- 无标题文档
查看论文信息

论文中文题名:

 负压环境下煤的瓦斯解吸动力学特性实验研究    

姓名:

 秦雪燕    

学号:

 20220226081    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

第二导师姓名:

 林海飞    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Experimental study on dynamic characteristics of coal desorption to gas under negative pressure environment    

论文中文关键词:

 解吸动力学 ; 负压环境 ; 响应面法 ; 瓦斯解吸 ; 模型参数    

论文外文关键词:

 Desorption kinetics ; Negative pressure ; Response surface method ; Gas desorption ; Model parameters    

论文中文摘要:

随着矿井开采扰动,煤中瓦斯瞬间解吸运移至巷道中,易引起瓦斯事故,对煤高效安全生产造成威胁。煤层瓦斯含量作为预测瓦斯灾害及瓦斯储量的基础参数,直接法是测定煤层瓦斯含量的常用方法,其测定准确性会受到取样工艺的影响,目前井下多采用负压引射技术取样。因此研究负压环境下煤的瓦斯解吸规律,对准确估算煤层瓦斯含量具有重要意义。论文结合实验与理论研究,探讨不同变质程度、温度、粒径及负压对煤的瓦斯解吸动力学影响特性,分析多因素交互作用下煤的瓦斯解吸动力学敏感性。

采用自主研发的煤的瓦斯负压解吸实验装置,开展了不同变质程度、粒径、温度及负压作用下煤的瓦斯解吸实验。通过分析实验结果,得到负压环境下,多因素对煤的瓦斯解吸量、解吸速率及解吸率的影响规律。煤的瓦斯累计解吸量随变质程度增加先减小后增大,随粒径减小、负压增大而增大,随温度升高而减小;变质程度增加,煤的瓦斯最大解吸速率增大,解吸率减小,原因与煤化过程中,孔隙结构演变有关。煤的瓦斯最大解吸速率、解吸率随粒径减小、温度升高、负压增大而增大,由于减小粒径增大了孔隙开放程度,升高温度增大瓦斯动能,加快其热运动速度,增大负压,为瓦斯流动提供动力,从而促进瓦斯解吸。

选用准一级动力学模型、准二级动力学模型、动态扩散模型、秦跃平式以及Elovich模型等五种瓦斯解吸模型对实验数据拟合,得到负压环境下煤的瓦斯解吸动力学特性。分析了不同变质程度、粒径、温度及负压作用下准一级速率常数K1、准二级速率常数K2、扩散系数D、衰减系数β、极限解吸量A、解吸速率常数B、初始解吸速率常数a以及解吸常数b等解吸动力学参数的变化规律。本实验条件下,秦跃平式相比于其他四种模型拟合效果最好,可准确表征煤的瓦斯解吸过程。变质程度增加,解吸速率常数B先增大后减小,极限解吸量A先减小后增大;粒径减小,极限解吸量A、解吸速率常数B增大;温度升高,解吸速率常数B增大,极限解吸量A减小;负压增大,极限解吸量A、解吸速率常数B增大。

通过响应面法进行方案设计开展不同因素对煤的瓦斯解吸动力学特性交互影响实验,分析负压与变质程度、粒径及温度交互作用对瓦斯解吸动力学参数的影响显著性。负压与变质程度、粒径、温度交互作用对极限解吸量A的影响要比对解吸速率常数B的影响更为显著。

论文为完善煤的瓦斯解吸规律理论体系,精准测定矿井瓦斯含量并做好煤矿瓦斯灾害预测,及时采取有效措施消除瓦斯灾害提供一定理论依据。

论文外文摘要:

With the disturbance of mine mining, the gas in coal is instantly desorbed and transported to the roadway, which is easy to cause gas accidents and threaten the safe production of coal efficiently. The direct method is a common method to determine the gas content of coal seam as a basic parameter to predict the gas disaster and gas reserves, and its determination accuracy will be affected by the sampling process, currently the underground mostly adopts the negative pressure priming technology to take samples. Therefore, it is important to study the gas desorption law of coal under negative pressure environment to accurately estimate the gas content of coal seam. The paper combines experimental and theoretical studies to investigate the effects of different degrees of metamorphism, temperature, particle size and negative pressure on the gas desorption kinetics of coal, and to analyze the sensitivity of gas desorption kinetics of coal under the interaction of multiple factors.

The gas desorption experiments of coal under different degrees of metamorphism, grain size, temperature and negative pressure were carried out using the self-developed negative pressure desorption experimental apparatus. The experimental results were analyzed to obtain the influence of multiple factors on the amount, rate and rate of gas desorption of coal under negative pressure. The cumulative gas desorption of coal decreases and then increases with the increase of metamorphism, increases with the decrease of particle size and negative pressure, and decreases with the increase of temperature; the maximum rate of gas desorption of coal increases and the desorption rate decreases with the increase of metamorphism, which is related to the evolution of pore structure during the process of coalification. The maximum desorption rate and desorption rate of coal increase with decreasing particle size, increasing temperature, and increasing negative pressure, because decreasing particle size increases pore opening, increasing temperature increases kinetic energy of gas, accelerates its thermal movement, increases negative pressure, and provides power for gas flow, thus promoting gas desorption.

Five gas desorption models, including quasi primary kinetic model, quasi secondary kinetic model, dynamic diffusion model, Qin Yueping model and Elovich model, were selected to fit the experimental data to obtain the kinetic characteristics of gas desorption in coal under negative pressure. The changes of desorption kinetic parameters such as quasi primary rate constant K1, quasi secondary rate constant K2, diffusion coefficient D, decay coefficient β, ultimate desorption amount A, desorption rate constant B, initial desorption rate constant a and desorption constant b under different degrees of metamorphism, particle size, temperature and negative pressure were analyzed. Under the present experimental conditions, the Qingyueping model fits best compared with the other four models and can accurately characterize the gas desorption process of coal. As the degree of metamorphism increases, the desorption rate constant B increases and then decreases, and the ultimate desorption amount A decreases and then increases; as the particle size decreases, the ultimate desorption amount A and the desorption rate constant B increase; as the temperature increases, the desorption rate constant B increases and the ultimate desorption amount A decreases; as the negative pressure increases, the ultimate desorption amount A and the desorption rate constant B increase.

The interaction effect of different factors on gas desorption kinetic properties of coal was carried out by response surface methodology to analyze the significance of the interaction between negative pressure and degree of metamorphism, particle size and temperature on gas desorption kinetic parameters. The effect of negative pressure interacting with the degree of metamorphism, particle size and temperature on the ultimate desorption amount A is more significant than that on the desorption rate constant B.

The paper provides a theoretical basis for improving the theoretical system of gas desorption law of coal, determining the gas content of mine accurately and predicting the gas disaster in coal mines, and taking effective measures to eliminate the gas disaster in time.

参考文献:

[1] 高宏杰. 煤炭行业发展现状和供需形势分析[J]. 中国煤炭工业, 2022, 421(3): 75–77.

[2] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949–1960.

[3] 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8–15.

[4] 王春光, 张东旭. 深部煤矿开采瓦斯综合治理技术研究[J]. 煤炭科学技术, 2013, 41(8): 11–14.

[5] 程波, 乔伟, 颜文学, 等. 煤矿井下煤层瓦斯含量测定方法的研究进展[J]. 矿业安全与环保, 2019, 46(4): 98–103.

[6] 张宏图, 魏建平, 王云刚, 等. 煤层瓦斯含量测定定点取样方法研究进展[J]. 中国安全生产科学技术, 2016, 12(1): 186–192.

[7] 邓楠. 煤层瓦斯含量直接测定取样技术研究进展[J]. 矿业安全与环保, 2021, 48(4): 113–117.

[8] 褚志伟, 龙威成, 贾秉义, 等. 煤层底板孔多分支点取样钻进技术及应用研究[J]. 煤田地质与勘探, 2022, 50(5): 153–158.

[9] 龙威成, 孙四清, 陈建. 碎软煤层井下长距离定点密闭取心技术研究[J]. 煤田地质与勘探, 2022, 50(8): 93–98.

[10] 陈学习, 陈江龙, 黄晶晶, 等. 正压逆流取样损失瓦斯量补偿计算模型对比研究[J]. 矿业研究与开发, 2021, 41(12): 82–87.

[11] 温志辉, 张宏图, 魏建平, 等. 负压定点取样煤层瓦斯含量测定损失量推算方法[J]. 中国矿业大学学报, 2017, 46(4): 776-782+802.

[12] Szlązak N, Obracaj D, Korzec M. Estimation of gas loss in methodology for determining methane content of coal seams[J]. Energies, 2021, 14(4): 982-997.

[13] Saghafi A. Discussion on determination of gas content of coal and uncertainties of measurement[J]. International Journal of Mining Science and Technology, 2017, 27(5): 741–748.

[14] He J B, Lu Y Y, Tang J R, et al. Effect of seepage flow on gas loss during the removal of shale core immersed in a drilling fluid[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104080.

[15] Dong J, Cheng Y P, Jin K, et al. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate[J]. Fuel, 2017, 197: 70–81.

[16] 陈向军, 段正鹏, 刘洋, 等. 负压环境下含瓦斯煤扩散特性试验研究[J]. 煤炭科学技术, 2016, 44(6): 106–110+133.

[17] Du Y F, Chen X J, Li L Y, et al. Characteristics of methane desorption and diffusion in coal within a negative pressure environment[J]. Fuel, 2018, 217: 111–121.

[18] 王凤林, 袁玉, 张遂安, 等. 不同含水及负压条件下煤层气等温吸附解吸规律[J]. 煤炭科学技术, 2019, 47(6): 158–163.

[19] 张洪良, 王兆丰, 陈向军. 负压环境下煤的瓦斯解吸规律试验研究[J]. 河南理工大学学报(自然科学版), 2011, 30(6): 634–637+641.

[20] Zhang H T, Yang Y P, Wei J P, et al. Gas desorption law of granular coal in negative-pressure environment and calculation of gas loss during negative-pressure sampling[J]. Fuel, 2022, 328: 125368.

[21] 陈昌国, 辜敏, 鲜学福. 煤层甲烷吸附与解吸的研究与发展[J]. 中国煤层气, 1998, 2(1): 27–29.

[22] Liu S Y, Wei C H, Zhu W C, et al. Temperature- and pressure-dependent gas diffusion in coal particles: Numerical model and experiments[J]. Fuel, 2020, 266: 117054.

[23] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142–156.

[24] 陈振宏, 贾承造, 宋岩, 等. 高煤阶与低煤阶煤层气藏物性差异及其成因[J]. 石油学报, 2008, 29(2): 179–184.

[25] 李站伟, 陈世达, 陶树, 等. 黔西-滇东地区煤岩吸附-解吸特征及其对多层合采的指示意义[J]. 油气地质与采收率, 2021, 28(1): 125–131.

[26] Wang L, Chen E T, Liu S M, et al. Experimental study on the effect of inherent moisture on hard coal adsorption–desorption characteristics[J]. Adsorption, 2017, 23(5): 723–742.

[27] 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4): 17–24+38.

[28] Yu B, Zhang D M, Xu B, et al. Experimental study of desorption and seepage characteristics of single gas and CO2–CH4 gas mixture in coal[J]. Natural Resources Research, 2022, 31(5): 2715–2730.

[29] 王镜惠, 梅明华, 刘娟, 等. 不同煤阶煤岩样品甲烷解吸曲线数学模型及解吸参数地质意义[J/OL]. 中国地质, 1–14.http://kns.cnki.net/kcms/detail/11.1167.P.20200622.1732.

002.html.

[30] Yan J W, Feng X, Guo Y, et al. Desorption effects and laws of multiscale gas-bearing coal with different degrees of metamorphism[J]. ACS omega, 2021, 6(34): 22114–22125.

[31] Zheng G Q, Pan Z J, Tang S H, et al. Laboratory and modeling study on gas diffusion with pore structures in different-rank chinese coals[J]. Energy Exploration & Exploitation, 2013, 31(6): 859–877.

[32] Nandi S P, Jr P. Activated diffusion of methane from coals at elevated pressures[J]. Fuel, 1975, 54(2): 81–86.

[33] 渡边伊温, 辛文. 北海道煤的瓦斯解吸特性及瓦斯突出性指标[J]. 煤矿安全, 1985, 16(7): 47-55+46.

[34] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane on dry coal at elevated pressure[J]. Fuel, 1974, 53(3): 152–162.

[35] Li X C, Li Z B, Ren T, et al. Effects of particle size and adsorption pressure on methane gas desorption and diffusion in coal[J]. Arabian Journal of Geosciences, 2019, 12(24): 794.

[36] Ye Q S, Li C W, Yang T, et al. Relationship between desorption amount and temperature variation in the process of coal gas desorption[J]. Fuel, 2023, 332: 126146.

[37] Gao T, Zhao D, Wang C, et al. Energy variation in coal samples with different particle sizes in the process of adsorption and desorption[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106932.

[38] 聂百胜, 杨涛, 李祥春, 等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013, 42(6): 975–981.

[39] 袁军伟. 颗粒煤瓦斯扩散时效特性研究[D]. 北京:中国矿业大学(北京), 2014.

[40] 张小东, 李朋朋, 张硕. 不同煤体结构煤的瓦斯放散特征及其影响机理[J]. 煤炭科学技术, 2016, 44(9): 93–98.

[41] 杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 11(3): 87–94.

[42] 刘彦伟, 刘明举. 粒度对软硬煤粒瓦斯解吸扩散差异性的影响[J]. 煤炭学报, 2015, 40(3): 579–587.

[43] 韩恩光, 刘志伟, 冉永进, 等. 不同粒度煤的瓦斯解吸扩散规律实验研究[J]. 中国安全生产科学技术, 2019, 15(12): 83–87.

[44] 贾彦楠, 温志辉, 魏建平. 不同粒度煤样的瓦斯解吸规律实验研究[J]. 煤矿安全, 2013, 44(7): 1–3.

[45] Tu Q Y, Cheng Y P, Xue S, et al. Effect of particle size on gas energy release for tectonic coal during outburst process[J]. Fuel, 2022, 307: 121888.

[46] 马兴莹, 王兆丰, 尉瑞, 等. 低温环境瓦斯扩散试验及不同模型契合度分析[J]. 中国安全科学学报, 2022, 32(3): 123–130.

[47] Wang Z J, Wang X J. Promotion effects of microwave heating on coalbed methane desorption compared with conductive heating[J]. Scientific Reports, 2021, 11(1): 9618.

[48] Wang Z J, Zhu Z G. Experimental study on the effects of different heating rates on coalbed methane desorption and an analysis of desorption kinetics[J]. ACS omega, 2021, 6(50): 34889–34903.

[49] 刘纪坤, 王翠霞. 含瓦斯煤解吸过程煤体温度场变化红外测量研究[J]. 中国安全科学学报, 2013, 23(9): 107–111.

[50] Salmachi A, Haghighi M. Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources[J]. Energy & Fuels, 2012, 26(8): 5048–5059.

[51] Liu S Y, Wei C H, Zhu W C, et al. Temperature- and pressure-dependent gas diffusion in coal particles: Numerical model and experiments[J]. Fuel, 2020, 266: 117054.

[52] Gao Z, Ma D, Chen Y, et al. Study for the effect of temperature on methane desorption based on thermodynamics and kinetics[J]. ACS Omega, 2021, 6(1): 702–714.

[53] 杨英杰, 武德尧, 郭勇义, 等. 温度变化对煤体瓦斯吸附量影响规律的实验研究[J]. 太原理工大学学报, 2015, 46(3): 332–335.

[54] 李志强, 段振伟, 景国勋. 不同温度下煤粒瓦斯扩散特性试验研究与数值模拟[J]. 中国安全科学学报, 2012, 22(4): 38–42.

[55] 娄秀芳, 王兆丰, 董庆祥. 低温条件下瓦斯解吸规律数值模拟[J]. 煤炭技术, 2015, 34(4): 156–158.

[56] Li X, Wang C, Chen Y, et al. Influence of temperature on gas desorption characterization in the whole process from coals and its application analysis on outburst risk prediction[J]. Fuel, 2022, 321: 124021.

[57] Chen X, Shan W, Sun R, et al. Methane displacement characteristic of coal and its pore change in water injection[J]. Energy Exploration & Exploitation, 2020, 38(5): 1647–1663.

[58] Ma H F, Wang L J, Jia H S, et al. Experimental study on desorption characteristics of coalbed methane under variable loading and temperature in deep and high geothermal mine[J]. Advances in Civil Engineering, 2020: 1-17.

[59] Wang K, Ren H, Wang Z, et al. Temperature-pressure coupling effect on gas desorption characteristics in coal during low-variable temperature process[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110104.

[60] 严敏, 龙航, 白杨, 等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保, 2019, 46(3): 6–10.

[61] 高正, 马东民, 陈跃. 黄陇煤田煤层甲烷解吸滞后规律及解吸滞后定量评价[J]. 河南理工大学学报(自然科学版), 2021, 40(5): 16–22+79.

[62] Nandi S P, Walker P L. Activated diffusion of methane from coals at elevated pressures[J]. Fuel, 1975, 54(2): 81–86.

[63] 张康佳, 王兆丰, 王龙, 等. 取芯过程中煤芯温度分布特征模拟研究[J]. 中国安全生产科学技术, 2021, 17(8): 57–63.

[64] 王俏, 王兆丰, 马树俊, 等. 冷冻取芯过程煤样温度变化特性研究[J]. 中国安全科学学报, 2021, 31(2): 76–81.

[65] 司莎莎, 王兆丰, 刘帅强, 等. 冷冻取芯过程煤芯瓦斯解吸特性试验研究[J]. 中国安全生产科学技术, 2022, 18(5): 122–128.

[66] 杨鑫, 张俊英, 王公达, 等. 瓦斯压力对瓦斯在煤中扩散影响的实验研究[J]. 中国矿业大学学报, 2019, 48(3): 503-510+519.

[67] Wang C J, Yang S Q, Li X W, et al. Comparison of the initial gas desorption and gas-release energy characteristics from tectonically-deformed and primary-undeformed coal[J]. Fuel, 2019, 238(15):66-74.

[68] Zhang B, Wang H P, Yuan L, et al. Effects of ambient pressure on diffusion kinetics in coal during methane desorption[J]. International Journal of Oil Gas and Coal Technology, 2020, 24(3): 426.

[69] 王伟. 压力对煤瓦斯吸附解吸性能影响的实验研究[J]. 煤炭技术, 2016, 35(11): 148–150.

[70] 陈刘瑜, 李希建, 毕娟, 等. 黔北构造煤与原生结构煤解吸初期特征研究[J]. 煤炭科学技术, 2019, 47(2): 107–113.

[71] 马东民, 张遂安, 王鹏刚, 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011, 39(1): 20–23.

[72] Dang Z, Su X B, Wang X M, et al. Gas desorption and diffusion characteristics in different rank coals under different pressure-drop conditions[J]. Geoenergy Science and Engineering, 2023, 221: 111269.

[73] Hao M, Zhao Y C, Wei C M, et al. Multi-component gases competitive adsorption on residual coal under goaf conditions based on Monte Carlo simulation[J]. Chemical Physics Letters, 2021, 771: 138557.

[74] Han J X, Lu Y J, Makarova E Yu, et al. Molecular simulation of ch4 and co2 competitive adsorption in moisture coals[J]. Solid Fuel Chemistry, 2019, 53(5): 270–279.

[75] Li X W, Zhao D, Zhang C, et al. Gas desorption characteristics and related mechanism analysis under the action of superheated steam and pressurized water based on an experimental study[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104268.

[76] 张遵国, 赵丹, 陈毅. 不同含水率条件下软煤等温吸附特性及膨胀变形特性[J]. 煤炭学报, 2020, 45(11): 3817–3824.

[77] Wang C J, Li X W, Liu L T, et al. Dynamic effect of gas initial desorption in coals with different moisture contents and energy-controlling mechanism for outburst prevention of water injection in coal seams[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111270.

[78] Lu Z, Wang L, Lv M Z, et al. Experimental study on coal and gas outburst risk in strong outburst coal under different moisture content[J]. Frontiers in Earth Science, 2022, 10: 782372.

[79] Zhu H Q, Zhang Y L, Qu B L, et al. Thermodynamic characteristics of methane adsorption about coking coal molecular with different sulfur components: Considering the influence of moisture contents[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104053.

[80] 林海飞, 田佳敏, 刘丹, 等. SDBS与CaCl2复配液对煤体瓦斯解吸抑制效应研究[J]. 中国安全科学学报, 2019, 29(11): 149–155.

[81] Lu W Y, Huang B X, Zhao X L. A review of recent research and development of the effect of hydraulic fracturing on gas adsorption and desorption in coal seams[J]. Adsorption Science & Technology, 2019, 37(5–6): 509–529.

[82] 李树刚, 闫冬洁, 严敏, 等. 烷基糖苷活性剂对煤体结构改性及甲烷解吸特性的影响[J]. 煤炭学报, 2022, 47(1): 286–296.

[83] Zhang J W, Li Y L. Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations[J]. International Journal of Mining Science and Technology, 2017, 27(2): 221–228.

[84] 姜永东, 宋晓, 崔悦震, 等. 声场作用下煤中甲烷解吸扩散的特性[J]. 煤炭学报, 2015, 40(3): 623–628.

[85] Liu P, Liu A, Liu S M, et al. Experimental evaluation of ultrasound treatment induced pore structure and gas desorption behavior alterations of coal[J]. Fuel, 2022, 307: 121855.

[86] 王志军, 李先铭, 马小童, 等. 微波间断加载对柱状煤瓦斯解吸特性的影响[J]. 微波学报, 2019, 35(1): 91–96.

[87] Li H, Zheng C S, Lu J X, et al. Drying kinetics of coal under microwave irradiation based on a coupled electromagnetic, heat transfer and multiphase porous media model[J]. Fuel, 2019, 256: 115966.

[88] Fu X Q, Lun Z M, Zhao C P, et al. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: Implications for coalbed methane (CBM) production[J]. Fuel, 2021, 301: 121022.

[89] Chen Y, Ma D M, Guo C, et al. An experimental study on the conductivity changes in coal during methane adsorption‐desorption and their influencing factors[J]. Acta Geologica Sinica ‐ English Edition, 2019, 93(3):704-717.

[90] 李成武, 付帅, 解北京, 等. 煤体静载破坏中低频磁场变化特征及产生机制研究[J]. 岩土力学, 2019, 40(2): 481–488.

[91] 雷东记, 李辉, 孟慧, 等. 煤体瓦斯放散磁场响应特征[J]. 重庆大学学报, 2015, 38(6): 44–51.

[92] Zhao W, Cheng Y P, Pan Z J, et al. Gas diffusion in coal particles: A review of mathematical models and their applications[J]. Fuel, 2019, 252: 77–100.

[93] Yi M H, Wang L, Cheng Y P, et al. Calculation of gas concentration-dependent diffusion coefficient in coal particles: Influencing mechanism of gas pressure and desorption time on diffusion behavior[J]. Fuel, 2022, 320: 123973.

[94] 秦跃平, 徐浩, 毋凡, 等. 密度梯度驱动的煤粒瓦斯解吸扩散模型及试验研究[J].煤炭科学技术, 2022, 50(1): 169–176.

[95] Yue G W, Wu H B, Yue J W, et al. Adsorption measurement and dual-site Langmuir model II: Modeling and prediction of carbon dioxide storage in coal seam[J]. Energy Exploration & Exploitation, 2019, 37(4): 1268–1285.

[96] Wang G D, Ren T, Qi Q X, et al. Determining the diffusion coefficient of gas diffusion in coal: Development of numerical solution[J]. Fuel, 2017, 196: 47–58.

[97] Han E G. Mechanism of Gas Desorption in Coal Particles under Different Positive Pressures: Experiments and Numerical Model[J]. Adsorption Science & Technology, 2022: 5059757.

[98] Li C W, Qiao Z, Hao M, et al. Gas desorption diffusion behavior in coal particles under constant volume conditions: Experimental research and model development[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(1): 1566–1582.

[99] Shi G S, Wei F Q, Gao Z Y, et al. Gas desorption-diffusion behavior from coal particles with consideration of quasi-steady and unsteady crossflow mechanisms based on dual media concept model: Experiments and numerical modelling[J]. Fuel, 2021, 15 (8): 298.

[100] Quan F K, Wei C T, Zhang J J, et al. Study on desorption and diffusion dynamics of coal reservoir through step-by-step depressurization simulation-an experimental simulation study based on LF-NMR technology[J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103149.

[101] 简星, 关平, 张巍. 煤中CO2的吸附和扩散:实验与建模[J]. 中国科学:地球科学, 2012, 42(4): 492–504.

[102] Keshavarz A, Sakurovs R, Grigore M, et al. Effect of maceral composition and coal rank on gas diffusion in Australian coals[J]. International Journal of Coal Geology, 2017, 173: 65–75.

[103] Naveen P, Asif M, Ojha K, et al. Sorption kinetics of ch4 and co2 diffusion in coal: theoretical and experimental study[J]. Energy & Fuels, 2017, 31(7): 6825–6837.

[104] 梁运培, 王庆慧, 朱拴成, 等. 深部低煤阶煤层高值化学品与天然气共采技术构想[J]. 煤炭学报, 2023, 48(1): 317-334.

[105] Taylor N W. Diffusion in and through Solids. By R. M. Barrer.[J]. The Journal of Physical Chemistry, 1942, 46(4): 533–534.

[106] Nazarova L A, Nazarov L A, Polevshchikov G Ya, et al. Inverse problem solution for estimating gas content and gas diffusion coefficient of coal[J]. Journal of Mining Science, 2012, 48(5): 781–788.

[107] 罗新荣, 杨欢, 李梦坤, 等. 钻孔煤屑-瓦斯-水耦合的解吸规律[J]. 黑龙江科技大学学报, 2017, 27(5): 462–467.

[108] 许端平, 殷宏, 张腾龙, 等. 四溴双酚A在潮土中的吸附及迁移规律[J]. 安全与环境学报, 2020, 20(5): 2009–2017.

[109] 王佑安, 杨思敬. 煤和瓦斯突出危险煤层的某些特征[J]. 煤炭学报, 1980, 5(1): 47–53.

[110] Qin Y P, Xu H, Liu W, et al. Time- and pressure-independent gas transport behavior in a coal matrix: model development and improvement[J]. Energy & Fuels, 2020, 34(8): 9355–9370.

[111] 安丰华, 程远平, 吴冬梅, 等. 基于瓦斯解吸特性推算煤层瓦斯压力的方法[J]. 采矿与安全工程学报, 2011, 28(1): 81–85+89.

[112] 岳基伟, 王兆丰. 不同解吸公式对含瓦斯型煤的适用性研究[J]. 中国安全科学学报, 2017, 27(12): 91–96.

[113] Airey E M. Gas emission from broken coal. an experimental and theoretical investigation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(6): 475–494.

[114] Ahmad Farid M A, Hassan M A, Taufiq-Yap Y H, et al. Kinetic and thermodynamic of heterogeneously K3PO4/AC-catalysed transesterification via pseudo-first order mechanism and Eyring-Polanyi equation[J]. Fuel, 2018, 232: 653–658.

[115] 李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015, 40(5): 1055–1064.

[116] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(2): 181–186+272.

[117] 尚政杰. 瓦斯含量直接测定方法漏损量推算的研究[J]. 煤矿安全, 2012, 43(1): 1–4.

[118] 杨守国, 邱阳, 李树刚, 等. 瓦斯含量直接测定中瓦斯损失量计算方法的比较分析[J]. 煤炭技术, 2016, 35(11): 161–163.

[119] 张东旭.瓦斯含量测定取样技术研究现状及展望[J].煤炭技术,2021,40(6):147–149.

[120] Xu H J, Pan Z J, Hu B L, et al. A new approach to estimating coal gas content for deep core sample[J]. Fuel, 2020,277(3): 118246

中图分类号:

 TD712    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式