- 无标题文档
查看论文信息

论文中文题名:

 密封条燃烧特性及其对建筑节能窗耐火性能的影响研究    

姓名:

 杨杰    

学号:

 19220214052    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学技术    

第一导师姓名:

 张玉涛    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Combustion characteristics lor='red'>of weatherstrip and their impacting on fire-resistant properties lor='red'>of building Energy-saving Windows    

论文中文关键词:

 建筑火灾 ; 建筑节能窗 ; 三元乙丙胶条 ; 膨胀石墨条 ; 耐火完整性    

论文外文关键词:

 Building fire ; Building energy efficient windows ; EPDM rubber strip ; Expanded graphite strip ; Refractory integrity    

论文中文摘要:

~建筑节能窗在新建住宅中大量应用,约占房屋总面积的20%,具有采光足、视野好等特点,然而因其脆弱性和安全性较差等特点,已成为建筑火灾研究重要内容。在火灾场景中,建筑节能窗填充的密封条在热荷载作用下燃烧失效可能导致整窗产生破裂和脱落现象,形成火焰蔓延通道。因此,建筑节能窗耐火特性对室外火灾蔓延至室内具有重要影响。本文以建筑节能窗填充的密封条为出发点,结合建筑节能窗实体燃烧实验、数值模拟等方法对火灾环境下建筑节能窗耐火性能展开研究,揭示其耐火失效的影响因素,旨在为建筑节能窗材料优化和组成系统选型提供理论基础。
密封条燃烧特性研究方面,通过热重实验,探究了建筑节能窗常用的2类典型密封材料三元乙丙胶条和膨胀石墨条燃烧过程,分别求得了样品组分,揭示了升温速率对其热解行为的影响,采用多升温速率FWO法求解了密封条裂解阶段和燃烧阶段活化能。此外,通过锥形量热实验,研究了2类密封条的燃烧特性,采用高速摄像机对放置于改造后的箱式电阻炉中的密封条烟气蔓延规律和形态变化进行了研究。结果表明,在热荷载作用下,三元乙丙胶条向内凹陷并释放大量烟气;膨胀石墨条向外膨胀生成大量蠕虫状物质,膨胀倍率越高,生成的蠕虫状物质更加致密。
针对建筑节能窗耐火性,本文研究了65系列两玻单腔结构铝合金和塑钢两种建筑节能内平开窗耐火失效特性,利用数值模拟软件FDS对不同工况下的建筑节能窗耐火特性进行模拟计算,并将模拟结果与实验结果进行了对比验证。研究表明,当建筑节能窗采用铝合金型材时,导致建筑节能窗失去完整性是因为密封条燃烧失效,采用塑钢型材时,导致建筑节能窗失去完整性是因为外框型材受热发生变形。本研究运用实体燃烧试验和数值模拟方法,在研究了密封条的燃烧特性的基础上分析了其对建筑节能窗耐火性能的影响特性,确定了不同类型建筑节能窗耐火失效的主导因素,研究成果为科学预判建筑节能窗在火场中耐火失效特性提供理论支撑。

论文外文摘要:

~Building energy-saving windows are widely used in new residential buildings, about 20% lor='red'>of the total area lor='red'>of the house, it has the characteristics lor='red'>of sufficient lighting and good vision. However, because lor='red'>of its fragility and poor safety, it has become an important part lor='red'>of building fire research. In fire scenarios, the sealing strip filled in the building energy-saving window fails under the action lor='red'>of thermal load, resulting in the cracking and falling lor='red'>off lor='red'>of the whole window. forms a flame spread channel. Therefore, the fire-resistance characteristics lor='red'>of building energy-saving windows have an important influence on the spread lor='red'>of outdoor fires to indoors. this paper takes the sealing strip filled in the building energy-saving window as the starting point, combined with the methods lor='red'>of physical combustion experiment and numerical simulation lor='red'>of building energy-saving windows, the fire resistance performance lor='red'>of building energy-saving windows under fire environment is studied. Reveal the influencing factors lor='red'>of its refractory failure, it aims to provide a theoretical basis for the optimization lor='red'>of building energy-saving window materials and the selection lor='red'>of composition systems.
In the research lor='red'>of the combustion characteristics lor='red'>of the sealing strip, through thermogravimetric experiments, the pyrolysis characteristics lor='red'>of two typical sealing materials, EPDM strips and expanded graphite strips, which are commonly used in building energy-saving windows, were explored. The components lor='red'>of the samples were obtained separately, revealing the effect lor='red'>of the heating rate on their pyrolysis behavior, the activation energies lor='red'>of the cracking and combustion stages lor='red'>of the sealing strip were solved by the multi-heating rate FWO method. In addition, through cone calorimetry experiments, the combustion characteristics lor='red'>of two types lor='red'>of sealing strips were studied, a high-speed camera was used to study the spread law and shape change lor='red'>of the gas seals placed in the reformed box-type resistance furnace. The results show that under the action lor='red'>of heat load, the EPDM strip sags inward and releases a lot lor='red'>of smoke; the expanded graphite strip expands outward to generate a large number lor='red'>of worm-like substances. the higher the expansion ratio, the denser the worm-like substances.
In view lor='red'>of the fire resistance lor='red'>of building energy-saving windows, this paper studies the fire-resistance failure characteristics lor='red'>of 65 series two-glass single-chamber structure aluminum alloy and plastic steel windows building energy-saving inner casement windows. the numerical simulation slor='red'>oftware FDS is used to simulate and calculate the fire resistance characteristics lor='red'>of building energy-saving windows under different working conditions. the simulation results are compared with the experimental results. Research shows that, When the building energy-saving windows are made lor='red'>of aluminum alloy prlor='red'>ofiles, the integrity lor='red'>of the building energy-saving windows is lost due to the burning failure lor='red'>of the sealing strips. When plastic steel prlor='red'>ofiles are used, the building energy-saving windows lose their integrity because the outer frame prlor='red'>ofiles are deformed by heat. This study uses object combustion test and numerical simulation method to analyze its influence on the fire resistance lor='red'>of building energy-saving windows on the basis lor='red'>of studying the combustion characteristics lor='red'>of the sealing strip. The dominant factors lor='red'>of fire-resistance failure lor='red'>of different types lor='red'>of building energy-saving windows are determined, and the research results provide theoretical support for scientifically predicting the fire-resistance failure characteristics lor='red'>of building energy-saving windows in a fire field.

参考文献:

[1] 钱志伟. 我国超高层建筑的现状及发展趋势[J]. 中国住宅设施, 2018, (10): 61-62.

[2] 吴俐蕊. 超高层消防设计分析研究[J]. 建筑技术开发, 2019, 46(12): 17-18.

[3] Li YZ, Wang ZL, Huang XY. An exploration of equivalent scenarios for building facade fire standard tests[J]. Journal of Building Engineering, 2022, 52

[4] 孟宪飞. 关于消防灭火救援安全管理的一些思考与探究[J]. 大众标准化, 2022, (3): 122-124.

[5] 谭琼. 火灾场景下细水雾幕保护窗玻璃的实验研究[D]. 合肥: 中国科学技术大学, 2017.

[6] 陈柯衡. 高层建筑火灾烟气运动规律及其防控策略研究[D]. 成都: 西南交通大学, 2020.

[7] 李曼. 高层建筑多因素作用下火灾发展机理和烟气控制研究[D]. 合肥: 中国科学技术大学, 2018.

[8] 付佳佳. 建筑外墙不同防火构造下窗口火竖向蔓延的阻隔机制研究[D]. 北京: 中国建筑科学研究院, 2016.

[9] 刘阳, 郑佩琪. 碳中和大背景下建筑节能材料的发展方向[J]. 中国建材, 2021, (5): 144-147.

[10] GB/T38252-2019, 建筑门窗耐火完整性试验方法及判定要求[S]. 北京: 中国标准出版社, 2019.

[11] GB/50016-2014, 建筑设计防火规范[S]. 北京: 中国计划出版社, 2014.

[12] GB/16809-2008, 防火窗[S]. 北京: 中国标准出版社, 2008.

[13] GB/T12513-2006, 镶玻璃构件耐火试验方法[S]. 北京: 中国标准出版社, 2006.

[14] 刘永军, 樊黎明, 王雪. 防火玻璃窗耐火性能数值模拟[J]. 沈阳建筑大学学报, 2016, 32(6): 8.

[15] 丁怡婷. 快一秒,挽回更多损失慢一会,带来更多危险[J]. 安全与健康, 2020, (2): 2.

[16] 张展. 推进应急管理高质量发展以优异成绩庆祝建100周年[J]. 现代职业安全, 2021,(4): 1.

[17] 刘煜琪. 既有建筑外保温系统性能检测与评价方法研究[D]. 济南: 山东建筑大学, 2017.

[18] 樊黎明. 防火玻璃窗耐火性能研究[D]. 沈阳: 沈阳建筑大学, 2016.

[19] 刘会涛, 吴宇, 陈洪根, 等. 建筑外窗密封性能对外窗节能的影响[J]. 工程质量, 2011, 29(9): 14-17.

[20] 汪华兵. 外墙窗户面积及位置对建筑外立面火蔓延的影响[J]. 消防科学与技术, 2021, 40(12):1743-1746.

[21] Emmons HW . The Needed Fire Science[J]. Fire Safety ence, 1986, 1: 33-53.

[22] T, J, Shields, et al. The Behavior of Single Glazing in an Enclosure Fire[J]. Journal of Applied Fire Science, 1997, 7(2).

[23] T, J, Shields, et al. The Behavior of Double Glazing in an Enclosure Fire[J]. Journal of Applied Fire Science, 1997. 7(3).

[24] Zhang Y, Wang QS, Zhu XB, Experimental Study on Crack of Float Glass with Different Thicknesses Exposed to Radiant Heating[J], Procedia Engineering, 2011, (11): 710-718.

[25] Kai K, Assessment of a model development for window glass breakage due to fire exposure in a field model[J], Fire Safety Journal, 2009, 44(3): 415-424.

[26] Pagni A. Fire-induced thermal fields in window glass. I—theory[J]. Fire Safety Journal, 1994.

[27] Wang Y, Xie Q, Zhang Y, et al. Sensitivity analysis of influencing factors on glass façade breakage in fire[J], Fire Safety Journal, 2018, 98: 38-47.

[28] Skelly MJ, Roby RJ, Beyler CL. An experimental investigation of glass breakage in compartment fires[J]. Journal of Fire Protection Engineering, 1991, 3(1): 25-34.

[29] Sabsabi A, Youssef MA,El-Fitiany SF. et al. Simplified structural analysis of framed ordinary non-tempered glass panels during fire exposure[J], Fire Safety Journal, 2021, 122:0379-7112.

[30] Yin F, Liu MY, Bai Y, et al. Experimental study on failure mechanism of point-supported tempered glass panels under fire conditions[J], 2021, 30: 495-502.

[31] Wang Y, Wang QS, Sun JH , et al. Effects of fixing point positions on thermal response of four point-supported glass faades[J]. Construction & Building Materials, 2014, 73(30): 235-246.

[32] Wang QS, Zhang Y, Sun JH, et al. Temperature and Thermal Stress Simulation of Window Glass Exposed to Fire[J]. Procedia Engineering, 2011, 11: 452-460.

[33] 李建华, 黄郑华. 普通窗玻璃热破裂行为研究[J]. 火灾科学, 1999(3): 23-30.

[34] 张庆文. 受限空间火灾环境下玻璃破裂行为研究[D]. 合肥: 中国科学技术大学, 2006.

[35] 王禹, 王青松, 黄柯, 等. 点式安装玻璃幕墙在火灾中的破裂行为[J]. 燃烧科学与技术, 2015, 21(3): 241-247.

[36] 王禹. 火灾下玻璃幕墙破裂行为的实验和数值模拟研究[D]. 合肥: 中国科学技术大学,2016.

[37] 苏燕飞. 中空玻璃在火灾环境下的破裂行为规律研究[D]. 合肥: 中国科学技术大学, 2015.

[38] 刘永军, 樊黎明, 王雪. 防火玻璃窗耐火性能数值模拟[J]. 沈阳建筑大学, 2016, 32(6): 1054-1061.

[39] 樊黎明, 防火玻璃窗耐火性能研究[D]. 沈阳: 沈阳建筑大学.

[40] Bergh S , Hart R , Jelle BP , et al. Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives[J]. Energy & Buildings, 2013, 58(5): 263-280.

[41] Yeoh, O. H. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates[J]. Rubber Chemistry and Technology, 2012, 63(5): 792-805.

[42] Chuang TH , Chern CK , Guo W . The application of expandable graphite as a flame retardant and smoke-suppressing additive for ethylene-propylene-diene terpolymer[J]. Journal of Polymer Research, 1997, 4(3): 153-158.

[43] 许春明, 李莹, 张和平. 三元乙丙橡胶防水卷材热解分析[J]. 火灾科学, 2010, 19(2): 96-103.

[44] 卞向南. 核电厂用大型屏蔽门设计与应用[J]. 山东化工, 2020, 49(2): 157-158.

[45] 薛磊, 商珂, 王俊胜, 等. EPDM/EG复合材料的阻燃性能和热稳定性[J].消防科学与技术, 2019, 38(12): 1733-1735.

[46] Zhou BX, Application and Design Requirements of Fire Windows in Buildings[J], Procedia Engineering, 2014, 71: 286-290.

[47] Park, Soo Y, Choi, et al. The Study for the Fire Resistance on the Window Walls with Fire Resistance Glass and Frame[J]. Structure & Construction, 2012, 28(9): 67-74.

[48] 吕润平. 聚氨酯耐火节能窗耐火性能研究[J]. 江苏建筑, 2019, (5): 2.

[49] 赵宗凯. 建筑节能耐火窗技术研究[D]. 济南: 山东建筑大学, 2018.

[50] 阎玉芹, 赵宗凯, 杨英豪, 等. 平开门窗锁闭器对PVC建筑门窗变形性能的影响[J]. 新型建筑材料, 2018, 45(1): 59-62.

[51] 宋丽,陶然. 铝合金节能防火窗、耐火窗的相关规定及设计制作防火检测[J]. 消防技术与产品信息, 2016, 10: 28-32

[52] 严彩娟. 基于单片机的节能窗控制系统设计[D]. 杭州: 浙江工业大学, 2019.

[53] 陶文栓. 数值传热学[M]. 西安: 西安交通大学出版社, 2004: 1-5.

[54] 霍然, 胡源, 李元洲. 建筑火灾安全工程导论[M]. 合肥: 中国科学技术大学出社, 2009, 14-72.

[55] 张靖岩, 臧桂丛, 李引擎, 等. 基于模糊数学与集值统计的既有建筑火灾危险性评估模型[J]. 安全与环境工程, 2012, 19(5): 3.

[56] 王学谦. 建筑防火[M]. 北京: 中国建筑工业出版社, 2000.

[57] 陈哲. 在建超高层建筑火灾烟气蔓延规律与人员疏散研究[D]. 西安: 西安建筑科技大学, 2020.

[58] Podawca K , M Przywózki. The Impact of Structural and Material Solutions for Glazing Connections on Deformation During Fire[J]. Safety & Fire Technology, 2019, 53(1): 118-128.

[59] 侯毅男.门窗与建筑节能[J]. 建筑节能, 2007, 35(7): 39-42.

[60] 张喜臣, 孙梅凤, 朱彦飞, 等. 建筑耐火节能门窗材料的设计选择[J]. 工程质量, 2018, 36(2):6.

[61] GB/T 31433-2015,建筑幕墙、门窗通用技术条件[S]. 北京: 中国质检出版社, 2015.

[62] GB/T 9978.1-2008, 建筑构件耐火试验方法. 第1部分: 通用要求[S]. 北京: 国家市场监督管理总局, 2008.

[63] 吴道虎, 李玉华. 用于电线电缆的三元乙丙橡胶配方与工艺[J]. 电线电缆, 1994, (2): 4.

[64] 许建雄, 郭一枫. 三元乙丙橡胶在线缆行业中应用和改性[J]. 电线电缆, 2001, (6):3.

[65] Some comments on the main fire retardancy mechanisms in polymer nanocomposites[J].

Polymers for Advanced Technologies, 2010, 17(10):772-777.

[66] Schartel B , A. Weiß, Sturm H , et al. Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer[J]. Polymers for Advanced Technologies, 2011, 22(12):1581-1592.

[67] Wu GM, Schartel B, Bahr H, et al. Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites[J]. Combustion & Flame, 2012, 159(12): 3616-3623.

[68] GB/24498-2009,建筑门窗、幕墙用密封胶条[s]. 北京:中国标准出版社, 2009.

[69] Vyazovkin S , Wight CA . Model-free and model-fitting approaches to kinetic analysis of is othermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340(1):53-68.

[70]Vyazovkin S , Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(2):1-19.

[71] 许春明. 三元乙丙橡胶防水卷材火灾特性实验研究[D]. 合肥: 中国科学技术大学, 2010.

[72] 胡荣祖. 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京: 科学出版社, 2008.

[73] 谌瑞宇. 地铁列车车厢典型内装材料热解及燃烧特性研究[D]. 合肥: 中国科学技术大学, 2016.

[74] 徐亮. 典型热塑性装饰材料火灾特性研究. 合肥: 中国科学技术大学, 2007.

中图分类号:

 TU998.12    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式