- 无标题文档
查看论文信息

论文中文题名:

 矿井胶带火灾烟流蔓延特性与监测方法研究    

姓名:

 王烨    

学号:

 18220214057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 马砺    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王振平    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Research on the Spread Characteristics and Monitoring Methods of Belt Fire in Mines    

论文中文关键词:

 胶带火灾 ; 监测监控 ; 蔓延规律 ; 缩尺寸实验 ; 数值模拟    

论文外文关键词:

 Adhesive tape fire ; monitoring and monitoring ; spread law ; shrinkage experiment ; numerical simulation    

论文中文摘要:

煤炭资源开采过程中,常采用胶带运输系统实现煤炭高效运输。在运行过程中,胶带会与煤炭等摩擦蓄热,导致矿井胶带火灾发生。胶带火灾往往伴随着大量有毒有害气体和高温区域产生,造成人员伤亡和财产损失。为此,本文开展了缩尺寸胶带燃烧规律、烟气蔓延特性数值模拟、监测技术及方法、现场应用等研究,旨在进一步了解胶带火灾蔓延过程,为矿井胶带火灾的预警防控提供基础参数。
建立了缩尺寸试验台研究了胶带在不同风速条件下的燃烧特性,根据温度和胶带表观特征结合理论将燃烧划分为三个阶段;对不同风速条件下的燃烧数据进行了分析,确定了不同风速条件对胶带燃烧过程影响规律、高温区域分布规律、烟气逆退风速条件范围。
采用FDS软件进行数值模拟,构建了与实际胶带运输巷道尺寸1:1模型。结合缩尺寸实验结果探究了模型可行性,并对不同风速条件下胶带火灾温度场及烟气蔓延特性、监测点数据可靠性进行了分析。巷道顶部为温度及烟气聚集区域,适合监测设备布置;不同风速条件下,火灾监测监控点位置随风速增大而向下风向偏移。
对矿井胶带火灾的监测方法进行了研究,设计了适用于矿井的监测设备及技术。实现了胶带火灾温度及多组分气体监测;对传感器的数据精度进行了线性拟合修正,得到了符合不同浓度下的精度修正一次线性方程;对系统及修正精度进行了实验室可靠性研究,确定了系统最大有效距离为3 km,最大数据传输延迟为0.1 s,精度误差小于0.05%或0.5ppm。
在发耳煤矿313204运输巷道进行了监测方法研究,测试了监测方法的可行性、系统稳定性。确定了火灾危险区域和监测布点位置;结果表明系统可有效监测巷道内O2等多种气体的实时数据,实现地面对井下胶带运输巷道的实时动态监测。研究结果可为矿井胶带火灾监测技术及方法提供理论指导。

 

论文外文摘要:

In the process of coal resource mining, it is necessary to use belt conveyors to realize the efficient transportation of coal. In the course of operation, there will be a variety of failures of the belt, leading to the occurrence of the mine belt fire. To this end, this paper has carried out research on the combustion law of shrinking tape, numerical simulation of smoke spreading characteristics, monitoring technology and methods. And based on the experimental results, applied research in mine tunnels. It aims to further understand the spreading process of belt fire and provide basic parameters for monitoring and control of belt fire in mines.
A scaled-down test bench was established to study the combustion characteristics of the tape under different wind speeds. According to the combination theory of temperature and the appearance characteristics of the tape, the combustion was divided into three stages; the combustion data under different wind speeds were analyzed and different the influence of wind speed conditions on the burning of the belt, the distribution of the maximum temperature point, and the range of the flue gas reverse wind speed conditions.
Using FDS simulation software, a 1:1 model with the actual belt transportation lane size was constructed. The feasibility of the model is explored based on the results of the shrinkage experiment, and the temperature field and smoke spread characteristics of the belt fire under different wind speed conditions and the reliability of the monitoring point data are analyzed. The top of the roadway is the temperature and smoke gathering area, which is suitable for the layout of monitoring equipment; the layout of fire monitoring points under different wind speed conditions shifts to the downward wind direction with the increase of wind speed.
The monitoring method of the mine belt fire is studied, and the monitoring equipment and technology suitable for the mine are designed. The tape fire temperature and multi-component gas monitoring are realized; the data accuracy of the sensor is corrected by linear fitting, and the linear equation of accuracy correction under different concentrations is obtained; the reliability of the system and the correction accuracy is studied in the laboratory. It is determined that the maximum effective distance of the system is 3 km, the maximum data transmission delay is 0.1 s, and the accuracy error is less than 0.05% or 0.5ppm.
The monitoring method was studied in the 313204-transportation lane of Faer Coal Mine, and the feasibility and system stability of the monitoring method were tested. The fire hazard area and the location of the monitoring points are determined; the results show that the system can effectively monitor the real-time data of O2 and other gases in the tunnel, and realize the real-time dynamic monitoring of the underground belt transportation tunnel on the ground. The research results can provide theoretical guidance for mine belt fire monitoring technology and methods.

 

参考文献:

[1] 谢和平, 王金华, 王国法, 等.煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5):1187-1197.

[2] 中华人民共和国自然资源部. 中国矿产资源报告2020[J]. 北京: 地质出版社, 2020.

[3] 葛世荣, 胡而已, 裴文良, 等. 煤矿机器人体系及关键技术[J].煤炭学报, 2020, 45(01): 455-463.

[4] Liu X, Pang Y, GABRIEL L, et al. Experimental research on condition monitoring of belt conveyor idlers[J]. Measurement, 2018, 127:277-282.

[5] 张圣柱, 程卫民, 张如明, 等. 矿井胶带巷火灾风流稳定性模拟与控制技术研究[J]. 煤炭学报, 2011, 36(05): 812-817.

[6] 黄民, 顾玉华, 魏任之, 等. 矿用胶带输送机火灾监测系统的研究[J]. 煤炭学报, 2002(01): 78-82.

[7] 封士彩, 黄民. 矿用带式输送机火灾监控技术的研究[J]. 煤炭科学技术, 2002(02): 54-57.

[8] 刘剑, 王银辉, 李静, 等. 倾斜巷道内火灾逆流层变化规律数值模拟[J]. 安全与环境学报, 2015, 15(04): 94-97.

[9] Rotary A. Thermal analysis and kinetic study of Petrosian bituminous coal from Romania in comparison with a sample of Ural bituminous coal[J]. Journal of thermal analysis and calorimetry, 2012, 110(03): 1283-1291.

[10] 王国法, 王虹, 任怀伟, 等. 智慧煤矿 2025 情景目标和发展路径[J]. 煤炭学报, 2018, 43(02): 295-305.

[11] Moduli L, Mishra D P, Jana P K. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review[J]. Journal of Network and Computer Applications, 2018, 106: 48-67.

[12] 道洋, 戚功美, 瞿顶军, 等. 基于SVM和PCA的痕量多组分气体检测方法[J]. 模式识别与人工智能, 2015, 28(08): 720-727.

[13] 张泽. 矿井胶带火灾烟气流动模拟及危险区域划分[D]. 西安科技大学, 2017.

[14] Huang Z, Zhang H . Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity[J]. Applied Energy, 2020, 265:114795.

[15] DeJesus’s , Caillou C , Hegelian P , et al. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions[J]. Energy Conversion & Management, 2015: 647-652.

[16] Truwin W. Use of digital computers for the study of non-steady states and automatic control problems in mine ventilation networks[J]. International Journal of Rock Mechanics and Mining Sciences &, Geomechanics Abstracts, 1972, 9(02):289-323.

[17] Wei T, Zhao W, Zong R. Analytical study of wall factor on the ceiling temperature distribution in the far field for tunnel fires[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171(24): 196-201.

[18] 张国枢 ,王省身. 火风压的计算及其影响因素分析[J].中国矿业学院学报,1983, (03):69-82.

[19] 周延, 王省身. 矿井火灾时期风流紊乱的动态分析[J].火灾科学,1998, (01):33-39.

[20] Zhou Fu-bao, Wang De-ming. Experimental Study on Airflow Reversal Within Bypass Branch During Mine Fire[J]. Journal of China University of Mining & Technology,2001, (02): 2-6.

[21] 王德明, 程远平, 周福宝, 等. 矿井火灾火源燃烧特性的实验研究[J]. 中国矿业大学学报, 2002(01): 33-36.

[22] Hupp N , Stahl U , Kunze K , et al. Influence of fire intensity, fire impingement area and internal pressure on the fire resistance of composite pressure vessels for the storage of hydrogen in automobile applications[J]. Fire Safety Journal, 2019, 104(42):1-7.

[23] 齐庆杰, 王欢, 董子文, 等. 矿井胶带运输巷火灾蔓延规律的数值模拟研究[J]. 中国安全科学学报, 2016, 26(10): 36-41.

[24] 范韫, 胡连桃, 邓建. 矿井运输胶带热解动力特性的实验研究[J]. 中国矿业大学学报,1998, 27(03): 73-75.

[25] 祁云, 齐庆杰, 汪伟, 等. 胶带运输巷水幕抑制火灾烟气效率影响因素实验研究[J]. 中国安全生产科学技术, 2019, 15(05): 123-129.

[26] 李士戎, 邓军, 陈晓坤, 等. 煤矿井下输送带摩擦起火危险点分布规律[J]. 西安科技大学学报, 2011, 31(06): 679-683.

[27] Aleksander Król, Magorzata Król. The factors determining the number of the endangered people in a case of fire in a road tunnel[J]. Fire Safety Journal, 2019, 111:122942.

[28] N D POPE, C G BAILEY. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data[J]. Fire Safety Journal, 2006, 41(02): 99-110.

[29] Zhu D, Liang D, Liu J. Numerical Simulation of Ultra-fine Water Mist Extinguishing Mechanism[J]. Procedia Engineering, 2014, 71:28-33.

[30] Yuan L, Zhou L, Smith A C. Modeling carbon monoxide spread in underground mine fires[J]. Applied Thermal Engineering, 2016, 100: 1319-1326.

[31] Tang W, Miller C H, Gollner M J. Local flame attachment and heat fluxes in wind-driven line fires[J]. Proceedings of the Combustion Institute, 2016, 36(02): 3253-3261.

[32] Rossi J L, Cbetehouna K, Collin A, et al. Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire[J]. Combustion Science & Technology, 2010, 182(10-12): 1457-1477.

[33] Shi C, Liu W, Hong W, et al. A modified thermal radiation model with multiple factors for investigating temperature rise around pool fire[J]. Journal of Hazardous Materials, 2019, 379: 120801.

[34] 周福宝, 王德明. 矿井火灾烟流滚退距离的数值模拟[J]. 中国矿业大学学报,2004, 33(05): 9-13.

[35] 郭芳义. 不同环境条件下隧道火灾燃烧和烟气运动特性研究[D].中国科学技术大学, 2020.

[36] 李翠平,曹志国,钟媛. 矿井火灾的场量模型构建及其可视化仿真[J].煤炭学报,2015,40(04):902-908.

[37] 沈云鸽, 王德明. 基于FDS的矿井巷道火灾烟气致灾的数值模拟[J]. 煤矿安全, 2020, 51(02): 183-187.

[38] Moduli L, Jana P K, Mishra D P. Wireless sensor network based fire monitoring in underground coal mines: A fuzzy logic approach[J]. Process Safety and Environmental Protection, 2018, 113: 435-447.

[39] Litton C D, Pedrera I E. Evaluation of criteria for the detection of fires in underground conveyor belt haulage ways[J]. Fire safety journal, 2012, 51: 110-119.

[40] 文虎, 张铎, 郑学召. 煤矿平巷火灾数值模拟及其特征参数研究[J]. 煤炭科学技术, 2017, 45(04): 62-67.

[41] 谌文佳,易建新. PVC电缆火灾早期特征气体的组成分析和传感器探测[J]. 火灾科学, 2019, 28(02): 94-100.

[42] 张李荣. 平直巷道胶带火灾温度场及烟气流动规律实验研究[D]. 西安科技大学, 2016.

[43] Mouridi M A, Sharif Zadeh M, Kawamura Y, et al. Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments) [J]. Tunneling and Underground Space Technology, 2018, 73: 127-138.

[44] He D, Le B T, Xiao D, et al. Coal mine area monitoring method by machine learning and multispectral remote sensing images[J]. Infrared Physics & Technology, 2019, 103: 103-109.

[45] 文虎,马民,费金彪. 基于红外成像技术的煤矿火灾治理[J].煤炭科学技术, 2010, 38 (01): 28-30.

[46] 王媛彬,马宪民. 煤矿外因火灾早期探测方法研究[J]. 工矿自动化, 2015, 41 (09): 63-66.

[47] 王丽影,秦顺利,马洪宇.矿用MEMS甲烷传感器硅微加热器功率优化设计[J].工矿自动化, 2018, 44(10): 19-23.

[48] 吉平. JSG4红外束管监测系统在神东矿区的应用[J]. 煤矿安全, 2017, 48(81): 59-62.

[49] 孙继平,孙雁宇,范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J].工矿自动化, 2019, 45 (05): 1-5+21.

[50] 秦小光. 城市铁路隧道防灾救援监控与报警技术研究[J]. 铁道标准设计, 2014, 58(03): 105-109.

[51] Li J, Fong N K, Chow W K, et al. The motion analysis of fire video images based on moment features and flicker frequency[J]. Journal of Marine Science and Application, 2004, 3(01): 81-86.

[52] 王凯, 郝海清, 蒋曙光, 等. 矿井火灾风烟流区域联动与智能调控系统研究[J]. 工矿自动化, 2019 (07): 5-11.

[53] 王国元. 隧道火灾自熄特性实验研究[D]. 西南交通大学, 2019.

[54] 国家安全生产监督管理总局. 煤矿安全规程[M]. 煤炭工业出版社, 2016.

[55] Quintiere J G. Scaling applications in fire research[J]. Fire Safety Journal, 1989, 15(01): 3-29.

[56] Oka Y, Atkinson G T. Control of smoke flow in tunnel fires[J]. Fire Safety Journal, 1995, 25(4):305-322.

[57] 贾红兵, 宋晔, 杭祖圣. 高分子材料[M]. 南京大学出版社, 2013.

[58] 范晶. 纵向通风对地铁区间隧道火灾温度场及烟气流动实验研究[D]. 西安科技大学, 2019.

[59] 王波, 沈诗怡, 阮琰炜, 等. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(04): 619-632.

[60] 《中国公路学报》编辑部. 中国汽车工程学术研究综述. 2017[J]. 中国公路学报, 2017, 30(06): 1-197.

[61] Valasek L. The use of PyroSim graphical user interface for FDS simulation of a cinema fire[J]. International Journal of Mathematics and Computers in Simulation, 2013, 7(3): 258-266.

[62] 李曼. 高层建筑多因素作用下火灾发展机理和烟气控制研究[D]. 中国科学技术大学, 2018.

[63] Fan C G, Ji J, Wang W, et al. Effects of vertical shaft arrangement on natural ventilation performance during tunnel fires[J]. International Journal of Heat and Mass Transfer, 2014, 73(06): 158–169.

[64] Shafee S, Yozgatligil A. An analysis of tunnel fire characteristics under the effects of vehicular blockage and tunnel inclination[J]. Tunnelling and Underground Space Technology, 2018, 79(09): 274-285.

[65] 李志法, 刘全义, 王东辉, 等. ABS塑料在不同热辐射强度下的燃烧特性研究[J]. 塑料工业, 2020, 48; 403(10): 116-119+167.

[66] 张孟君, 程远平, 张小宏. 着火房间相邻可燃物引燃过程及其实例研究[J]. 消防科学与技术, 2004, 23(02): 107-111.

[67] 徐浩祯, 赵威风, 吕思嘉. 隧道双火源火灾燃烧特性的实验研究[J]. 工程热物理学报, 2020, 41(05): 214-220.

[68] 铁勇. 地下高大空间火灾烟气自由填充试验研究[J]. 热科学与技术, 2019, 18(03): 234-242.

[69] 王君. 阻塞效应对有、无坡隧道火灾临界风速及温度特性的影响研究[D]. 西安建筑科技大学, 2015.

[70] 李立明. 隧道火灾烟气的温度特征与纵向通风控制研究[D]. 中国科学技术大学, 2012.

[71] Biber, Douglas. Variation across speech and writing: Pearson correlation coefficients for all linguistic features[J]. 1988, 10(1017): 270-279.

[72] 铁勇. 地下高大空间火灾烟气自由填充试验研究[J]. 热科学与技术, 2019, 18(03): 234-242.

[73] Smith R, Laval S, Handley J. Communication nodes and sensor devices configured to use power line communication signals, and related methods of operation[J]. 2015, 47(12): 19-24.

中图分类号:

 TD752.2    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式