterworths, 1983: 4 [14] 郭敏.Fe-Si-B-Cu-P非晶纳米晶软磁合金的制备与性能研究[D].南京:南京航空航天大学,2011. [15] Klement W., Willen R. H., Duwez P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869-870. [20] Inoue A, Shinohara Y, Gook J S. Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting [J]. Materials Transactions Jim, 1995, [22] 周少雄,陈文志.非晶态合金材料的发展现状及在配电变压器中的应用[J].新材料产业化,2010,3:39-43. [23] 陈海平.铁基非晶纳米晶软磁材料的制备和性能研究[D].浙江大学,2015. [27] 姚可夫,施凌翔,陈双琴,等.铁基软磁非晶/纳米晶合金研究进展及应用前景[J].物理学报,2018,67(1):8-15. [35] 陈振华.陈鼎机械合金化与画液反应球磨[M].北京,化学工业出版社,2006. [37]陈新亮,吴萍,姜恩永.新型的固态加工技术—机械合金化(MA)[J].材料导报,2004(09):60-62+71. [38] 覃思思,朱杰,周晚珠,等.水雾化法制备的Fe-Si-B-Nb(-C)铁基非晶软磁合金粉末的性能[J].磁性材料及器件,2015,46(5):5-9+13. [39]孙朋,郭纯.非晶合金粉末制备技术研究进展[J].现代制造技术与装备,2020,56(12):115-116+126. [40] 孟令兵,于海琛,吕世雅,江忠民,麻洪秋,关立东.水雾化制备FeSiCr软磁粉末磁性能研究[J].粉末冶金技术,2021,39(04):345-349. [41] 周晚珠,宗伟,朱杰等.雾化法制备铁基非晶软磁合金粉末的研究[J].材料研究与应用,2016,10(01):43-47. [42] 刘坤杰,乐晨,赵放等.水气联合雾化制备的Fe72Si10.7B10.7Cr2.2P1.5C2.9非晶粉末的结构及软磁性能[J].磁性材料及器件,2018,49(06):10-13+33. [43]解传娣,陈文.水雾化Cu-0.3La预合金粉制备工艺研究[J].粉末冶金技术,2011,29(04):279-282. [44] 吴环,陈鹏起,鲁颖炜等.水气联合雾化压力对铜粉性能的影响[J].金属功能材料,2022,29(05):39-43. [45] 吕海波,母育锋,李新军.熔体过热度对雾化过程的影响[J].特种铸造及有色金属,2002(3):1-3 [47] 王峻,丁福昌,陆曹卫等.水雾化制备Fe74Cr2Mo2B4Si4C2P10Sn2非晶粉末的研究[J].粉末冶金工业,2014,24(03):21-28. [48] 陆曹卫,卢志超,郭峰等.水雾化Fe69Ni5Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯的性能[J].钢铁研究学报,2007(09):33-35. [49] 冷丹,曾克里,王志勇,宋信强,朱杰,田学娜.高压水雾化法制备MIM不锈钢粉末工艺研究[J].粉末冶金工业,2015,25(02):8-11. [50] 阮建明,黄培云.粉末冶金原理[M].北京,机械工业出版社,2012. [54] 郭世海,张羊换,王煜等.横向磁场热处理对高饱和磁感应强度 Fe基非晶磁性能的影响[J].磁性材料及器件,2009,(03):38-40. [58] 霍光,丁福昌,匡星.水雾化制粉技术[C].粉末冶金产业技术创新战略联盟暨2012年第二届中国粉末冶金产业发展论坛论文集.2012:343-349. [60] 魏恒斗.镍基非晶、纳米晶软磁合金的制备与晶化动力学研究[D].兰州理工大学,2006. [62] 吴承建,陈国良,强文江,等.金属材料学[M].北京,冶金工业,2009. [73] 唐坚.金属软磁磁粉芯研究[D].东北大学,2013. [74] 汪洋.大功率新型一体成型电感器设计及应用前景分析[J].电子元器件与信息技术,2020,4(01):1-2. [75] 李伟健,闫亮明,郭峰等.一体成形电感密度分布不均匀问题的研究与改进[J].粉末冶金工业,2016,26(04):50-54. [76] 刘文胜,彭芬,马运柱,等.工艺条件对气雾化制备SnAgCu合金粉末特性的影响[J].中国有色金属学报,2009,19 (6):1074-1079. [77] 刘辛,毛新华,谢焕文等.气雾化工艺对Fe-Si-Ni-Al-Ti软磁合金粉末物理性能的影响[J].粉末冶金技术,2015,33(03):195-201. [78] 程一天,章守华.快速凝固技术与新型合金[M].北京,中国宇航出版社,1990. [79] 刘坤杰,乐晨,赵放等.水气联合雾化法制备的非晶纳米晶FeCuNbSiBC粉末[J].磁性材料及器件,2021,52(04):37-40. [81]汪卫华,王文魁.新型多组元大块非晶合金材料的发现与研究进展[J].物理,1998(07):15-20. [83] 周晚珠,宗伟,朱杰等.雾化法制备铁基非晶软磁合金粉末的研究[J].材料研究与应用,2016,10(01):43-47. [85] 戴道生,钱昆明.铁磁学[M].北京:科学出版社,2000,321. [86] 周娟.Fe基纳米晶磁粉芯制备与性能研究[D].中南大学,2013. [87] 唐翠勇.铁基非晶/纳米晶合金的制备、成形及性能研究[D].华南理工大学,2012. [88] 池强,谢磊,常良等.羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能[J].材料导报,2021, 35(10):10023-10028. [89] 王湘粤,卢志超,陆曹卫等.低损耗FeSiBPC非晶磁粉芯的制备及磁性能研究[J].粉末冶金工业,2013,23(01):37-41. [91] 聂敏,谈敏,黄静等.FeSiCr合金粉与羰基铁粉及其在一体成型电感中的应用对比分析[J].磁性材料及器件,2020,51(02):47-50. [92] 高铭,张于顺,柏忠卫等.铁基非晶纳米晶磁粉芯制备工艺研究进展[J].铸造技术,2020, [93] 周永川,吴献军,谢州.FeSiCr磁粉心造粒粒径分布对其性能的影响[J].粉末冶金工业, 2021,31(05):61-65. [94] 胡国辉,许琛,刘荣明等.粒度分布对粘结铁氧体磁粉性能和压缩密度的影响[J].世界有色金属,2017,484(16):263-264. [95] 王红忠.特种磁粉芯的制备及性能研究[D].长沙:中南大学, 2007 [96] 吴深,李杰超,王晓威等.高频低损耗软磁复合材料的研究进展[J].轻工学报,2020, [98] 贺自强,王新林,全白云.块体非晶态合金的成分设计准则及玻璃形成能力的表征[J]. 材料热处理学报,2006,(1):28-32+131. [100] 李庆达,张伟,胡军,等.热处理对水雾化Fe74Cr2Mo2Sn2P10C2Si4B4非晶磁粉芯性能的影响[J].材料热处理学报,2012,33(4):1-5. |
中图分类号: | TG132.271 |
开放日期: | 2024-06-19 |