- 无标题文档
查看论文信息

论文中文题名:

 10kV长距离输电网串联补偿技术的研究与应用    

姓名:

 李四新    

学号:

 G13046    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力系统及其自动化    

第一导师姓名:

 张玉峰    

第一导师单位:

 西安科技大学    

第二导师姓名:

 姚立斌    

论文提交日期:

 2023-12-21    

论文答辩日期:

 2023-12-11    

论文外文题名:

 Research and Application of Series Compensation Technology for 10kV Long Distance Transmission Network    

论文中文关键词:

 中低压输电网 ; 串联补偿技术 ; 无功功率 ; BAS-PID    

论文外文关键词:

 Medium and low voltage transmission network ; series compensation technology ; reactive power ; BAS-PID    

论文中文摘要:

近年来,随着用电负荷及输电距离的不断增长,原有中低压末端供电网络已无法满足用户所需的供电质量。为了解决上述问题,可以采用多种方法。如架设新的供电线路、提高线路电压等级、加装补偿装置、更换扩径导线等。然而,架设新的供电线路和提高输电线路电压等级不仅需要拓宽供电走廊,还需要提高绝缘水平,并且投资大且周期长。相比之下,采用加装补偿装置技术不仅投资较少,而且效果明显。因此,本文主要研究采用静止同步串联补偿器来解决中低压长距离输电中存在的末端电能质量问题。

首先,论文从调控线路电流、调控线路功率、注入无功功率、伏安特性、阻抗特性等多个方面对静止同步串联补偿器进行性能分析,结果表明静止同步串联补偿器具有较好的电压动态响应能力和无功功率控制能力;然后推导并建立了恒阻抗模型,并设计了由阻抗环、电压环构成的双闭环BAS-PID控制策略。为了验证所设计的静止同步串联补偿器的方案,对所设计方案的补偿过程以及补偿效果进行了Matlab/Simulink仿真验证,分析了控制策略及模型的有效性;在建立优化后的静止同步串联补偿器投切模型的基础上给出了投切方案,避免了静止同步串联补偿器投切时产生振荡电压,达到了提高了线路末端电能质量的目的,并采用Matlab/Simulink验证了该投切方法的可行性。最后通过工程实践对静止同步串联补偿方案的性能和补偿效果进行了验证分析,结果表明补偿后的末端电压为9.723kV相,相比补偿前的9.278kV提高了4.800%,输电线路的功率相对补偿前的2.103MW提高了14.700%,在同样运行条件下,线损降低了11.8kW,6个月总共节省50976度电。

结果表明,本文设计的10kV长距离输电网串联补偿策略能够有效提升中低压长距离输电中的末端电能质量并且易于实施,为改善区域中低压供电线路的末端供电质量提供了参考。

论文外文摘要:

In recent years, with the continuous growth of electricity load and transmission distance, the original medium and low voltage terminal power supply network has been unable to meet the power supply quality required by users. To address the above issues, multiple methods can be used. For example, installing new power supply lines, increasing the voltage level of the lines, installing compensation devices, and replacing expanded conductors. However, installing new power supply lines and increasing the voltage level of transmission lines not only requires expanding the power supply corridor, but also improving the insulation level, which is costly and time-consuming. In contrast, adopting the technology of installing compensation devices not only requires less investment, but also has significant effects. Therefore, this article mainly studies the use of static synchronous series compensators to solve the terminal power quality problems in medium and low voltage long-distance transmission.

Firstly, the paper analyzes the performance of the static synchronous series compensator from multiple aspects such as regulating line current, regulating line power, injecting reactive power, volt ampere characteristics, impedance characteristics, etc. The results show that the static synchronous series compensator has good voltage dynamic response ability and reactive power control ability; Then, a constant impedance model was derived and established, and a dual closed-loop BAS-PID control strategy consisting of an impedance loop and a voltage loop was designed. In order to verify the design scheme of the static synchronous series compensator, Matlab/Simulink simulation was conducted to verify the compensation process and effect of the designed scheme, and the effectiveness of the control strategy and model was analyzed; On the basis of establishing an optimized switching model for the static synchronous series compensator, a switching scheme was proposed to avoid the generation of oscillation voltage during the switching of the static synchronous series compensator, achieving the goal of improving the power quality at the end of the line. The feasibility of this switching method was verified using Matlab/Simulink. Finally, the performance and compensation effect of the static synchronous series compensation scheme were verified and analyzed through engineering practice. The results showed that the compensated terminal voltage was9.723kV phase, which was 4.800% higher than the 9.278kV phase before compensation. The power of the transmission line was 14.700% higher than the 2.103MW phase before compensation. Under the same operating conditions, the line loss was reduced by 11.8kW, saving a total of 50976 kWh in 6 months.

The results indicate that the series compensation strategy designed in this article for 10kV long-distance transmission networks can effectively improve the end power quality in medium and low voltage long-distance transmission and is easy to implement, providing a reference for improving the end power quality of regional medium and low voltage power supply lines.

参考文献:

[1] 陈路,袁建国,马春生等.中压长线路低电压问题的综合治理方法研究[J].中国电力教育,2014(15):253-254.

[2] 韩琳.试析FACTS设备对电网输电断面潮流极限的提升作用[J].电力系统装备,2020(13):51-52.

[3] 周文海,陈谦,闪鑫等.基于参数解耦的FACTS设备多目标优化配置[J].电网与清洁能源,2019,35(7):1-9.

[4] Dahat,Suraj.Rotor angle stability improvement by coordinated control of SVC and SSSC controllers[J].ENERGY REPORTS,2023,9(1):13-22.

[5] Awad,Ayman.Optimal SVC allocation in power systems using lightning attachment procedure optimization[J].TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES,2020,28(4):2360-2374.

[6] Benslimane,Anas.Comparative study of semiconductor power losses between CSI-based STATCOM and VSI-based STATCOM, both used for unbalance compensation[J].PROTECTION AND CONTROL OF MODERN POWER SYSTEMS,2020,5(1):1-14.

[7] 王鹏飞,吴小丹,朱信舜等.基于反馈型重复控制的STATCOM电流控制策略[J].电力电子技术,2020,54(7):1-4.

[8] 成佳富,何志兴,周钦贤等.LC耦合式级联STATCOM及其控制策略[J].电力自动化设备,2018,38(10):127-132,139.

[9] Kamel,,Salah.Power flow control of power systems based on a simple TCSC model[J].AIN SHAMS ENGINEERING JOURNAL,2021,12(3):2781-2788.

[10] 刘婷,井元伟,姜囡等.TCSC系统的自适应minimax干扰抑制控制器设计[J].控制与决策,2013,28(12):1894-1897.

[11] 任曦骏,严正,赵建伟等.计及可控串联补偿器的系统电压失稳概率研究[J].水电能源科学,2015,33(8):170-173.

[12] Abazari,Saeed.Transient stability increase of multi-machine power system by using SSSC and DFIG control with TEF technique and super twisting differentiator[J].ISA TRANSACTIONS,2023,136(6):390-399.

[13] 宋方方,贾秀芳,赵成勇等.SSSC提高系统阻尼特性的控制策略优化设计[J].电网技术,2017,41(3):881-887.

[14] 刘树枫,王浩,吴钢等.考虑串联补偿和并联补偿的配电网优化[J].电力电容器与无功补偿,2019,40(6):18-23.

[15] 杨波. 串联补偿技术在10kV配电网(农网)中的应用性研究与分析[D].华北电力大学(北京),2017.

[16] 李道德.基于HPWM调制的级联H桥型多功能串联补偿器的研究[J].现代电子技术,2022,45(9):175-181.

[17] 邹红波,柴涛,鲍刚.基于改进BBO算法的SSSC阻尼控制器优化设计[J].电网与清洁能源,2020,36(9):1-7.

[18] 于浩.基于快速开关的配电网串联补偿装置保护策略分析[J].电力系统装备,2019(16):151-152.

[19] 高飞翎,周子旺,常鹏等.可控串联补偿调压特性的分析和研究[J].电气开关,2019,57(6):24-28.

[20] 林峰,梁一桥,吕佳铭等.10 kV配电线路串、并联混合电容器补偿技术研究[J].电力电容器与无功补偿,2019,40(3):10-15.

[21] 廖秀晶,薛玮,邹旻昊等.基于能效分析的10 kV线路串联补偿优化方法[J].电力学报,2018,33(4):287-293.

[22] 高本锋,王飞跃,于弘洋等.应用静止同步串联补偿器抑制风电次同步振荡的方法[J].电工技术学报,2020,35(6):1346-1356.

[23] 黄如海,曹冬明,董云龙等.静止同步串联补偿器的启停策略[J].电力自动化设备,2019,39(7):114-118.

[24] 詹雄,王宇红,赵刚等.分布式静止同步串联补偿器研究与设计[J].电力电子技术,2019,53(3):95-98.

[25] 赵坚鹏,宋洁莹,许建中等.静止同步串联补偿器的优化选址定容方法[J].电网技术,2017,41(6):1941-1948.

[26] 赵坚鹏,宋洁莹,赵成勇等.静止同步串联补偿器的机电暂态建模[J].电力建设,2017,38(7):139-145.

[27] 黎瑜新,蒋程.静止同步串联补偿器的原理及其补偿模式研究[J].电气开关,2012,50(1):33-36.

[28] 韩博闻,金倚聪.三电平SSSC潮流控制研究[J].电力电子技术,2019,53(2):137-140.

[29] 田录林,巨思远,王伟博等.基于自抗扰理论的静止同步串联补偿器控制策略[J].通信电源技术,2018,35(11):5-9.

[30] 李娟,隋霄.基于RBF神经网络PID控制的SSSC控制器研究[J].控制工程,2018,25(10):1819-1823.

[31] 张涛淼. 静止同步串联补偿器的反馈线性化控制方法研究[D]. 陕西:西安理工大学,2015.

[32] 陈登义,李啸骢,刘松.多区域互联电力系统静止同步串联补偿器自适应反步滑模控制器设计[J].电网技术,2019,43(1):200-205.

[33] 吴信福.中低压配电网规划中的问题及解决措施[J].技术与市场,2017,24(02):70-71.

[34] 吴智,范德威,周裕.人工智能控制湍流进展:系统、算法、成就、数据分析方法[J].力学进展,2023,53(2):273-307.

[35] 王鼎.一类离散动态系统基于事件的迭代神经控制[J].工程科学学报,2022,44(3):411-419.

[36] Yang,Xiaokun.Modeling of Nonlinear Load Electric Energy Measurement and Evaluation System Based on Artificial Intelligence Algorithm[J].RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING,2023,16(2):94-102.

[37] Bali,Arun.Hybrid neural network control design for uncertain switched nonlinear systems with external disturbances: Application to ship maneuvering system[J].TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL,2023,45(12):2261-2275.

[38] 王祎晨.增量式PID和位置式PID算法的整定比较与研究[J].工业控制计算机,2018,31(5):123-124.

[39] 赵冠华.数字增量式PID在称重系统中的应用[J].计量与测试技术,2023,50(4):67-70.

[40] 杜向升.中低压配电网规划中的问题及解决措施[J].科技创新导报,2020,17(20):98-100.

[41] 林毛寅.中低压配电网规划中的问题及解决措施[J].通信电源技术,2020,37(1):262-263.

[42] 赵永熹,王华昕,刘隽.静止同步串联补偿器附加阻尼控制器设计方法[J].电力系统保护与控制,2012,40(7):13-18.

[43] You, Hong.SPWM Sampling Method Based on Area Difference Optimization[J].JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY,2023,18(2):909-924.

[44] 李巍,李维波,徐聪等.基于切线逼近法的非对称规则采样SPWM方法[J].中国舰船研究,2020,15(6):46-54.

[45] 李艳钰.基于位置式增量PID控制的缓冲罐液位控制系统设计与应用[J].电子测试,2022(6):42-44.

[46] 董炳辰,孙建民,姚德臣等.工程车辆半主动悬架系统的增量式PID控制[J].中国科技论文,2020,15(10):1203.1208.

[47] 付锐,郑宗华.基于相位同步增量式PID的气压制动器优化控制方法[J].机械设计与研究,2023,39(3):206-209.

[48] Qin,,Haohua.An intelligent integrated EDI module based on fuzzy PID[J].FERROELECTRICS,2023,609(1):75-86.

[49] 翟明达,张博,李晓龙等.基于模糊PID控制的准零刚度磁悬浮隔振平台的设计与实现[J].西南交通大学学报,2023,58(4):886-895.

[50] 高泽海,刘洋,陈杰等.基于增强天牛须搜索算法的专色配方预测方法[J].西北工业大学学报,2022,40(6):1422-1430.

[51] 廖列法,欧阳宗英.基于二次插值的天牛须搜索算法[J].计算机应用研究,2021,38(3):745-750.

[52] 王建斌,李颖超,肖浩.基于电力系统经济调度问题的量子天牛须搜索算法[J].制造业自动化,2023,45(5):102-106.

中图分类号:

 TD391.4    

开放日期:

 2023-12-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式