- 无标题文档
查看论文信息

题名:

 废钒基TiO2粉原位再生制备宽温度窗口脱硝催化剂及性能研究    

作者:

 孙叶鹏    

学号:

 21204228109    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085213    

学科:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 环保催化材料理论与技术    

导师姓名:

 王娜    

导师单位:

 西安科技大学    

提交日期:

 2024-12-02    

答辩日期:

 2024-11-29    

外文题名:

 In-situ regeneration of waste vanadium-based TiO2 powder for preparation of wide temperature window denitration catalyst and its performance study    

关键词:

 废钒基TiO2粉 ; TiO2前驱体 ; 均匀沉淀法 ; 球磨法 ; 稀土改性    

外文关键词:

 Waste vanadium based TiO2 powder ; TiO2 precursor ; Homogeneous prec-ipitation method ; Ball milling method ; Rare earth modification    

摘要:

随着国家经济的飞速发展,对能源的消耗也随之增加。煤炭燃烧衍生的一系列环境问题,给人们的日常生活和身体健康造成了严重的影响。因此,环境部陆续出台了相关政策限制燃煤企业对氮氧化物的排放。选择性催化还原(SCR)技术是目前常用的一种脱硝技术。但由于催化剂在长期运行的过程中会受烟气中碱金属、重金属和SO2及锅炉内流场分布的影响导致其失活。失效的以TiO2为载体的钒基催化剂属于危险废弃物,同时其内部也含有一定量的钒、钨等战略性物资,因此,对失活催化剂进行再生达到回用要求具有一定的经济和环境意义。目前,失活催化剂常用清洗、活性负载加高温煅烧的工艺进行再生,再生后的催化剂比表较低,TiO2晶型部分转化为金红石,使用寿命无法满足24000 h。课题组着重对废钒基TiO2粉进行原位再生,然后通过湿式球磨法将稀土元素Ce、La加入再生钒基TiO2纳米粉对其改性,最终制备出了在催化性能,温度窗口,耐高温和抗水抗硫性上均高于商业催化剂V3.0W3.1的脱硝催化剂,采用一系列的物理化学表征技术研究再生催化剂的结构特征,物理化学特性以及其反应机理。该研究可为失效催化剂的再生提供新的思路。研究内容如下:
首先,考虑到TiO2纳米粉在脱硝催化剂中起到改善比表面积、增加内部活性点位和减少团聚现象等作用。选择均匀沉淀法、直接沉淀法以及溶胶凝胶法制备的TiO2与废钒基TiO2粉(3:7)经球磨法混合进行再生。结果表明:三种方法制备的TiO2均能提高废钒基TiO2粉的催化活性,其中,均匀沉淀法制备的TiO2纳米粉脱硝效率高于其它方法,在温度窗口为410 ~ 500 ℃时脱硝活性在80%以上。与废钒基TiO2粉相比,比表面积提高了18.81 m2/g,TiO2晶型为锐钛矿。同时其较高的拟合峰面积和Oα/(Oα+Oβ)比例说明其酸性点位的数量和浓度以及氧化还原能力得到了改善。表明载体在催化过程中发挥着重要作用。
其次,探究了载体再生阶段对脱硝性能影响的研究,结果表明:TiO2前驱体与废钒基TiO2粉(3:7)原位再生得到的TiO2粉表现出了优于其他阶段再生的催化活性,在385 ~ 550 ℃的温度区间内时,脱硝效率在80%以上。经多项表征分析发现,载体TiO2的晶型仍为锐钛矿型,孔径2-50 nm的介孔结构,且由前驱体与废钒基TiO2粉球磨法混合得到的样品比表面积为74.13 m2/g,高于其他阶段得到的样品,这意味着相同质量的样品表面可以承载着更多的活性物质。同时其更高的峰面积说明了中强酸位点和表面不饱和氧得到了提高。
最后,由于再生钒基TiO2粉的催化剂效率及温度窗口较低,无法满足脱硝需要,因此为了制备出能直接投入使用的宽温度窗口脱硝催化剂,采用球磨法引入稀土元素Ce和La对其进行改性再生,经测试发现:Ce5La2有着最佳的活性窗口,与商业钒基催化剂(V3.0W3.1)相比,在290 ~ 550 ℃的温度区间内,Ce5La2 的NO转化率均高于80%,且在380 ~ 512 ℃内的转化率可以维持在99%。同时Ce5La2再生催化剂在抗水、抗硫和耐高温方面与V3.0W3.1相比也展现出了较为优异的性质,在5 h的抗水抗硫性测试中,Ce5La2脱硝效率在80%以上,而V3.0W3.1从开始的95.8%迅速下降至44%;在550 ℃煅烧10天后,Ce5La2的NO转化率转化率未发生明显变化,在250~550 ℃内仍高于80%。表征分析发现,再生催化剂中独有的元素Ce由于具有良好的Ce3+/Ce4+变价能力,使再生催化剂表现出优于商业催化剂的氧化还原性,同时La的加入使得再生催化剂内的活性元素的分散度进一步提高,增强了CeO2与载体间的相互作用,为再生催化剂增加了表面活性氧物种以及增加了内部的中强酸量,同时观察到稀土元素的加入使得TiO2晶格条纹存在一定程度上相对紊乱且不连续情况,说明掺杂引起了部分缺陷,这些缺陷在催化反应中增加了NO的停留时间,使得催化反应得以更加充分的进行。Ce,La的加入与其本身存在的V形成了商业催化剂所没有的V-O-Ce/La短程化学键,从而在与V3.0W3.1的比较下,再生催化剂在中高温下表现出更加稳定和优异的脱硝性能。原位傅里叶红外分析发现,再生催化剂是在Brønsted酸点位起主导,Lewis酸点位协同进行的催化反应,符合Eley-Ridel机理

外文摘要:

With the rapid development of the national economy, the consumption of energy has also increased. The series of environmental problems derived from coal combustion have caused serious impacts on people's daily life and physical health. Therefore, the Ministry of Environment has successively issued relevant policies to restrict NOx emissions from coal-fired enterprises. Selective catalytic reduction (SCR) technology is one of the commonly used denitrification technologies. However, the catalyst will become inactive due to the influence of alkali metals, heavy metals, SO2, and the distribution of fluid field in the boiler during long-term operation. The inactive TiO2-based vanadium catalyst is a hazardous waste, and it also contains certain amounts of strategic materials such as vanadium and tungsten. Therefore, the regeneration of inactive catalysts to meet reuse requirements has certain economic and environmental significance. Currently, the inactive catalysts are commonly regenerated by cleaning, active loading, and high-temperature calcination. The specific surface area of the regenerated catalyst is lower, and the TiO2 crystal phase is partially converted to anatase. The service life cannot meet the requirement of 24,000 h. The research group focuses on optimizing the regeneration method of waste vanadium-based TiO2 nanopowder, and then modifies the regenerated vanadium-based TiO2 nanopowder by wet ball milling method with rare earth elements Ce and La. Finally, the research group prepares a denitrification catalyst with higher catalytic performance, temperature window, resistance to high temperature and water and sulfur than commercial catalyst V3.0W3.1. A series of physical and chemical characterization techniques are used to study the structural features, physical and chemical properties, and reaction mechanism of the regenerated catalyst. This research can provide new ideas for the regeneration of inactive catalysts. The research content is as follows:
First, considering that TiO2 nanopowder plays an important role in improving the specific surface area, increasing the number of active sites and reducing agglomeration in the denitration catalyst. TiO2 prepared by uniform precipitation method, direct precipitation method and sol-gel method was mixed with the waste vanadium-based TiO2 powder (3:7) by ball milling method for regeneration. The results show that the TiO2 prepared by the three methods can improve the catalytic activity of the waste vanadium-based TiO2 powder. Among them, the TiO2 nanopowder prepared by uniform precipitation method has higher denitration efficiency than the other methods, with denitration activity of more than 80% at the temperature window of 410 ~ 500 ℃. Compared with the waste vanadium-based TiO2 powder, the specific surface area has increased by 18.81 m2/g, the TiO2 crystal structure is anatase, and the higher fitting peak area and Oα/(Oα+Oβ) ratio indicate that the number and concentration of acidic sites and oxidation-reduction ability have been improved. This shows that the carrier plays an important role in the catalytic process.
Secondly, the study on the influence of carrier regeneration stage on the denitration performance was conducted, the results show that the TiO2 precursor mixed with the waste vanadium-based TiO2 powder (3:7) in situ regenerated to obtain TiO2 powder has better catalytic activity than other regeneration stages, with denitration efficiency of more than 80% in the temperature range of 385 ~ 550 ℃. After multiple characterization analyses, it was found that the crystal phase of the carrier TiO2 was anatase, with a mesoporous structure of 2-50 nm pore size, and the specific surface area of the sample obtained by ball milling the precursor and waste vanadium-based TiO2 powder was 74.13 m2/g, higher than that of the samples obtained from other regeneration stages, which means that the same mass of the sample can carry more active substances on its surface. Meanwhile, its higher peak area indicates that the medium-strong acid sites and surface unsaturated oxygen have been improved.
Finally, due to the low catalytic efficiency and temperature window of the regenerated vanadium-based TiO2 powder catalyst, it cannot meet the requirements for NOx removal. Therefore, in order to prepare a wide-window NOx removal catalyst that can be directly put into use, the regenerated catalyst was modified by ball milling with rare earth elements Ce and La. After testing, it was found that Ce5La2 had the best activity window. Compared with the commercial vanadium-based catalyst (V3.0W3.1), the NO conversion rate of Ce5La2 was higher than 80% in the temperature range of 290 ~ 550 ℃, and the conversion rate could be maintained at 99% in the temperature range of 380 ~ 512 ℃. At the same time, the Ce5La2 regenerated catalyst also showed superior properties in terms of resistance to water, sulfur, and high temperature compared with V3.0W3.1. In the 5-hour test for water and sulfur resistance, the NOx removal efficiency of Ce5La2 was above 80%, while that of V3.0W3.1 dropped from 95.8% to 44% from the beginning. After being calcined at 550 ℃ for 10 days, the NO conversion rate of Ce5La2 did not change significantly, and it was still above 80% in the temperature range of 250 ~ 550 ℃.Characterization analysis reveals that the unique element Ce in the regenerated catalyst, due to its excellent Ce3+/Ce4+ redox ability, makes the regenerated catalyst exhibit superior oxidation-reduction properties compared to commercial catalysts. Meanwhile, the addition of La further enhances the dispersion of active elements in the regenerated catalyst, strengthens the interaction between CeO2 and the carrier, increases the surface active oxygen species and the internal medium-strong acid content, and observes that the addition of rare earth elements causes the TiO2 lattice stripes to exist to a certain extent of relative disorder and discontinuity, indicating that doping has caused some defects. These defects increase the NO residence time in the catalytic reaction, allowing the catalytic reaction to proceed more fully. The addition of Ce and La, together with the V present, forms a short-range chemical bond of V-O-Ce/La that is not present in commercial catalysts, thereby enabling the regenerated catalyst to exhibit more stable and superior denitration performance at medium and high temperatures compared to V3.0W3.1. In situ Fourier transform infrared analysis reveals that the regenerated catalyst undergoes a catalytic reaction dominated by Brønsted acid sites and coordinated by Lewis acid sites, consistent with the Eley-Ridel mechanism.
 

参考文献:

[1] 中国电力企业联合会. 中国电力行业年度发展报告2018版[M]. 北京: 中国市场出版社, 2018.

[2] 黄延伟, 朱媛霏, 杨秀红, 等. 废弃SCR脱硝催化剂处置与回收研究进展[J]. 科技导报, 2024, 42(04): 62-72.

[3] 刘恩丽,张强, 陈伟堂.我国燃煤电厂超低排放常见问题与建议[J].广东化工,2021, 48(10):159-160.

[4] 李国亮.氮氧化物对环境的危害及污染控制技术[J]. 山西化工, 2019, 39(05): 123-124.

[5] 李彦琴. SCR脱硝催化剂的催化性能及其机理研究[D]. 石河子大学, 2023.

[6] 曾瑞.浅谈 SCR 废催化剂的回收再利用[J]. 中国环保产业,2013(2): 39-42.

[7] 姜烨, 高翔, 吴卫红, 等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国机电工程学报, 2013, 33(14): 18-31.

[8] Wang J Z,Du H, Olayiwola, et al. Recent advances inthe recovery of transition metals from spent hydrodesul-furization catalysts[J]. Tungsten,2021, 3(3): 305-328.

[9] 吴洪云. 船舶尾气SCR脱硝及催化剂原位再生研究[D]. 宁波大学,2021.

[10] 刘华南, 何林, 江书宇, 等. 低温选择性催化还原脱硝催化剂的研究现状与发展[J]. 四川环境, 2013(03): 127-132.

[11] Bates S A, Delgass W N, Ribeiro F H,et al. Methods for NH3 titration of Bronsted acid sites in Cu-zeolites that catalyze the selective catalytic reduction of NOx with NH3[J].Journal ofCatalysis,2014,312:26-36.

[12] 高岩. 选择性催化还原脱硝催化剂的实验与机理研究[D]. 济南: 山东大学, 2013.

[13] Alemany L J,Lietti L,Ferlazzo N,etal.ChemInform Abstract:Reactivityand PhysicochemicalCharacterization of V2O5-WO3/TiO2 De-NOx Catalysts[J].ChemInform,2010,26:4-6.

[14] Busca G,Lietti L,Ramis G,et al.Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts:A review[J].Applied Catalysis B:Environmental,1998,18(1-2):1-36.

[15] Choo S T,Lee Y G,Nam I-S,et al.Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J].Applied Catalysis A:General,2000,200(1-2):177-188.

[16] Cristallo G,Roncari E,Rinaldo A,et al.Study of anatase-rutile transition phase in monolithiccatalystV2O5/TiO2andV2O5-WO3/TiO2[J].Applied Catalysis A:General,2001,209(1-2):249-256.

[17] Topsoe N Y.Mechanism ofthe selective catalytic reduction of nitric oxide by ammonia elucidatedbyin situ on-line fourier transform infrared spectroscopy[J].Science,1994,265(5176):1217-1219.

[18] Topsoe NY,Topsoe H,Dumesic J A.Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia[J].Journal of Catalysis,1995, 151(1):226-240.

[19] 潘光, 李恒庆, 卢守舟, 等. 烟气脱硝技术及在我国的应用[J]. 中国环境管理干部学院学报, 2008, 18(1): 90-93.

[20] 陈进生. 火电厂烟气脱硝技术-选择性催化还原法[M]. 北京: 中国电力出版社, 2008:99.

[21] 曲瑞陽.新型宽温度窗口催化剂选择性催化还原NOx的机理研究[D]. 浙江大学,2017.

[22] Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in fluegases derived from subbituminous and lignite coals[J]. Fuel Processing Technology, 2005, 86(5): 577-613.

[23] 沈伯雄, 施建伟, 杨婷婷, 等. 选择性催化还原脱氮催化剂的再生及其应用评述[J]. 化工进展, 2008, 27(1): 64-67.

[24] 强华松, 刘清才. 燃煤电厂SCR 脱硝催化剂的失活与再生[J]. 材料导报, 2008, 2(12): 285-287.

[25] Stobert T R, P E, 王剑波, 等. SCR 催化剂在高CaO煤项目中的应用[C]. 中国环境科学学会学术年会优秀论文集, 2006: 2807.

[26] 张烨, 徐晓亮, 缪明烽. SCR 脱硝催化剂失活机理研究进展[J]. 能源环境保, 2011, 25(4): 14-18.

[27] 张秋林. CaO对SCR催化剂选择的影响[J]. 能源研究与利用, 2006, 6: 29-30.

[28] Crocker C R, Benson S A, Laumb J D. SCR catalyst blinding due to sodium and calcium sulfate formation[J], Prep Pap-Am Chem Soc Div Fuel Chem, 2004, 49(1): 169-173.

[29] Joseph P. D, HarveyG S J, Israel E W. Oxidation of SO2 over Supported Metal Oxide Catalysts[J]. Journal of Catalysis, 1999, 181: 233-243.

[30] 孙克勤, 钟秦, 于爱华. SCR 催化剂的碱金属中毒研究[J]. 中国环保产业, 2007, (7): 30.

[31] 朱崇兵, 金保升, 仲延平, 等. K2O对V2O5-WO3/TiO2催化剂的中毒作用[J]. 东南大学学报, 2008, 38(1): 102.

[32] 孙克勤, 钟秦, 于爱华. SCR催化剂的砷中毒研究[J]. 中国环保产业, 2008, (1): 40.

[33] Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst[J].Journal of Molecular Catalysis A: Chemical, 1999, 139(2-3): 189-198.

[34] Choung J W.Effect of promoters including tungsten and barium on the thermal stability ofV2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Catalysis Today, 2006, 111(3-4): 242-247.

[35] Olthof B, Khodakov A, Bell A T, et al. Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2,Al2O3, TiO2, ZrO2, and HfO2[J]. The Journal of Physical Chemistry B, 2000, 104(7): 1516-1528.

[36] Pan W,Hong J, Guo R, et al. Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):2224-2227.

[37] Shikada T,Fujimoto, K, Kunugi,T, et al. Reduction of nitric oxide with ammonia on vanadium oxide catalysts supported on homogeneously precipitated silicatitania[J].Industrial & Engineering Chemistry Product Research and Development, 1981, 20(1): 91-95.

[38] Shikada T, Fujimoto, K, Kunugi T, et al.Reduction of nitric oxide with ammonia on silica‐supported vanadium oxide catalysts[J]. Journal of Chemical Technology and Biotechnology. Chemical Technology, 1983, 33(8): 446-454.

[39] 胡晓力, 陈东丹, 胡晓洪, 等. 表面活性剂对TiO2粉体粒度和形貌的影响. 中国陶瓷工业. 2003, 10(4): 25~28.

[40] 胡晓力, 尹虹, 胡晓洪. 用均匀沉淀法制备纳米TiO2粉体. 中国陶瓷, 1997, 33(4): 5~8.

[41] 张春光, 邵磊, 沈志刚, 等. 中和水解法制备纳米TiO2的研究. 化工进展, 2003, 22(1): 53-55.

[42] 程云朗. 水热法制备修饰改性低维二氧化钛材料[D]. 安徽大学, 2019.

[43] Liu Z, Sun D D, Guo P, et al. One-step fabrication and high photocatalytic activity of porousTiO2 hollow aggregates by using a low-temperature hydrothermal method withouttemplates[J]. Chemistry-A European Journal, 2007, 13(6): 1851-1855.

[44] 罗凡,严加永,梁健,等. 稀土资源领域物探技术应用现状及展望[J/OL]. 中国稀土学报, 2024, 1-11.

[45] Wang N, Ye C, Xie H, et al. Fe2O3 enhanced high-temperature arsenic resistance of CeO2–La2O3/TiO2catalyst for selective catalytic reduction ofNOx with NH3[J]. RSC Advances, 2021, 11(16):9395-9402.

[46] Liu W Y, Wang Z Y, Sun M,et al. Porous washcoat structure in CeO2 modified Cu-SSZ-13 monolith catalyst for NH3-SCR with improved catalytic performance[J]. AIChEJournal, 2022, 68(11): e17834.

[47] Chen M, Zhao W, Wei Y, et al. La ions-enhanced NH3-SCR performance over Cu-SSZ-13 catalysts[J]. Nano Research, 2023, 16(10): 12126-12133.

[48] Wang X, Li T, Wang C, et al. Improving catalytic performance of Cu-SSZ-13 for NOx abatement via in-situ introduction of La and Ce from spent catalyst[J]. Separation and Purification Technology, 2024, 331: 125638.

[49] Chen C, Xie H, He P, et al. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Applied Surface Science, 2022,571: 151285.

[50] Yao X, Kong T, Chen L, et al. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect [J]. Applied Surface Science, 2017, 420: 407-415.

[51] BoningariT, Pappas D K, Smirniotis P G.Metal oxide-confined interweaved titaniananotubes M/TNT (M= Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NOx in the presence of excess oxygen [J]. Journal of Catalysis, 2018, 365: 320-333.

[52] Zhang G,Han W, Zhao H, et al. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction [J]. Applied Catalysis B: Environmental, 2018, 226: 117-126.

[53] Pan Y, Shen B, Liu L, et al. Develop high efficient of NH3-SCR catalysts with wide temperature range by ball-milled method [J]. Fuel, 2020, 282: 118834.

[54] 古玲霞, 刘少文. 蜂窝式脱硝催化剂再生技术研究进展[J]. 化学与生物工程, 2021, 38(5): 14-18+25.

[55] Cao L,Fei X, Zhao H, et al. Preparation of phthalocyanine blue/rutile TiO2 composite pigment with a ball milling method and study on its NIR reflectivity[J]. Dye and Pigments, 2020, 173:107898.

[56] Li Dandan, Yao Guangzhen, Liang Guiyan, et al. Preparation of Go/TiO2 composite photocatalyst and treatment of syntheticdyewastewater[J].Journalof Materials Engineering, 2019, 47(12):104-110.

[57] He Z,Wang Y,Liu Y, et al.Recent advances in sulfur poisoning of selective catalytic reduction (SCR) denitration catalysts[J].Fuel,2024,365, 131126.

[58] 黄延伟,朱媛霏,杨秀红,等. 废弃SCR脱硝催化剂处置与回收研究进展[J]. 科技导报,2024, 42 (04): 62-72.

[59] 王凡. 钼钨基催化剂的制备及电化学性能研究[D]. 哈尔滨理工大学, 2023.

[60] 张春雷,于迪,王斓懿,等. 纳米纤维状金属氧化物催化剂的制备及其催化净化大气污染物的研究进展[J]. 中国科学:化学,2023, 53 (09): 1636-1659.

[61] Zhang R, Yang W, Luo N, et al. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites: Effect of A-/B-site substitution and TiO2/CeO2 support[J]. Applied Catalysis B:Environmental, 2014, 146: 94-104.

[62] Xu P, Zheng J, Jing F, et al. Influence of support precursor on FeCe-TiO2 for selective catalytic reduction of NO with ammonia [J]. Molecular Catalysis,2021, 508: 111586.

[63] Wang N, Ye C, Xie H, et al. High-temperature vanadium-free catalyst for selective catalytic reduction of NO with NH3 and theoretical study of La2O3 over CeO2/TiO2[J]. Catalysis Science & Technology, 2021, 11(18): 6112-6125.

[64] Liu H, Fan Z, Sun C, et al. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3 [J]. Applied Catalysis B: Environmental, 2019, 244: 671-683.

[65] Ma S, Zhao X, Li Y, et al. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx(a= 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO [J]. Applied Catalysis B: Environmental, 2019, 248: 226-238.

[66] 刘晋隆,王晨晔,王兴瑞,等.废SCR脱硝催化剂碱性浸出液制备白钨精矿工艺研究[J].绿色矿冶,2024,40(01):7-13.

[67] Xu P, Zheng J, Jing F, et al. Influence of support precursor on FeCe-TiO2 for selective catalytic reduction of NO with ammonia [J]. Molecular Catalysis, 2021, 508: 111586.

[68] Zhang L, Shi L, Huang L, et al. Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3-xO4 Nanocages Derived from Metal-Organic Frameworks[J]. ACS Catalysis, 2014, 4(6):1753-1763.

[69] 马东祝,张玲.MoO3改性V2O5/TiO2SCR催化剂的低温脱硝研究[J]. 石化技术, 2023, 30 (08): 242-244.

[70] 唐萌,刘文杰,龙一飞,等. 焦化厂失活低温SCR催化剂再生性能研究 [J]. 现代化工, 2023, 43 (08): 198-202.

[71] Cai C, Chen J, Fu W, et al, Study on CO-SCR performance of Ce modified OMS-2 catalysts[J].Journal of Environmental Chemical Engineering, 2023,11(6): 111589.

[72] Yao M, Wang Z, Li Y, et al, Enhanced resistance to K poisoning andSO2& H2O on Ce0.63TiOx catalyst by sulfation treatment[J].Separation and Purification Technology, 2024, 348: 12733

[73] Fang C, Zhang D, Cai S, et al, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route[J].Nanoscale, 2013, 5(19) 9199-9207.

[74] Thirupathi B, Smirniotis P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures[J]. Applied Catalysis B:Environmental, 2011, 110(none): 195-206.

[75] Liu Z, Zhu J, Li J, et al. Novel Mn-Ce-Ti Mixed-Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH3[J].Acs Appl Mater Interfaces, 2016, 283(16): 1044-1050.

[76] 龚旭栋,王玮璐,吴云,等. 稀土催化剂(Ce、La)用于丙烷催化燃烧的研究进展[J]. 重庆工商大学学报(自然科学版), 2024, 41 (01): 12-20.

[77] Jia S, Pu G, Xiong W, et al. Investigation on Simultaneous Removal ofSO2 and NO over a Cu–Fe/TiO2 Catalyst Using Vaporized H2O2: An Analysis on SO2 Effect[J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13474-13484.

[78] Liu W, Wang Z,Sun M, et al. Porous washcoat structure in CeO2 modi-fied Cu-SSZ-13 monolith catalyst for NH3-SCR with improved catalyticperformance[J]. AIChE Journal, 2022, 68(11): e17834.

[79] Wang Y, Li Z Q, Ding Z Y, et al. Effect ion-exchange sequences on catalytic performance of cerium-modified Cu-SSZ-13 catalysts for NH3-SCR[J]. Catalysts, 2021, 11(8): 997.

[80] Dai Y, Wang X, Dai Q, et al. Effect of Ce and La on the structure and activity of MnOxcatalystincatalytic combustion of chlorobenzene[J] Applied Catalysis B: Environmental, 2012, 111: 141-149.

[81] Liu Z, Zhang S, Li J, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2014, 144:90-95.

[82] 张文毓.稀土催化材料的研究进展与应用[J]. 精细石油化工进展, 2020, 21 (03): 35-39+53.

[83] SongW, JiJ W, Guo K, et al. Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts[J]. Chinese Chemical Letters, 2022, 33(2), 935-938.

[84] 侯欣辛,陈红萍,杨旭,等. 稀土金属在低温脱硝中的应用[J].燃料与化工,2019,50(05):50-53.

[85] Gao L,Li C, Lu P, et al. Simultaneous removal of Hg0 and NO from simulated flue gas over columnar activated coke granules loaded with La2O3-CeO2 at low temperature[J]. Fuel, 2018, 215: 30-39.

[86] Zhang Y, Wu W, Zhang K, et al. Raman study of 2D anatase TiO2 nanosheets[J].Physical Chemical Physsics, 2016,18(47): 32178-32184.

[87] Yao X, Chen L, Cao J,et al. Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57(37): 12407-12419.

[88] Chen J, Fu W, Cai C, et al. Activity of CuCoCe layered double hydroxides catalysts and mechanism for C3H6-SCR[J].Fuel, 2024, 369: 131789.

[89] Mazurova K, Miyassarova A, Eliseev O, et al. Fischer-Tropsch synthesis over RuCo catalysts: An effect of ligands on the active phase properties and catalytic activity[J].Chemical Engineering Journal, 2024, 488:150837.

[90] Zhang Y, Zhang G, Chen G, et al. Wide-Temperature Selective Catalytic Reduction of NOx via Modulating Redox Ability of Mn-Based Catalysts[J].Energy & Fuels, 2024, 38(10): 8960-8967.

[91] Zhao D,Guo G, Si Q, et al. MOx-TiO2 (M=Pt, Pd, Ru) for alcoholysis reaction from furfuryl alcohol to ethyl levulinate, Sustainable Chemistry and Pharmacy[J]. 2024, 39: 101584.

[92] Cha W, Ehrman S H, Jurng J. Surface phenomenon of CeO2-added V2O5/TiO2 catalyst based chemical vapor condensation (CVC) for enhanced selective catalytic reduction at low temperatures [J]. Chemical Engineering Journal, 2016, 304: 72-78.

[93] Chen L, Yuan F, Li Z, et al. Synergistic effect between the redox property and acidity on enhancing the low temperature NH3-SCR activity for NOx removal over the Co0.2CexMn0.8-xTi10 (x= 0–0.40) oxides catalysts[J]. Chemical Engineering Journal, 2018, 354: 393-406.

[94] Feng X, Tian M, He C, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction [J]. Applied Catalysis B: Environmental, 2020, 264: 118493.

[95] Liu Z, Wang M, Liu S, et al. Design of Assembled Composite of Mn3O4@Graphitic Carbon Porous Nano-Dandelions: A Catalyst for Low–temperature Selective Catalytic Reduction of NOx with Remarkable SO2 Resistance[J]. Applied Catalysis B: Environmental, 2020, 269:118731.

[96] Zhang K,Li M,Song M, et al. CFs-supported La-BiOIO3/Bi2O3 heterostructures via in situ growth strategies for efficiently removing diclofenac: Fermi level modulation, intermediates identification and radical mechanism, Separation and Purification Technology 355 (2025).

[97] Yu H, Zhong S, Zhu B, et al. Synthesis and CO Oxidation Activity of 1D Mixed Binary Oxide CeO2-LaOx Supported Gold Catalysts[J].Nanoscale Research Letters, 2017, 12: 1-13.

[98] Geng N, Zou J, Chang X, et al. Creating abundant oxygen vacancies in CeO2 by plasma-etching to enhance catalytic ozonation: An efficient degradation relying on surface oxidation pathway[J]. Separation and Purification Technology, 2024, 350: 127961.

[99] Ren Q, Zhang G, Huang X, et al. Revealing the deactivation mechanism of Ca poisoning on V-W-Ti catalysts in cement kilns[J]. Fuel, 2023, 351: 128999.

[100] Chen L, Li J, Ge M. DRIFT Study on CeriumTungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3[J]. Environmental Science &Technology, 2010, 44(24): 9590-9596.

[101] Liu J, Li X, Zhao Q, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation[J]. Applied Catalysis B:Environmental, 2017, 200: 297-308.

[102] Gong P, Xie J, Fang D, et al. Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P [J]. Applied Surface Science, 2020, 505: 144641.

[103] Yang S, Guo Y, Chang H, et al. Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance[J]. Applied Catalysis B: Environmental, 2013, 136: 19-28.

[104] Liu Z, Zhang S, Li J, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS [J]. Applied Catalysis B: Environmental, 2014, 144: 90-95.

中图分类号:

 X51    

开放日期:

 2025-12-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式