- 无标题文档
查看论文信息

论文中文题名:

 榆神矿区主关键层位置对隔水土层采动裂缝演化的影响机理    

姓名:

 郭亚欣    

学号:

 19103077012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081901    

学科名称:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山开采损害与环境保护    

第一导师姓名:

 赵兵朝    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-24    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Influence of Main Key Stratum Position on the Develpoment of Mining Fractures in Clay Aquiclude in Yushen Mining Area    

论文中文关键词:

 主关键层位置 ; 隔水土层 ; 导水裂缝带 ; 下行拉伸裂缝 ; 移动变形预计 ; 数学预测模型    

论文外文关键词:

 Main key stratum position ; Clay aquiclude ; Water-conducting fractured zone ; Downward tensile fracture ; Prediction of movement and deformation ; Mathematical prediction model    

论文中文摘要:

隔水土层作为榆神矿区潜水含水层的关键阻隔层,其稳定性对于矿区煤炭绿色安全开采具有重要意义。煤层开采过程中,覆岩移动变形产生的裂缝是影响隔水土层稳定性的主要因素。主关键层对隔水土层的移动变形起控制作用,当主关键层位于采动覆岩三带的不同位置时,隔水土层采动裂缝将呈现出不同的发育规律。论文围绕榆神矿区主关键层位置对隔水土层采动裂缝演化的影响机理开展研究,成果可为榆神矿区隔水土层采动裂缝安全调控措施的制定提供理论依据。论文研究内容及结论如下:

(1)根据榆神矿区砂土基型地层赋存特征,将主关键层按在采动覆岩三带不同位置分为三种工况(即主关键层分别位于冒落带、裂缝带和弯曲下沉带)开展研究。采用XRD矿物成分测试和正交配比实验,给出了隔水土层的合理相似材料配比,并自主设计了一种螺旋升降装置机构以提高相似模拟实验精度。实验结果表明,随主关键层位置由冒落带逐渐转移至弯曲下沉带,初次来压步距降低37.5~50.0%,周期来压步距增加25.0~33.3%,破断角减小10.62%~25.25%。导水裂缝带分别呈“多梯形”、“非对称梯形”和“马鞍形”分布特征。同时,结合弹性薄板理论,建立了主关键层的采动覆岩三带位置判断依据。

(2)基于极限曲率变形和极限拉伸变形,分别建立了上行裂缝发育高度和下行拉伸裂缝发育深度的计算式。当隔水土层采动曲率变形的下降速率高于极限曲率变形的下降速率时,上行裂缝发育止于隔水土层内部;反之,裂缝将贯穿隔水土层。当隔水土层采动水平拉伸变形的增加速率低于极限水平拉伸变形的增加速率时,下行拉伸裂缝尖灭于隔水土层内部;反之,裂缝将贯穿隔水土层。通过隔水土层的极限曲率变形和极限拉伸变形判定其采动裂缝发育高度时,理论预计结果与实验结果的偏差为2.33~6.74%。

(3)不同采动地质因素对主关键层位置和稳定性的影响较大,是隔水土层呈现不同的移动变形和裂缝发育规律的本质原因。数值计算结果显示,隔水土层移动变形及其裂缝发育高度,与开采距离和开采高度呈正相关,与主关键层下方岩层厚度及下方软硬岩层厚度比呈负相关,隔水土层的曲率变形和上行裂缝发育高度与其厚度呈正相关。而隔水土层的水平变形和下行裂缝发育深度则随其厚度增加,呈先增后减的变化趋势。主关键层位于裂缝带时,不同因素对采动裂缝发育的影响程度顺序为开采高度>隔水土层厚度>主关键层下方岩层厚度>主关键层下方软硬岩层厚度比。主关键层位于弯曲下沉带时,不同因素对采动下行裂缝发育的影响程度顺序为开采高度>主关键层下方岩层厚度>隔水土层厚度>主关键层下方软硬岩层厚度比。

(4)基于概率积分移动变形预计原理,构建了隔水土层移动变形预计模型。引入概率积分参数影响指数nη、nb、nd和nr,给出了主关键层不同位置隔水土层概率积分预计参数的表达式,开发了隔水土层移动变形预计软件。结合主关键层位置、隔水土层移动变形预计和隔水土层采动裂缝预测理论,提出了主关键层的采动覆岩三带位置判定方法,建立了不同采动地质条件下隔水土层的极限曲率变形计算式,最终构建了基于主关键层位置的隔水土层采动裂缝发育高度数学预测模型。

(5)主关键层位于冒落带或裂缝带(结构失稳),隔水土层的正曲率变形超过其极限曲率变形,是隔水土层产生剪切破坏的根本原因。主关键层位于裂缝带(结构稳定),当开采高度和隔水土层厚度减小,主关键层下方岩层厚度和主关键层下方软硬岩层厚度比增加,隔水土层的正曲率变形和拉伸变形下降,移动变形的下降速率相较于极限变形的下降速率逐渐增加,导致其采动裂缝发育高度逐渐减弱。主关键层位于弯曲下沉带,当开采高度减小,主关键层下方基岩厚度和主关键层下方软硬岩层厚度比增加,隔水土层拉伸变形减小,拉伸变形的增加速率相较于极限拉伸变形的增加速率逐渐降低,导致采动下行裂缝发育深度逐渐减弱。隔水土层表面采动拉伸变形和下行拉伸裂缝发育深度,随其厚度增加均呈先增后减的变化趋势。

(6)以小保当煤矿二号井XE6钻孔地层为研究地层,隔水土层采动裂缝的理论预计高度和深度分别为207.9 m和15.0 m,隔水土层存在失稳风险。论文提出工作面整体限高结合局部限高的开采措施,对隔水土层的采动裂缝发育高度进行调控,隔水土层正曲率变形和拉伸变形最大值预计减小12.2%和18.4%,裂缝发育高度和发育深度分别降低6.5%和46.0%。理论预计结果与实验和现场实测结果的吻合度达到92.59~97.84%,满足工程需求。经红土水理化测试、水位监测和抽水实验验证,采用调控措施后,隔水土层的稳定性提高,能实现潜水含水层的水资源保护。

论文外文摘要:

As the main barrier of the phreatic aquifer in the Yushen mining area, the stability of the clay aquiclude is of great importance for the environmental and safe mining of coal in the mining area. In the process of coal seam mining, fractures caused by overlying strata movement and deformation are the main factors affecting the stability of clay aquiclude. Since the main key stratum in the overlying strata controls the movement and deformation of the clay aquiclude, the clay aquiclude will show different laws of fracture development if the main key stratum is located at different positions in the three zones of mining overlying strata. In this paper, the influence mechanism of the position of the main key stratum on the development of mining fractures in the clay aquiclude in the Yushen mining area is systematically studied, and the relevant results could provide a theoretical basis for the formulation of safety control measures for mining fractures in the clay aquiclude in the Yushen mining area. The main research contents and conclusions are as follows:

(1) According to the overlying characteristics of sand-soil-rock in Yushen mining area, the positions of main key stratum in the three zones of mining overburden are divided into three types, namely, the main key stratum are located in caving zone, fractured zone and bending subsidence zone respectively. By XRD mineral composition test and orthogonal proportion experiment, the reasonable proportion of clay aquiclude is given, and a spiral lifting device mechanism is independently designed to improve the accuracy of similar simulation experiments. The experimental results show that with the position of main key stratum gradually shifting from caving zone to bending subsidence zone, the initial weighting step of overlying strata decreases by 37.5~50.0%, the periodic weighting step increases by 25.0~33.3%, and the fracture angle decreases by 10.62~25.25%. The water-conducting fractured zones are distributed in “multi-trapezoidal”, “asymmetric trapezoidal” and “saddle-shaped”, respectively. Based on this, combined with the elastic thin plate theory, the judgment basis of the position of the main key stratum is established.

(2) Based on the ultimate curvature deformation and ultimate tensile deformation, the calculation formulas for the development height of upward fractures and the development depth of downward tensile fractures are established respectively. When the mining-induced curvature deformation rate of the clay aquiclude is higher than the limit curvature deformation rate, the upward fractures develop inside the clay aquiclude. On the contrary, the fractures will run through the clay aquiclude. When the increase rate of mining horizontal tensile deformation of clay aquiclude is lower than the limit horizontal tensile deformation increase rate, the downward tensile fracture is pinched out inside the clay aquiclude. On the contrary, the fractures will run through the clay aquiclude. When the development degree of mining-induced fracture is determined by the ultimate curvature deformation and ultimate tensile deformation of the clay aquiclude, the deviation between the theoretical prediction results and the experimental results is 2.33 ~ 6.74 %.

(3) The different influence of different mining geological factors on the position and stability of the main key stratum is the essential reason for the different movement, deformation and fractures development law of the clay aquiclude. The numerical calculation results show that the movement and deformation of the clay aquiclude and the degree of fractures development are positively correlated with the mining distance and mining height, while negatively correlated with the thickness of the rock layer below the main key stratum and the thickness ratio of the soft and hard rock layer below it. The curvature deformation of the clay aquiclude and the development height of the upward fractures are positively correlated with its thickness, while the horizontal deformation of the clay aquiclude and the development depth of the downward fractures increase with its thickness, showing a trend of increasing first and then decreasing. When the main key stratum is located in the fractured zone, the influence degree of different factors on the development of mining-induced fractures is in the order of mining height > aquifuge thickness > rock thickness below the main key stratum > soft and hard rock thickness ratio below the main key stratum. When the main key stratum is located in the bending subsidence zone, the influence degree of different factors on the development of mining-induced downward fractures is in the order of mining height > thickness of rock stratum under the main key stratum > thickness of clay aquiclude > thickness ratio of soft and hard rock stratum under the main key stratum.

(4) Based on the prediction principle of probability integral movement deformation, the prediction model of movement deformation of clay aquifuge is constructed. The influence indexes of probability integral parameters nη, nb, nd, and nr are introduced, and the expressions of probability integral prediction parameters of clay aquifuge at different positions of the main key stratum are given. On this basis, a software for predicting the movement and deformation of clay aquifuge is developed. This study combines the location of the main key stratum, the movement and deformation of the clay aquiclude and the prediction theory of mining-induced fractures in the clay aquiclude. A method for determining the three-zone position of the mining overburden in the main key stratum is proposed. The deformation calculation formula of the limit curvature of the aquiclude under different mining geological conditions is established. Based on the position of the main key stratum, a mathematical prediction model for the development degree of mining-induced fractures in clay aquiclude is finally constructed.

(5) When the main key stratum is located in the caving zone or the fractured zone (structural instability), the positive curvature deformation of the clay aquiclude exceeds its limit curvature deformation, which is the root cause of the shear failure of the clay aquiclude. When the main key stratum is located in the fractured zone ( structural stability ), and when the mining height and the thickness of the clay aquiclude decrease, and the thickness of the strata under the main key stratum and the thickness ratio of the soft and hard rock strata under the main key stratum increase, the positive curvature deformation and tensile deformation of the clay aquiclude decrease, and the decrease rate of the moving deformation gradually increases compared with the decrease rate of the limit deformation, resulting in the gradual weakening of the development degree of the mining fractures. When the main key stratum is located in the bending subsidence zone, when the mining height decreases, and the thickness of the strata under the main key stratum and the thickness ratio of the soft and hard rock strata under the main key stratum increase, the tensile deformation of the clay aquiclude decreases, and the increase rate of tensile deformation gradually decreases compared with the increase rate of ultimate tensile deformation, resulting in the gradual weakening of the depth of fractures development under mining. The development depth of mining tensile deformation and downward tensile fractures on the surface of clay aquiclude increases first and then decreases with the increase of its thickness.

(6) Taking the XE6 borehole stratigraphy of No.2 well in Xiaobaodang Coal Mine as the engineering background, the theoretical prediction height and depth of mining-induced fractures in clay aquiclude are 207.9 m and 15.0 m respectively, and there is a risk of instability in clay aquiclude.  Therefore, the mining measures of the overall height limit of the working face combined with the local height limit are proposed to regulate the development degree of mining-induced fractures in clay aquiclude. The maximum values of positive curvature deformation and tensile deformation of the clay aquiclude are expected to decrease by 12.2 % and 18.4 %, respectively, and the development height and depth of fractures are reduced by 6.5 % and 46.0 %, respectively. The agreement between the theoretical prediction results and the experimental and field measurement results reaches 92.59 ~ 97.84 %, which meets the engineering requirements. Through the physical and chemical test of laterite water, water level monitoring and pumping test, it is verified that the stability of clay aquiclude is high after measures adopted, which can realize the water resources protection of the phreatic aquifer.

参考文献:

[1] 王双明, 刘浪, 赵玉娇, 等. “双碳”目标下赋煤区新能源开发—未来煤矿转型升级新路径[J]. 煤炭科学技术, 2023, 51(1): 59-79.

[2] 王双明, 耿济世, 李鹏飞, 等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探, 2023, 51(1): 33-43.

[3] 王双明,鲍园,郝永辉,等. 富油煤研究进展与趋势[J]. 煤田地质与勘探, 2024, 52(4): 1-11.

[4] 范立民, 孙魁, 李成, 等. 西北大型煤炭基地地下水监测背景、思路及方法[J]. 煤炭学报, 2020, 45(1): 317-329.

[5] 赵春虎, 靳德武, 李智学, 等. 陕北榆神矿区煤层开采顶板涌水规律分析[J]. 煤炭学报, 2021, 46(2): 523-533.

[6] 王强民, 靳德武, 王文科, 等. 榆神矿区地下水和干旱指数对植被耗水的联合影响[J]. 煤炭学报, 2019, 44(3): 841-847.

[7] 肖武, 张文凯, 吕雪娇, 等. 西部生态脆弱区矿山不同开采强度下生态系统服务时空变化—以神府矿区为例[J]. 自然资源学报, 2020, 35(1): 68-81.

[8] 范立民, 孙魁, 李成, 等. 榆神矿区煤矿防治水的几点思考[J]. 煤田地质与勘探, 2021, 49(1): 182-188.

[9] 范立民, 向茂西, 彭捷, 等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 2016, 41(11): 2672-2678.

[10] 王强民, 董书宁, 王文科, 等. 生态脆弱矿区高强度植被恢复对地下水补给的影响[J]. 煤炭学报, 2020, 45(9): 3245-3252.

[11] 姚强岭, 汤传金, 刘梓昌. 我国西部生态脆弱矿区煤—水共采问题分析[J]. 煤炭科学技术, 2021, 49(12): 225-232.

[12] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15.

[13] 武强, 申建军, 王洋. “煤—水”双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8-16.

[14] 范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35.

[15] 黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017, 42(11): 50-55.

[16] 张东升, 李文平, 来兴平, 等. 我国西北煤炭开采中的水资源保护基础理论研究进展[J]. 煤炭学报, 2017, 42(1): 36-43.

[17] 董书宁, 杨志斌, 姬中奎, 等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报, 2019, 44(3): 709-717.

[18] 王双明, 段中会, 马丽, 等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术, 2019, 47(2): 1-6.

[19] 王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020, 2(4): 5-19.

[20] 侯恩科, 车晓阳, 冯洁, 等. 榆神府矿区含水层富水特征及保水采煤途径[J]. 煤炭学报, 2019, 44(3): 813-820.

[21] 王双明, 范立民, 黄庆享, 等. 榆神矿区煤水地质条件及保水开采[J]. 西安科技大学学报, 2010, 30(1): 1-6.

[22] 李文平, 叶贵钧, 张莱, 等. 陕北榆神府矿区保水采煤工程地质条件研究[J]. 煤炭学报, 2000, 25(5): 449-454.

[23] 仵拨云, 彭捷, 向茂西, 等. 榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J]. 采矿与安全工程学报, 2018, 35(5): 984-990.

[24] Huang Q. Study on water resisting property of subsurface aquiclude in shallow coal seam mining [J]. Journal of Coal Science and Engineering (China), 2008, 14(3): 369-372.

[25] 邓念东, 杨佩, 林平选, 等. 榆神矿区保水采煤工程地质条件分区研究[J]. 煤炭科学技术, 2017, 45(9): 167-174+200.

[26] Xu G, Li H, Li D, et al. Method to Calculate Mining-Induced Fracture Based on the Movement and Deformation of Overburden Strata [J]. Shock and Vibration, 2021, 2021.

[27] 李树刚, 刘李东, 赵鹏翔, 等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术, 2022, 50(1): 95-104.

[28] 黄庆享. 浅埋煤层覆岩隔水性与保水开采分类[J]. 岩石力学与工程学报, 2010, 29(S2): 3622-3627.

[29] 王双明, 黄庆享, 范立民, 等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报, 2010, 35(1): 7-14.

[30] Liu Y, Liu Q, Li W, et al. Height of water-conducting fractured zone in coal mining in the soil–rock composite structure overburdens [J]. Environmental Earth Sciences, 2019, 78(7): 1-13.

[31] 王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010.

[32] 许国胜. 基于覆岩应力的岩层移动变形机理及预计模型研究[D]. 焦作: 河南理工大学, 2017.

[33] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996, 19(3): 2-7.

[34] 许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 25(2): 122-126.

[35] 康永华. 覆岩性质对“两带”高度的影响 [J]. 煤矿开采, 1998, 8(1): 52-54+64.

[36] 张小明, 侯忠杰. 厚土层浅埋深煤层开采覆岩“三带”的数值模拟[J]. 煤炭科学技术, 2007, 35(2): 93-96.

[37] 李正杰, 黄锐, 王业征, 等. 深部大采高工作面覆岩“三带”发育高度实测[J]. 中国煤炭, 2018, 44(12): 41-45.

[38] 余学义, 刘智, 牛宗涛, 等. 采场上覆厚硬岩层的结构稳定性分析[J]. 煤田地质与勘探, 2007, 35(5): 38-41.

[39] 赵兵朝, 郭亚欣, 孙浩, 等. 基于主关键层位置的近浅埋煤层采动覆岩隔水层稳定性研究[J]. 采矿与安全工程学报, 2022, 39(4): 653-662.

[40] Zhang C, Tu S, Zhao Y X. Compaction characteristics of the caving zone in a longwall goaf: a review [J]. Environmental Earth Sciences, 2019, 78(1): 1-20.

[41] 黄炳香, 刘长友, 许家林. 采动覆岩破断裂隙的贯通度研究[J]. 中国矿业大学学报, 2010, 39(1): 45-49.

[42] Ning J, Wang J, Tan Y, et al. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining [J]. International Journal of Mining Science and Technology, 2020, 30(2): 207-215.

[43] 尹士献, 何毓俊, 李德海. 采动影响下厚湿陷性黄土层拉伸裂缝预测研究[J]. 河南理工大学学报(自然科学版), 2014, 33(4): 437-440+446.

[44] 汤伏全, 张健. 西部矿区巨厚黄土层开采裂缝机理[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(11): 1466-1470.

[45] 徐乃忠, 高超, 倪向忠, 等. 浅埋深特厚煤层综放开采地表裂缝发育规律研究[J]. 煤炭科学技术, 2015, 43(12): 124-128+97.

[46] 刘瑜. 陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D]. 徐州: 中国矿业大学, 2018.

[47] 任奋华, 蔡美峰, 来兴平, 等. 采空区覆岩破坏高度监测分析[J]. 北京科技大学学报, 2004, 26(2): 115-117.

[48] 康永华, 王济忠, 孔凡铭, 等. 覆岩破坏的钻孔观测方法[J]. 煤炭科学技术, 2002, 30(12): 26-28.

[49] 于师建, 程久龙. 覆岩裂隙带电阻率响应特征[J]. 岩土工程学报, 2000, 22(3): 336-339.

[50] 孙庆先, 牟义, 杨新亮. 红柳煤矿大采高综采覆岩“两带”高度的综合探测[J]. 煤炭学报, 2013, 38(S2): 283-286.

[51] Mondal D, Roy P N S, Behera P K. Use of correlation fractal dimension signatures for understanding the overlying strata dynamics in longwall coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 210-221.

[52] Mondal D, Roy P N S, Kumar M. Monitoring the strata behavior in the Destressed Zone of a shallow Indian longwall panel with hard sandstone cover using Mine-Microseismicity and Borehole Televiewer data [J]. Engineering Geology, 2020, 271: 105593.

[53] 冯洁, 王苏健, 陈通, 等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探, 2018, 46(1): 97-100+107.

[54] 张健, 毕银丽, 彭苏萍. 采动地表裂缝三维形态探测方法及精度评价研究[J]. 煤炭科学技术, 2020, 48(9): 236-242.

[55] 侯恩科, 谢晓深, 王双明, 等. 中埋深煤层综采地表裂缝发育规律研究[J]. 采矿与安全工程学报, 2021, 38(6): 1178-1188.

[56] 侯忠杰, 张杰. 陕北矿区开采潜水保护固液两相耦合实验及分析[J]. 湖南科技大学学报(自然科学版), 2004, 19(4): 1-5.

[57] 刘长武, 郭永峰, 姚精明. 采矿相似模拟试验技术的发展与问题—论发展三维采矿物理模拟试验的意义[J]. 中国矿业, 2003, 12(8): 8-10.

[58] 黄庆享, 侯志成, 张文忠, 等. 黏土隔水层相似材料胶结剂的正交实验分析[J]. 采矿与安全工程学报, 2007, 24(1): 42-46.

[59] 黄庆享, 张文忠, 侯志成. 固液耦合试验隔水层相似材料的研究[J]. 岩石力学与工程学报, 2010, 29(S1): 2813-2818.

[60] 金志远, 赵小英, 马立强, 等. 浅埋近距煤层覆岩导水裂隙发育规律固液耦合试验研究[J]. 煤矿安全, 2016, 47(9): 32-34+38.

[61] 张杰, 杨涛, 索永录, 等. 基于隔水土层失稳模型的顶板突水致灾预测研究[J]. 煤炭学报, 2017, 42(10): 2718-2724.

[62] Zhang J, Zhang K, Li J, et al. Simulation Test for Evolution Laws of Tensile Fractures in a Coal Mining Area [J]. Meteorological and Environmental Research, 2018, 9(4): 85-88.

[63] 刘英锋, 王世东, 王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报, 2014, 39(10): 1970-1976.

[64] 鞠杨, 左建平, 宋振铎, 等. 煤矿开采中的岩层应力分布与变形移动的DDA模拟[J]. 岩土工程学报, 2007, 29(2): 268-273.

[65] 张东升, 范钢伟, 刘玉德, 等. 浅埋煤层工作面顶板裂隙扩展特征数值分析[J]. 煤矿安全, 2008, 39(7): 91-93.

[66] 张吉雄, 李猛, 邓雪杰, 等. 含水层下矸石充填提高开采上限方法与应用[J]. 采矿与安全工程学报, 2014, 31(2): 220-225.

[67] 何祥, 张村, 赵毅鑫, 等. 基于覆岩损伤本构模型的高强度开采参数确定及减损效果评价[J]. 采矿与安全工程学报, 2021, 38(3): 439-448.

[68] 张村, 屠世浩, 张磊. 覆岩不同采动损伤煤样应力敏感性研究[J]. 中国矿业大学学报, 2018,47(3):502-511.

[69] 杨帆, 余海锋, 郭俊廷. 采动地表裂缝形成机理的数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(6): 566-570.

[70] 张文静, 胡海峰, 廉旭刚. 基于非均布载荷下梁结构破断理论的地表破坏规律[J]. 金属矿山, 2017, 46(10): 76-80.

[71] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2013.

[72] 王双美. 导水裂隙带高度研究方法概述[J]. 水文地质工程地质, 2006, 33(5): 126-128.

[73] 栾元重, 李静涛, 班训海,等. 近距煤层开采覆岩导水裂隙带高度观测研究[J]. 采矿与安全工程学报, 2010, 27(1): 139-142.

[74] 胡炳南, 张华兴, 申宝宏, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.

[75] 国家安全监管总局, 国家煤矿安监局, 国家能源局, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2017.

[76] 武强, 赵苏启, 董书宁, 等. 煤矿防治水手册[M]. 北京: 煤炭工业出版社, 2013.

[77] 李文生, 李文, 尹尚先. 综采一次采全高顶板导水裂缝带发育高度研究[J]. 煤炭科学技术, 2012, 40(6): 104-107.

[78] 马亚杰, 武强, 章之燕, 等. 煤层开采顶板导水裂隙带高度预测研究[J]. 煤炭科学技术, 2008, 36(5): 59-62.

[79] 胡小娟, 李文平, 曹丁涛, 等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报, 2012, 37(4): 613-620.

[80] 张宝安, 李佳音, 卢洋, 等. 采空区覆岩导水裂隙带高度预计方法对比分析[J]. 中国地质灾害与防治学报, 2016, 27(2): 132-136.

[81] 薛建坤, 王皓, 赵春虎, 等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报, 2020, 37(6): 1222-1230.

[82] 娄高中, 谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(4): 198-204.

[83] 陈忠辉, 胡正平, 李辉, 等. 煤矿隐伏断层突水的断裂力学模型及力学判据[J]. 中国矿业大学学报, 2011, 40(5): 673-677.

[84] 施龙青, 辛恒奇, 翟培合, 等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报, 2012, 41(1): 37-41.

[85] 张建民, 张凯, 曹志国, 等. 基于采动—爆裂模型的导水裂隙带高度计算方法[J]. 煤炭学报, 2017, 42(6): 1557-1564.

[86] Guo W, Zhao G, Lou G, et al. Height of fractured zone inside overlying strata under high-intensity mining in China [J]. International Journal of Mining Science and Technology, 2019, 29(1): 45-49.

[87] 赵高博, 郭文兵, 娄高中, 等. 基于覆岩破坏传递的导水裂缝带发育高度研究[J]. 煤田地质与勘探, 2019, 47(2): 144-150.

[88] 朱川曲, 黄友金, 芮国相, 等. 采动作用下煤矿区地表裂缝发育机理与特征分析[J]. 中国地质灾害与防治学报, 2017, 28(4): 47-52.

[89] 郭俊廷, 邹定辉, 杨国柱, 等. 厚松散层条件下地表采动裂缝宽度的计算方法[J]. 煤矿安全, 2014, 45(5): 170-172+176.

[90] 张玉军, 申晨辉, 张志巍, 等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术, 2022, 50(5): 38-48.

[91] 尹增德. 采动覆岩破坏特征及其应用研究[D]. 青岛: 山东科技大学, 2007.

[92] 胡青峰, 崔希民, 刘文锴, 等. 厚煤层重复开采覆岩与地表移动变形规律研究[J]. 采矿与岩层控制工程学报, 2020, 2(2): 31-39.

[93] 娄高中, 郭文兵, 高金龙. 非充分采动导水裂缝带高度影响因素敏感性分析[J]. 河南理工大学学报(自然科学版), 2019, 38(3): 24-31.

[94] Majdi A, Hassani F P, Nasiri M Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining [J]. International Journal of Coal Geology, 2012, 98(1): 62-72.

[95] Peng S S. Topical areas of research needs in ground control–a state of the art review on coal mine ground control [J]. International Journal of Mining Science and Technology, 2015, 25(1): 1-6.

[96] Peng S S. Longwall mining [M]. CRC Press, 2019.

[97] Tammetta P. Estimation of the Height of Complete Groundwater Drainage Above Mined Longwall Panels [J]. Ground Water, 2013, 51(5): 723-734.

[98] 魏久传, 吴复柱, 谢道雷, 等. 半胶结中低强度围岩导水裂缝带发育特征[J]. 煤炭学报, 2016, 41(4): 974-983.

[99] 黄庆享. 浅埋煤层采动厚砂土层破坏规律模拟[J]. 长安大学学报(自然科学版), 2003, 23(4): 25-27.

[100] 杨科, 谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报, 2008, 31(10): 1092-1096.

[101] 郭文兵, 娄高中. 覆岩破坏充分采动程度定义及判别方法[J]. 煤炭学报, 2019, 44(3): 755-766.

[102] Ditton, S, Merrick NP. A new sub-surface fracture height prediction model for longwall mines in the NSW coalfields [C]. Proceedings of Sydney Basin Symposium, Newcastle. 2014.

[103] 宣以琼. 薄基岩浅埋煤层覆岩破坏移动演化规律研究[J]. 岩土力学, 2008, 29(2): 512-516.

[104] Alejano L R, Taboada J, García-Bastante F, et al. Multi-approach back-analysis of a roof bed collapse in a mining room excavated in stratified rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 899-913.

[105] 李文平, 于双忠, 姜振泉, 等. 淮河大堤土体工程地质特性及采动裂缝研究[J]. 煤田地质与勘探, 1992, 20(2): 47-50.

[106] 徐智敏, 孙亚军, 董青红, 等. 隔水层采动破坏裂隙的闭合机理研究及工程应用[J]. 采矿与安全工程学报, 2012, 29(5): 613-618.

[107] 吴侃, 李亮, 敖建锋, 等. 开采沉陷引起地表土体裂缝极限深度探讨[J]. 煤炭科学技术, 2010, 38(6): 108-111+103.

[108] Hebblewhite, B. Fracturing, caving propagation and influence of mining on groundwater above longwall panels–a review of predictive models [J]. International Journal of Mining Science and Technology, 2020, 30(1): 49-54.

[109] 许家林, 王晓振, 刘文涛, 等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报, 2009, 28(2): 380-385.

[110] 许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(5): 762-769.

[111] 付玉平, 宋选民, 邢平伟, 等. 浅埋厚煤层大采高工作面顶板岩层断裂演化规律的模拟研究[J]. 煤炭学报, 2012, 37(3): 366-371.

[112] 张杰, 侯忠杰. 浅埋煤层导水裂隙发展规律物理模拟分析[J]. 采矿与安全工程学报, 2004, 21(4): 32-34+118.

[113] 王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740-3749.

[114] 来兴平, 张旭东, 单鹏飞, 等. 厚松散层下三软煤层开采覆岩导水裂隙发育规律[J]. 岩石力学与工程学报, 2021, 40(9): 1739-1750.

[115] 李树刚, 钱鸣高, 石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报, 2000, 19(5): 604-607.

[116] 余学义, 张恩强. 开采损害学[M]. 北京: 煤炭工业出版社, 2010.

[117] Zhao B, Guo Y, Mao X, et al. Prediction method for surface subsidence of coal seam mining in loess donga based on the probability integration model [J]. Energies, 2022, 15(6): 2282.

[118] Zhou D, Wu K, Chen R, et al. GPS/terrestrial 3D laser scanner combined monitoring technology for coal mining subsidence: a case study of a coal mining area in Hebei, China [J]. Natural Hazards, 2014, 70: 1197-1208.

[119] Wang J, Zhang Q, Yin W, et al. On-Site Measurement on Compaction Characteristics of Coal Gangue and Surface Subsidence Disaster in Deep Backfilling Mining [J]. Frontiers in Earth Science, 2021, 9: 724476.

[120] Piao C, Lei S, Yang J, et al. Experimental study on the movement and evolution of overburden strata under reamer-pillar coal mining based on distributed optical fiber monitoring [J]. Energies, 2018, 12(1): 77.

[121] Dong L, Wang C, Tang Y, et al. Time series InSAR three-dimensional displacement inversion model of coal mining areas based on symmetrical features of mining subsidence [J]. Remote Sensing, 2021, 13(11): 2143.

[122] 吴侃, 邓喀中, 周鸣, 等. 综采放顶煤表土层移动监测成果分析[J]. 煤炭学报, 1999, 24(1): 23-26.

[123] 朱卫兵, 许家林, 施喜书, 等. 覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J]. 岩石力学与工程学报, 2009, 28(2): 403-409.

[124] 许延春, 刘世奇, 高玉兵, 等. 厚松散层内部微变形规律研究[J]. 煤炭科学技术, 2014, 42(10): 10-13+23.

[125] Nie L, Wang H, Xu Y, et al. A new prediction model for mining subsidence deformation: the arc tangent function model [J]. Natural Hazards, 2015, 75(3): 2185-2198.

[126] 何国清, 杨伦. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.

[127] Evans I, Pomeroy C D. The strength, fracture and workability of coal: a monograph on basic work on coal winning carried out by the Mining Research Establishment, National Coal Board [M]. Elsevier, 2013.

[128] Asadi A, Shahriar K, Goshtasbi K, et al. Development of a new mathematical model for prediction of surface subsidence due to inclined coal-seam mining [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2005, 105(1): 15-20.

[129] Peng S S, Luo Y. Slope stability under the influence of ground subsidence due to longwall mining [J]. Mining Science and Technology, 1989, 8(2): 89-95.

[130] Peng S S. Surface Subsidence Engineering: Theory and Practice [M]. CSIRO PUBLISHING, 2020.

[131] Luo Y, Qiu B. Enhanced subsurface subsidence [J]. Mining Engineering, 2012, 64(10): 78-84.

[132] 吴立新, 王金庄. 连续大面积开采托板控制岩层变形模式的研究[J]. 煤炭学报, 1994, 17(3): 233-242.

[133] 邓喀中, 马伟民. 开采沉陷中的层面滑移三维模型[J]. 岩土工程学报, 1997, 23(5): 30-36.

[134] 王金庄, 李永树, 周雄, 等. 巨厚松散层下采煤地表移动规律的研究[J]. 煤炭学报, 1997, 20(1): 20-23.

[135] 李永树, 王金庄, 周雄. PTS采动沉陷模型研究[J]. 河北工程大学学报(自然科学版), 1996, 11(3): 32-39.

[136] Luo Y, Cheng J. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams [J]. Mining Science and Technology (China), 2009, 19(5): 592-598.

[137] Jarosz A, Karmis M, Sroka A. Subsidence development with time—Experiences from longwall operations in the Appalachian coalfield [J]. International Journal of Mining and Geological Engineering, 1990, 8(3): 261-273.

[138] 刘宝琛, 戴华阳. 概率积分法的由来与研究进展[J]. 采矿与岩层控制工程学报, 2016, 21(2): 1-3.

[139] Litwiniszyn J. Application of the equation of stochastic processes to mechanics of loose bodies [J]. Archives of Mechanics, 1956, 8(4): 393-411.

[140] 廖国华, 刘宝琛. 矿山岩石移动的时间—空间问题[J]. 煤炭学报, 1964, 1(3): 1-14.

[141] 刘宝琛, 张家生. 近地表开挖引起的地表沉降的随机介质方法[J]. 岩石力学与工程学报, 1995, 14(4): 289-296.

[142] 吴侃, 葛家新, 周鸣, 等. 概率积分法预计模型的某些修正[J]. 煤炭学报, 1998, 22(1): 35-38.

[143] 吴侃, 靳建明, 戴仔强. 概率积分法预计下沉量的改进[J]. 辽宁工程技术大学学报(自然科学版), 2003, 23(1): 19-22.

[144] 郭文兵, 刘大超, 白二虎. 基于概率积分法的下沉曲线公式修正[J]. 河南理工大学学报(自然科学版), 2016, 35(3): 357-362.

[145] 戴华阳, 王金庄, 蔡美峰. 岩层与地表移动的矢量预计法[J]. 煤炭学报, 2002, 25(5): 473-478.

[146] 郭增长, 殷作如, 王金庄. 随机介质碎块体移动概率与地表下沉[J]. 煤炭学报, 2000, 23(3): 264-267.

[147] 郭增长, 谢和平, 王金庄. 极不充分开采地表移动和变形预计的概率密度函数法[J]. 煤炭学报, 2004, 27(2): 155-158.

[148] Guo G L, Zhu X J, Zha J F, et al. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10):3302-3308.

[149] 郭麒麟, 乔世范, 刘宝琛. 开采影响下的岩土体移动与变形规律[J]. 采矿与安全工程学报, 2011, 28(1): 109-114.

[150] 李春意, 陈洁. 覆岩移动静态预计模型的构建及实测研究[J]. 中国煤炭, 2012, 38(5): 49-53.

[151] 李春意. 覆岩与地表移动变形演化规律的预测理论及实验研究[D]. 北京: 中国矿业大学, 2010.

[152] 王观宇. 采动岩层内部的移动与变形分析[J]. 矿山测量, 1995, 23(1): 19-23.

[153] 赵兵朝, 余学义. 金属矿层开采地表下沉系数研究[J]. 金属矿山, 2010, 39(3): 126-128+170.

[154] 余学义, 郭文彬, 赵兵朝, 等. 厚黄土层煤层开采沉陷规律研究[J]. 煤炭科学技术, 2015, 43(7): 6-10+24.

[155] Shu D M, Bhattacharyya A K. Relationship between sub-surface and surface subsidence—a theoretical model [J]. Mining Science and Technology, 1990, 11(3): 307-319.

[156] Shu D M, Bhattacharyya A K. Prediction of sub-surface subsidence movements due to underground coal mining [J]. Geotechnical & Geological Engineering, 1993, 11(4): 221-234.

[157] 宋世杰, 王双明, 赵晓光, 等. 基于覆岩层状结构特征的开采沉陷分层传递预计方法[J]. 煤炭学报, 2018, 43(S1): 87-95.

[158] Luo Y. An improved influence function method for predicting subsidence caused by longwall mining operations in inclined coal seams [J]. International Journal of Coal Science & Technology, 2015, 2(3): 163-169.

[159] Yang J, Luo Y. Enhanced subsurface subsidence prediction model incorporating key strata theory [J]. Mining, Metallurgy & Exploration, 2021, 38(2): 995-1008.

[160] Cheng J, Zhao G, Li S. Predicting underground strata movements model with considering key strata effects [J]. Geotechnical and Geological Engineering, 2018, 36(1): 621-640.

[161] 滕永海, 高德福, 朱伟, 等. 水体下采煤[M]. 北京: 煤炭工业出版社, 2012.

[162] 钱鸣高, 许家林, 王家臣, 等. 矿山压力与岩层控制(第3版)[M]. 徐州: 中国矿业大学出版社, 2021.

[163] 宋振骐, 刘义学, 陈孟伯, 等. 岩梁裂断前后的支承压力显现及其应用的探讨[J]. 山东科技大学学报(自然科学版), 1984, 6(1): 27-39.

[164] 钱鸣高, 朱德仁, 王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业大学学报, 1986, 15(2): 12-21.

[165] 谭云亮. 矿山压力与岩层控制(第3版)[M]. 北京: 应急管理出版社, 2021.

[166] Chien (QIAN) M G. A study of the behaviour of overlying strata in longwall mining and its application to strata control [J]. Developments in Geotechnical Engineering, 1981, 32: 13-17.

[167] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(6): 557-563.

[168] 钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S-R”稳定及其应用[J]. 采矿与安全工程学报, 1994, 11(3): 6-11+80.

[169] 钱鸣高, 缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报, 1995, 14(2): 97-106.

[170] 黄庆享, 钱鸣高, 石平五. 浅埋煤层采场老顶周期来压的结构分析[J]. 煤炭学报, 1999, 24(6): 581-585.

[171] 黄庆享. 浅埋煤层长壁开采顶板结构及岩层控制研究[M]. 徐州: 中国矿业大学出版社, 2000.

[172] 刘天泉. 矿山岩层和地表变形规律及其与地质因素的关系[J].煤田地质与勘探, 1985, 13(3): 31-35.

[173] 高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报, 1996, 21(1): 51-56.

[174] Palchik V. Formation of fractured zones in overburden due to longwall mining [J]. Environmental Geology, 2003, 44(1): 28-38.

[175] 黄庆享, 夏小刚. 采动岩层与地表移动的“四带”划分研究[J]. 采矿与安全工程学报, 2016, 33(3): 393-397.

[176] 黄庆享, 刘文岗, 田银素. 近浅埋煤层大采高矿压显现规律实测研究[J]. 采矿与安全工程学报, 2003, 20(3): 58-59+118.

[177] 缪协兴, 茅献彪, 孙振武, 等. 采场覆岩中复合关键层的形成条件与判别方法[J]. 中国矿业大学学报, 2005, 34(5): 547-550.

[178] 侯忠杰. 浅埋煤层关键层研究[J]. 煤炭学报, 1999, 22(4): 25-29.

[179] 侯忠杰. 地表厚松散层浅埋煤层组合关键层的稳定性分析[J]. 煤炭学报, 2000, 23(2): 127-131.

[180] 许家林, 钱鸣高, 朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报, 2005, 24(5): 787-791.

[181] 许家林, 连国明, 朱卫兵, 等. 深部开采覆岩关键层对地表沉陷的影响[J]. 煤炭学报, 2007, 30(7): 686-690.

[182] В. Я. Гвирцман. 水体下安全采煤[M]. 北京:煤炭工业出版社, 1980.

[183] Rezaei M, Hossaini M F, Majdi A. A time-independent energy model to determine the height of destressed zone above the mined panel in longwall coal mining [J]. Tunnelling and Underground Space Technology, 2015, 47: 81-92.

[184] Newman, C., Agioutantis, Z., & Leon, G. B. J. Assessment of potential impacts to surface and subsurface water bodies due to longwall mining [J]. International Journal of Mining Science and Technology, 2017, 27(1), 57-64.

[185] 高延法, 黄万朋, 刘国磊, 等. 覆岩导水裂缝与岩层拉伸变形量的关系研究[J]. 采矿与安全工程学报, 2012, 29(3): 301-306.

[186] 黄万朋, 高延法, 王波, 等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J].采矿与安全工程学报, 2017, 34(2): 330-335.

[187] 赵兵朝, 余学义. 导水裂缝带的广义损伤因子研究[J]. 中国矿业大学学报, 2010, 39(5): 705-708.

[188] 赵兵朝, 刘樟荣, 同超, 等. 覆岩导水裂缝带高度与开采参数的关系研究[J]. 采矿与安全工程学报, 2015, 32(4): 634-638.

[189] 王连国, 王占盛, 黄继辉, 等. 薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J]. 采矿与安全工程学报, 2012, 29(5): 607-612.

[190] Sun Y, Zuo J, Karakus M, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 63-75.

[191] Sun Y, Zuo J, Karakus M, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining [J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1545-1563.

[192] 左建平, 于美鲁, 孙运江, 等. 采矿岩层破断力学及内外类双曲线整体移动模型[J].中国科学基金,2022,36(1):128-136.

[193] Alex Mark Lechner, Thomas Baumgartl, Phil Matthew, et al. The impact of underground longwall mining on prime agricultural land: a review and research agenda [J]. Land Degradation & Development, 2016, 27(6): 1650-1663.

[194] Abdallah, Mouhammed, Thierry Verdel. Behavior of a masonry wall subjected to mining subsidence, as analyzed by experimental designs and response surfaces [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 199-206.

[195] Artur Guzy, Agnieszka A. Malinowska. Assessment of the impact of the spatial extent of land subsidence and aquifer system drainage induced by underground mining [J]. Sustainability, 2020, 12(19): 7871.

[196] Tomás Villegas, Erling Nordlund, Christina Dahnér-Lindqvist. Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden. Engineering Geology, 2011, 121(1-2): 18-27.

[197] 王云广, 郭文兵. 采空塌陷区地表裂缝发育规律分析[J]. 中国地质灾害与防治学报, 2017, 28(1): 89-95.

[198] 赵兵朝, 孙浩, 郭亚欣, 等. 厚松散层近浅埋煤层开采导水裂缝动态演化规律研究[J]. 煤炭工程, 2021, 53(10): 100-105.

[199] 王世斌, 侯恩科, 王双明, 等. 煤炭安全智能开采地质保障系统软件开发与应用[J].煤炭科学技术, 2022, 50(7): 13-24.

[200] 侯恩科, 张萌, 孙学阳, 等. 浅埋近距离煤层群开采覆岩与地表移动破坏规律研究[J]. 中国煤炭地质, 2022, 34(5): 31-36+71.

[201] 张杰, 侯忠杰. 榆树湾浅埋煤层保水开采三带发展规律研究 [J].湖南科技大学学报(自然科学版), 2006, 21(4): 10-13.

[202] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 中华人民共和国国家标准土工试验方法标准(GB/T50123—2019)[S]. 北京: 中国计划出版社, 2019.

[203] 赵兵朝, 郑康, 郭亚欣, 等. 红土隔水层相似材料优化配比研究及应用[J]. 矿业研究与开发,2020, 40(8): 60-65.

[204] 赵兵朝, 杨啸, 郭亚欣, 等. 蒙脱石含量对N2红土层裂缝弥合的影响规律研究[J]. 矿业研究与开发,2021, 41(8): 88-93.

[205] 赵兵朝, 马云祥, 郭亚欣, 等. 湿陷性黄土相似材料力学特性试验研究[J]. 矿业安全与环保,2022, 49(3): 9-14.

[206] 曲庆璋, 章权, 季求知, 等. 弹性板理论[M]. 北京: 人民交通出版社, 2000.

[207] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016.

[208] 谢生荣, 陈冬冬, 孙颜顶, 等. 基本顶弹性基础边界薄板模型分析(Ⅰ)——初次破断[J]. 煤炭学报, 2016, 41(6): 1360-1368.

[209] 刘鸿文. 材料力学Ⅱ(第6版)[M]. 北京: 高等教育出版社, 2017.

[210] 马仁香. 均布载荷下四边固支矩形薄板的挠度[J]. 计算机辅助工程, 2021, 30(4): 22-25+31.

[211] 康永华. 采煤方法变革对导水裂缝带发育规律的影响[J]. 煤炭学报, 1998, 21(3): 40-44.

[212] 李海清, 向龙, 贾宏宇. 品字形房柱式采空区开采地表移动规律[J]. 地下空间与工程学报, 2011, 7(3): 541-546.

[213] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报, 2010, 35(4): 529-534.

[214] 李树刚, 徐培耘, 林海飞, 等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报, 2020, 37(5): 1001-1008.

中图分类号:

 TD327    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式