论文中文题名: | 甲醇汽油爆炸极限及预测模型研究 |
姓名: | |
学号: | 18220089027 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 气体与粉尘燃爆控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-15 |
论文答辩日期: | 2021-06-03 |
论文外文题名: | Study of Methanol Gasoline Explosion Limit and Prediction Model |
论文中文关键词: | |
论文外文关键词: | methanol gasoline ; explosion limit ; chemkin ; chain reaction |
论文中文摘要: |
随着工业化进程不断发展,对于燃料的需求不断加大,可燃气体和可燃液体在各行各业中得到了广泛的应用,其中,醇类燃料因其燃烧性能、动力性能、经济效益等方面的优点,成为替代石油燃料中的新希望。然而作为易燃易爆的危险化学品,醇类燃料在其调配、储运、使用等过程中,具有燃爆危险性,稍有不慎,就可能发生严重的灾害事故,给人类的生命、财产带来了威胁与损失。本文以甲醇汽油为研究对象,使用可燃气体/蒸气爆炸极限测试装置对M0(即0%的变性甲醇与100%的国标汽油混合,以此类推)、M25、M50、M75和M100甲醇汽油在40~120℃不同初始温度下的爆炸极限,以及CO2和N2惰化下的临界氧浓度等燃爆特性参数进行测定,以研究初始温度、甲醇体积分数以及惰性气体等因素对燃爆特性参数的影响,并基于CHEMKIN建立了一种预测任意配比的甲醇汽油在任意初始温度下的爆炸下限的模型,此外,研究了甲醇体积分数和惰性气体对甲醇汽油近下限爆炸链式反应的影响。 研究结果表明,随着甲醇汽油中甲醇体积分数的升高,爆炸上限和爆炸下限均升高,但下限的增长幅度小于爆炸上限,而爆炸危险度的变化趋势随甲醇体积分数一直在上下波动,爆炸危险度在M50时最大;随着初始温度的升高,甲醇汽油的爆炸下限均降低,且甲醇体积分数越高的甲醇汽油,其爆炸下限下降趋势越明显。 在N2和CO2惰化条件下,随着甲醇汽油中甲醇体积分数的增加,达到爆炸临界状态所需的惰性气体添加量也逐渐增加,并且N2和CO2添加量之间的差距也逐渐明显,添加 CO2比 N2对爆炸极限对应氧浓度的影响更大,从而提高临界氧浓度;且临界氧浓度均随着甲醇汽油中甲醇体积分数的增加而降低,说明甲醇含量越高的甲醇汽油受N2和CO2惰化的影响越大;添加CO2后,甲醇汽油爆炸三角形的Ⅰ区、Ⅱ区以及Ⅲ区比添加N2后的相应区域更小,添加CO2后的Ⅳ区比N2的更大;在相同惰化条件下,随着甲醇汽油中甲醇体积分数的增加,Ⅰ区、Ⅱ区和Ⅳ区的面积均不断扩大,Ⅲ区面积不断减小。 结合实验数据对理-查特列法则、按可燃物热值估算、科瓦德爆炸三角形法和热平衡法四种理论进行了验证,结果表明,对于甲醇汽油这类组分复杂且挥发分受温度影响大的混合物,前三种理论对爆炸极限和爆炸性的预测误差均较大,热平衡法因考虑了可燃物、氧气以及惰性气体对反应系统的热量贡献,因此对甲醇汽油爆炸性的预测更准确。 使用CHEMKIN建立甲醇汽油爆炸下限预测模型,首先,通过实验数据得到甲醇汽油在爆炸下限处的绝热压升拟合曲面方程,继而得到任意配比的甲醇汽油在任意初始温度时爆炸下限处的绝热压升值,再通过多次模拟得到对应的爆炸下限预测值,基于此预测模型对实验组进行预测,其平均误差为-0.66%,满足研究所需精度。 在甲醇汽油近下限爆炸链式反应中,影响自由基OH•(羟基)、CH2O•(次甲基醚键)、CH3•(甲基)、HCO•(甲酰基)生成的绝大多数基元反应的敏感性,均在M50即甲醇体积分数为50%时达到最大值;随着添加CO2体积分数的增加,各自由基的关键基元反应敏感性系数基本呈现下降趋势;而随着添加N2体积分数的增加,OH•、CH2O•、HCO•的关键基元反应敏感性系数的变化趋势与CO2的基本一致,CH3•的相反,且N2对敏感性的影响普遍比CO2的更小;此外,从甲醇汽油的反应机理来看,CO2所涉及的三体反应多于N2,且在同一三体反应下,CO2的效率高于N2,CO2的三体反应也更多涉及H•、O•、OH•这类高活性自由基,因此,CO2惰化甲醇汽油燃爆的效果好于N2。 本文充实了甲醇汽油燃爆特性参数的相关数据,为甲醇气油的安全使用提供一定的理论指导,并为CHEMKIN预测其他气体/液体蒸气爆炸极限提供了新的方法和思路。 |
论文外文摘要: |
With the continuous development of industrialization, the demand for fuels continues to increase. Combustible gases and combustible liquids have been widely used in various industries. Among them, alcohol fuels have advantages in combustion performance, power performance, and economic benefits and become a new hope in alternative petroleum fuels. However, as an inflammable and explosive chemical hazardous material, alcohol fuels have the risk of explosion during the deployment, storage, transportation, and use. If you are not careful, serious explosion accidents may occur, which will bring threats and losses to human lives and property. In this paper, methanol gasoline is used as the research object, and the explosion limit of M0 ( that is, 0% denatured methanol is mixed with 100% national standard gasoline, and so on), M25, M50, M75 and M100 methanol gasoline at different initial temperatures of 40~120℃ and the criticality of CO2 and N2 inerting are measured using a combustible gas/vapor explosion limit test device. The oxygen concentration parameters were tested to study the influence of initial temperature, methanol concentration, inert gas and other factors on the explosion limit of methanol gasoline. A model to predict the lower explosion limit of methanol gasoline was established with CHEMKIN, and the effect of N2 and CO2 on methanol gasoline was studied. The lower limit of the explosive chain reaction. The research results show that as the proportion of methanol in methanol gasoline increases, the upper explosion limit and the lower explosion limit both increase, but the increase in the lower limit is less than the upper explosion limit, and the trend of explosion risk fluctuates with the volume fraction of methanol. The danger degree is greatest at M50; with the increase of the initial temperature, the lower explosion limit of methanol gasoline decreases, and the higher the methanol volume fraction of methanol gasoline, the more obvious the lower explosion limit decreases; the lower explosion limit of methanol gasoline and the volume of methanol are established. Under N2 and CO2 inerting conditions, with the increase of methanol volume fraction in methanol gasoline, the amount of inert gas required to reach the critical state of explosion also gradually increases, and the gap between the amount of N2 and CO2 is also gradually obvious. CO2 has a greater impact on the oxygen concentration corresponding to the explosion limit than N2, thereby increasing the critical oxygen concentration; and the critical oxygen concentration decreases with the increase of methanol volume fraction in methanol gasoline, indicating that methanol gasoline with higher methanol content is affected by N2 and CO2 The greater the effect of inerting; after the addition of CO2, methanol gasoline explosion triangle zone I (explosive zone), zone II (non-explosive zone with lower methanol gasoline vapor concentration) and zone III (non-explosive zone with lower oxygen concentration) It is smaller than the corresponding area after adding N2, and the area of zone IV (safe zone) after adding CO2 is larger than that of N2; under the same inerting conditions, with the increase of methanol volume fraction in methanol gasoline, the areas of zone I, II and IV is constantly expanding, and the area of zone III is continuously decreasing. Combined with the experimental data, the four theories of Le Chatlier rule, estimation by calorific value of fuel, Coward explosive triangle method, and thermal balance method were verified. The results show that the prediction errors of the first three theories for the explosion limit and explosivity of methanol gasoline mixture with complex components and volatile matter greatly affected by temperature are large, while the thermal balance method takes the heat contribution of fuel, oxygen and inert gas to the reaction system into account, so the prediction of methanol gasoline explosivity is more accurate. Use CHEMKIN to establish a prediction model for the lower explosion limit of methanol gasoline. First, obtain the adiabatic pressure rise fitting equation of methanol gasoline at the lower explosion limit through experimental data, and then obtain the adiabatic pressure rise of methanol gasoline at any initial temperature at any initial temperature. The predicted value of the lower explosion limit is obtained through simulation. Based on this prediction model, the experimental group is predicted with an average error of -0.66%. In the explosive chain reaction of methanol gasoline near the lower limit, the sensitivities of most elementary reactions affecting the formation of free radicals OH• (hydroxyl), CH2O• (methylene ether bond), CH3• (methyl) and HCO• (formyl) all reach the maximum at M50, that is, when the volume fraction of methanol is 50%. With the increase of the volume fraction of CO2, the reaction sensitivity coefficients of the key elements of these four free radicals showed a downward trend; and with the increase of the volume fraction of N2, the change trend of the key element reaction sensitivity coefficient of OH•, CH2O•, HCO• is basically the same as that of CO2, and that of CH3• On the contrary, the influence of N2 on sensitivity is generally smaller than that of CO2; in addition, from the reaction mechanism of methanol gasoline, CO2 involves more trisomy reactions than N2, and under the same trisomy reaction, the efficiency of CO2 Higher than N2, the three-body reaction of CO2 also involves more active free radicals such as H•, O•, and OH•. Therefore, CO2 inerted methanol gasoline has a better blast effect than N2. This paper enriches the relevant data of methanol gasoline combustion and explosion characteristic parameters, provides certain theoretical guidance for the safe use of methanol gas oil, and provides a new method and idea for CHEMKIN to predict other gas / liquid vapor explosion limits. |
参考文献: |
[1]许巧云,杨世东,孔永平,等.醇基燃料应用分析及发展对策[J].化学工程与装备,2019(09):217-218. [2]潘季荣,高华伟,解东来,等.醇基燃料的应用现状和发展建议[J].煤气与热力,2019,39(06):25-27+46. [3]吴芃,许世海,李晓然.甲醇燃料研究现状[J].化工时刊,2015,29(3):22-26. [4]邓志华.甲醇作为发动机替代燃料应用技术现状[J].武汉交通职业学院学报,2019,21(04):95-99. [5]朱金良. 发动机燃用汽油与甲醇的性能对比研究[D].华中科技大学,2017. [6]孙彦龙.甲醇汽油爆炸极限及自燃温度测试研究[D].中北大学,2016. [11]胡军,刘燕德,郝勇,等.甲醇汽油、乙醇汽油定性判别及其醇含量测定模型研究[J].光谱学与光谱分析,2020,40(5):1640-1644. [12]穆仕芳,宋灿,尚如静,等.车用M85甲醇汽油理化性质实验研究与动力排放评价[J].天然气化工,2018,43(1):111-114,120. [16]王睿鑫,蒋炎坤,何都.甲醇-汽油复合喷射发动机燃烧排放性能研究[J].车用发动机,2020,(3):12-18. [17]商红岩,陈照军,杨朝合,等.车用M15甲醇汽油燃料的动力性和排放特性试验研究[J].中国石油大学学报(自然科学版),2014,38(03):164-168. [18]杨丹,白国福,彭芬,等.车用M85甲醇烃类燃料的发动机性能试验研究[J].新能源进展,2015,3(05):352-356. [19]郭宝圣,熊树生,傅智胜,戴明新,王英辉,毛彬滔,黄晓波,章昱帆.加入添加剂的甲醇汽油对汽油机怠速和低负荷性能的影响[J].能源工程,2015(02):51-53+59. [20]孙彦龙,谭迎新,谢溢月,等.甲醇汽油混合物爆炸下限测试研究[J].中国安全科学学报,2015,25(12):56-61. [21]谢溢月, 谭迎新, 孙彦龙,等.乙醇汽油自燃温度及爆炸极限测试[J]. 安全与环境学报, 2017, 02(v.17;No.98):151-155. [22]许贵贤.汽油储罐事故后果分析[J].工业安全与环保,2009,35(10):38-40. [25]Mitu M, Brandes E. Explosion parameters of methanol-air mixtures [J]. Fuel,2015,158:217–223. [27]刘振翼,李浩,邢冀,等.不同温度下原油蒸气的爆炸极限和临界氧含量[J].化工学报,2011,62(07):1998-2004. [28]李俊,鲁长波,安高军,等.高闪点喷气燃料最小点火能试验研究[J].消防科学与技术,2016,35(11):1521-1524. [29]刘雪岭,张奇.正烷烃液体云雾最小点火能实验研究[J].北京理工大学学报, 2018, 38(12):46-49+114. [30]李阳超,杜扬,王世茂,等.端部开口受限空间汽油蒸气爆燃超压特性研究[J].中国安全生产科学技术,2016,12(7):32-36. [31]段晓东.混合液态危险品闪点特性研究[J].沈阳航空航天大学学报,2017,34(06):87-91. [33]罗振敏,解超,王九柱,等.N2和CO2对液化石油气(LPG)惰化抑爆效能对比分析[J].化工进展,2019,38(6):2574-2580. [34]郭成成,王飞,刘红威,等.惰性气体-细水雾抑制瓦斯爆炸对比分析[J].煤矿安全,2018,49(6):164-167. [35]张迎新,吴强,刘传海,等.惰性气体N2/CO2抑制瓦斯爆炸实验研究[J].爆炸与冲击,2017,37(5):906-912. [39]裴蓓,韦双明,陈立伟,等.CO2-超细水雾对CH4/Air初期爆炸特性的影响[J].爆炸与冲击,2019,39(02):169-178. [40]吴丽洁.含NaCl荷电细水雾对甲烷爆炸抑制特性的研究[D].重庆大学,2018. [41]曹兴岩.超细水雾抑制甲烷-空气爆炸机理研究[D].大连理工大学,2017. [47]郑立刚,王亚磊,于水军,等.NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J].化工学报,2018,69(09):4129-4136. [48]文虎,王秋红,邓军,等.超细Al(OH)3粉体浓度对甲烷爆炸压力的影响[J].煤炭学报,2009,34(11):1480-1482. [49]丁浩青,温小萍,邓浩鑫,等障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性[J].安全与环境学报,2017,17(03):958-962. [50]余明高,王天政,游浩.粉体材料热特性对瓦斯抑爆效果影响的研究[J].煤炭学报,2012,37(5):831-834. [52]任常兴,张玉贤,王婕,等.冷气溶胶油气环境抑爆效能研究[J].消防技术与产品信息,2018,31(11):57-60. [53]伊宏伟.硅酸盐矿物粉体的瓦斯抑爆特性研究[D].河南理工大学,2018. [54]喻健良,蔡涛,李岳.丝网结构对爆炸气体熄的实验研究[J].燃烧科学与技术,2008(2):97-100. [55]聂百胜,何学秋,张金锋.泡沫陶瓷对瓦斯爆炸火焰传播的影响[J].北京理工大学学报, 2008, 28(7): 573-576. [56]魏春荣,徐敏强,孙建华,等.多孔材料抑制瓦斯爆炸传播的实验及机理[J].功能材料, 2012, 43(16): 2247-2255. [57]王德荣.惰性气体抑制油气爆炸的机理分析及实验模拟[J].工业安全与环保,2007,33(9):37-38. [58]姚干兵,解立峰,刘家骢,等.液态燃料爆炸极限及其惰化抑制实验研究[J].含能材料,2010,18(4):439-442. [59]何昆,石英杰.丙酮蒸气爆炸特性及抑爆试验研究[J].消防科学与技术, 2016, (8): 1045-1047. [60]张伟. BC干粉抑制93#汽油爆炸的最佳点火延迟时间研究[J].现代工业经济和信息化,2014,4(11):49-51. [62]张跃. 93#汽油蒸汽的爆炸特性及其抑制实验研究[D].山西:中北大学,2014. [63]沈正祥.可燃液体蒸气的爆炸特性及其抑制研究[D].江苏:南京理工大学,2008. [68]金满平,张帆,孙峰,等.温度对烃类物质爆炸极限的影响及其预测模型研究[J].中国安全生产科学技术, 2013, 9(009):5-10. [69]刘姝廷,高宪文.基于KPLS的丙烯爆炸极限非线性预测研究[J].东北大学学报(自然科学版), 2017(38):1521-1523. [70]杨鹏,潘勇,蒋军成,等.基于CHEMKIN的可燃气体爆炸下限模拟研究[J].消防科学与技术,2016,35(11):1525-1529. [71]胡双启,尉存娟.燃烧与爆炸[M].北京:北京理工大学出版社, 2015.5: 15-16. [72]中华人民共和国国家质量监督检验检疫总局.GB/T 21844-2008 化合物(蒸气和气体)易燃性浓度限值的标准试验方法[S].北京:中国标准出版社,2008. [73]中国国家标准化管理委员会. GB/T 12474-2008空气中可燃气体极限测定方法[S].北京:中国标准出版社,2009. [75]黄超,杨绪杰,陆路德,等.烷烃高温下爆炸极限的测定[J].化工进展,2002,21(7):496-498. [76]何俊辉,贾广信,薛晓军.M15甲醇汽油不同温度下挥发组分研究[J].当代化工,2014,(4):503-505. [77]周华,张道文.甲醇汽油的馏程特性研究[J].小型内燃机与摩托车,2010,39(1):68-71. [78]许满贵,徐精彩.工业可燃气体爆炸极限及其计算[J].西安科技大学学报,2005,25(2):139-142. [79]李达志.可燃性气体爆炸浓度极限的计算[J].化工设计通讯, 1988, 14(1): 61-63. [80]杨泗霖.防火防爆技术[M].中国劳动社会保障出版社, 2008. [81]住房和城乡建设部城镇燃气标准技术归口单位.混空轻烃燃气:CJ/T 341—2010[S].北京:中国标准出版社,2010. [82]周心权,吴兵著.矿井火灾救灾理论和实践[ M].北京:煤炭工业出版社, 1996 .11. [84]单天翔,崔淦,李自力,等.水蒸气对甲烷燃烧影响的数值模拟研究[J].石油化工高等学校学报,2019,32(5):62-68. [86]罗振敏,张斯琪,王超.受限空间内CO影响甲烷链式爆炸的反应动力学数值模拟[J].西安科技大学学报,2020,40(4):557-565. |
中图分类号: | X928.7 |
开放日期: | 2023-06-16 |