- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 米朝娟    

学号:

 19210010003    

保密级别:

     

论文语种:

 chi    

学科代码:

 0705    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

     

第一导师姓名:

 周自翔    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Simulation of Soil Conservation Services and Analysis of Supply and Demand in the Ecosystem of the Jinghe River Basin    

论文中文关键词:

 生态系统服务 ; 土壤保持服务 ; 风水复合侵蚀 ; 供需平衡 ; 泾河流域    

论文外文关键词:

 Ecosystem services ; Soil conservation service ; Complex erosion by wind and water ; Balance of supply and demand ; Jinghe River Basin    

论文中文摘要:
<p>&nbsp; &nbsp; &nbsp; &nbsp;SWATRWEQ2000-2020</p> <p>12000-20202011-20202000-2010</p> <p>22000-2020使</p> <p>3</p> <p>4&ldquo;&rdquo;</p>
论文外文摘要:
<p>&nbsp; &nbsp; &nbsp;The Loess Plateau with severe soil erosion is a typical area where complex erosion by wind and water occurs. The Jinghe River Basin is located in the hinterland of the Loess Plateau, and is one of the areas with the most serious soil erosion in the Yellow River Basin. In-depth study of the ecosystem soil conservation services and their supply-demand relationship in the basin is of great significance to promote ecological reconstruction, watershed comprehensive management and sustainable development. Taking the Jinghe River Basin as the study area, it is used the SWAT hydrological model and RWEQ wind erosion model of soil to simulate the ecosystem soil conservation services of hydraulic erosion and wind erosion in the Jinghe River Basin from 2000 to 2020 respectively, with measuring soil physical and chemical indicators through field sampling to improve the soil database of two models. Finally, the supply-demand relationship and profit &amp; loss situation of soil conservation services was quantitatively analyzed. The main conclusions are as follows:</p> <p>(1) From 2000 to 2020, the soil conservation services of hydraulic erosion in the Jinghe River Basin have been significantly improved. The period of 2011-2020 was better than that of 2000-2010, and there was a strong correlation between the precipitation and hydraulic soil conservation. However, there were still some areas in the lower reaches of the basin that have not risen but fallen.</p> <p>(2) From 2000 to 2020, the total amount of soil conservation services for wind erosion in the Jinghe River Basin showed declining trend. Vegetation restoration and effective sand-fixing and wind-proof measures have weakened the wind erosion, giving rise to decrease in the soil potential amount of wind erosion in the basin ecosystem.</p> <p>(3) The soil conservation service function of the ecosystem in the Jinghe River Basin was significantly improved. However, due to the significant spatial and temporal differences between hydraulic erosion and wind erosion, the ecosystem soil conservation service had a fluctuating increase as a whole. Moreover, annual soil conservation services of hydraulic erosion were more than that of the wind erosion.</p> <p>(4) From the perspective of the supply and demand relationship of ecosystem soil conservation services, there was an overall surplus of soil conservation services in the Jinghe River Basin. It shows that the basin ecosystem can achieve a balance between supply and demand of soil conservation services , and has basically achieved &quot;turning losses into profits&quot;. However, there are still some loss-making areas, where ecological restoration measures need to be strengthened. At the same time, it is in the areas with soil conservation services surplus that a long-term mechanism to protect and promote its ecosystem services should also be established.</p>
参考文献:

[1] Brahim B, Meshram S G, Abdallah D, et al. Mapping of soil sensitivity to water erosion by RUSLE model: case of the Inaouene watershed (Northeast Morocco)[J]. Arabian Journal of Geosciences, 2020,13(21):1-15.

[2] 林锦阔. 河西地区土壤侵蚀时空分异及其驱动因素[D]. 兰州大学, 2020.

[3] Yang H, Zou X, Wang J, et al. An experimental study on the influences of water erosion on wind erosion in arid and semi-arid regions[J]. Journal of Arid Land, 2019,11(2):208-216.

[4] Ta W, Wang H, Jia X. The contribution of aeolian processes to fluvial sediment yield from a desert watershed in the Ordos Plateau, China[J]. Hydrological Processes, 2015, 29(1): 80-89.

[5] Zhang C, Li J, Zhou Z, et al. Application of ecosystem service flows model in water security assessment: A case study in Weihe River Basin, China[J]. Ecological Indicators, 2021, 120:106974.

[6] 刘婷. 泾河流域土壤保持服务时空分异特征及其影响因素分析[D]. 西安科技大学, 2021.

[7] 王嘉丽, 周伟奇. 生态系统服务流研究进展[J]. 生态学报, 2019, 39(12): 4213-4222.

[8] 刘月, 赵文武, 贾立志. 土壤保持服务:概念、评估与展望[J]. 生态学报, 2019, 39(02): 432-440.

[9] 杨丽雯, 王大勇, 王勇智等. 涑水河流域土壤保持服务供需关系量化评估[J]. 资源科学, 2020, 42(12): 2451-2462.

[10] 刘立程. 兰州市生态系统服务供需关系研究[D]. 西北师范大学, 2020.

[11] 张攀, 姚文艺, 刘国彬等. 土壤复合侵蚀研究进展与展望[J]. 农业工程学报, 2019, 35(24): 154-161.

[12] 朱显谟. 黄土区土壤侵蚀的分类[J]. 土壤学报, 1956(02): 99-115.

[13] 李秋艳, 蔡强国, 方海燕. 风水复合侵蚀与生态恢复研究进展[J]. 地理科学进展, 2010, 29(01): 65-72.

[14] 杨济. 内陆干旱与半干旱区风水复合侵蚀研究进展[J]. 科技视界, 2014(01): 56-57.

[15] Bullard J E, Livingstone I. Interactions between aeolian and fluvial systems in dryland environments[J]. Area, 2002, 34(1):8-16.

[16] Bullard J E, McTainsh G H. Aeolian-fluvial interactions in dryland environments: examples, concepts and Australia case study[J]. Progress in Physical Geography, 2003, 27(4): 471-501.

[17] 宋阳, 刘连友, 严平. 风水复合侵蚀研究述评[J]. 地理学报, 2006,61(01): 77-88.

[18] 杨会民, 王静爱, 邹学勇等. 风水复合侵蚀研究进展与展望[J]. 中国沙漠, 2016, 36(04): 962-971.

[19] Yang S, Ping Y, Liu L. A review of the research on complex erosion by wind and water[J]. Journal of Geographical Sciences, 2006, 16(2): 231-241.

[20] 冯强, 赵文武. USLE/RUSLE中植被覆盖与管理因子研究进展[J]. 生态学报, 2014, 34(16):4461-4472.

[21] Özcan A U, Uzun O, Başaran M, et al. Soil erosion risk assessment for volcano cone of Alidaği Mountain by using USLE/RUSLE, GIS and geostatistics[J]. Fresenius environmental bulletin, 2015,24(6):2090-2100.

[22] 贾媛媛, 郑粉莉, 杨勤科. 国外水蚀预报模型述评[J]. 水土保持通报, 2003, 23(5): 82-87.

[23] Acharki Siham,El Qorchi Fadoua,Arjdal Youssef,Amharref Mina,Bernoussi Abdes Samed,Ben Aissa Hassan. Soil erosion assessment in Northwestern Morocco[J]. Remote Sensing Applications: Society and Environment,2022,25.

[24] 刘洪延. SWAT模型研究及应用进展[J]. 亚热带水土保持, 2019, 31(02): 34-37.

[25] 杨凯杰, 吕昌河. SWAT模型应用与不确定性综述[J]. 水土保持学报, 2018, 32(01): 17-24.

[26] Gregory J M, Wilson G R, Singh U B, et al. TEAM: integrated, process-based wind-erosion model[J]. Environmental Modelling & Software, 2004, 19(2): 205-215.

[27] Gregory J M, Darwish M M. Test Results of TEAM (Texas Tech Erosion Analysis Model) [C]//Soil Erosion. American Society of Agricultural and Biological Engineers, 2001: 483.

[28] 廖超英, 郑粉莉, 刘国彬等. 风蚀预报系统(WEPS)介绍[J]. 水土保持研究, 2004, 11(04): 77-79.

[29] 陈莉, 李涛, 韩婷婷等. WEPS模型下天津郊区风蚀尘对城区空气质量的影响[J].中国环境科学,2012,32(08):1353-1360.

[30] Hagen L J. Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields[J]. Environmental Modelling & Software, 2004, 19(2): 171-176.

[31] Ali S M, Ullah Z, Mokryani G,et al. Smart Grid and Energy District Mutual Interactions with Demand Response Programs[J]. IET Energy Systems Integration, 2020,2(1).

[32] Jaafarpour M, Khani A. Evaluation of the Nurses Job Satisfaction, and Its Association with Their Moral Sensitivities and Well-being[J]. Journal of Clinical & Diagnostic Research Jcdr, 2012, 6(10): 1761.

[33] Buschiazzo D E, Zobeck T M. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas[J]. Earth Surface Processes & Landforms, 2010, 33(12): 1839-1850.

[34] Chi W, Zhao Y, Kuang, et al. Impacts of anthropogenic land use/cover changes on soil wind erosion in China[J]. The Science of the Total Environment, 2019, 668(10): 204-215.

[35] 胡梦甜, 张慧, 高吉喜等. 基于RWEQ模型修正的土地沙化敏感性评价[J]. 水土保持研究, 2021, 28(1):368-372.

[36] 胡玲, 孙聪, 范闻捷等. 近20年防风固沙重点生态功能区植被动态分析[J]. 生态学报, 2021, 41(21): 8341-8351.

[37] 金海珍, 于德永, 郝蕊芳等. 科尔沁沙地关键生态系统服务的约束关系分析[J]. 生态学报, 2021, 41(18): 7249-7259.

[38] 胡光亮. 河流生态修复研究进展综述[J]. 现代园艺, 2022, 45(03): 40-43.

[39] MILLENNIUM_ECOSYSTEM_ASSESSMENT. Ecosystems and Human Well-Being: General Synthesis[M]. Ecosystems and Human Well-being: Synthesis, 2005.

[40] Zheng T, Zhou Z, Zou Y, et al. Analysis of Spatial and Temporal Characteristics and Spatial Flow Process of Soil Conservation Service in Jinghe Basin of China[J]. Sustainability, 2021,13(04):1794.

[41] Al-Abadi A M A, Ghalib H B, Al-Qurnawi W S. Estimation of soil erosion in northern Kirkuk governorate, Iraq using rusle, remote sensing and gis[J]. Carpathian journal of earth and environmental sciences, 2016, 11(1): 153-166.

[42] 王盛, 李亚文, 李庆等. 变化环境影响下张承地区水源涵养和土壤保持服务及其权衡与协同关系研究[J]. 生态学报, 2022(13): 1-13.

[43] 刘婷, 周自翔, 朱青等. 延河流域生态系统土壤保持服务时空变化[J]. 水土保持研究, 2021, 28(01): 93-100.

[44] 朱青, 周自翔, 刘婷等. 黄土高原植被恢复与生态系统土壤保持服务价值增益研究——以延河流域为例[J]. 生态学报, 2021, 41(07): 2557-2570.

[45] 徐洁, 谢高地, 肖玉等. 国家重点生态功能区生态环境质量变化动态分析[J]. 生态学报, 2019, 39(09): 3039-3050.

[46] 朱趁趁, 龚吉蕊, 杨波等. 内蒙古荒漠草原防风固沙服务变化及其驱动力[J]. 生态学报, 2021, 41(11): 4606-4617.

[47] 张彪, 王爽, 李庆旭等. 基于防风固沙服务空间流动的区域关联度——以京津风沙源治理工程区为例[J]. 资源科学, 2020, 42(05): 969-979.

[48] 王洋洋, 肖玉, 谢高地等. 基于RWEQ的宁夏草地防风固沙服务评估[J]. 资源科学, 2019, 41(05): 980-991.

[49] 宋超, 余琦殷, 王瑞霞等. 基于植被覆盖度的宁夏灵武白芨滩自然保护区防风固沙功能时空变化研究[J]. 生态学报, 2021, 41(08): 3131-3143.

[50] Xu J, Xiao Y, Xie G, et al. How to Guarantee the Sustainability of the Wind Prevention and Sand Fixation Service: An Ecosystem Service Flow Perspective[J]. Sustainability, 2018, 10(9):2995.

[51] Ehrlich P R, Murphy D D, Singer M C, et al. Extinction, reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) populations to the California drought[J]. Oecologia, 1980, 46(1): 101-105.

[52] Burkhard B, Kroll F, Nedkov S, et al. Mapping ecosystem service supply, demand and budgets[J]. Ecological indicators, 2012, 21: 17-29.

[53] Villamagna A M, Angermeier P L, Bennett E M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery[J]. Ecological Complexity, 2013, 15: 114-121.

[54] Schröter M, Barton D N, Remme R P, et al. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway[J]. Ecological Indicators, 2014, 36: 539-551.

[55] 徐彩仙, 巩杰, 燕玲玲等. 甘肃白龙江流域土壤保持服务供需风险时空变化[J]. 生态学杂志, 2021, 40(05): 1397-1408.

[56] 徐彩仙. 基于供需视角的流域生态系统服务关系研究[D]. 兰州大学, 2021.

[57] 李鹏杰. 石羊河流域关键生态系统服务供需关系研究[D]. 西北师范大学, 2021.

[58] 李朝奎. 顾及地质灾害与环境地质条件的环泉州湾土地利用适宜性评价研究[M]. 顾及地质灾害与环境地质条件的环泉州湾土地利用适宜性评价研究, 2015.

[59] Zhao W, Yue L, Stefani D, et al. Metacoupling supply and demand for soil conservation service[J]. Current Opinion in Environmental Sustainability, 2018, 33:136-141.

[60] 谢云, 段兴武, 刘宝元等. 东北黑土区主要黑土土种的容许土壤流失量[J]. 地理学报, 2011, 66(7): 13.

[61] 郑婷. 泾河流域生态系统土壤保持服务流模拟与分析[D]. 西安科技大学, 2021.

[62] 王玉丹, 李晶, 周自翔等. 无定河流域土壤保持服务供需关系及服务流模拟[J]. 水土保持学报,2022,36(03): 138-145.

[63] 申嘉澍, 李双成, 梁泽等. 生态系统服务供需关系研究进展与趋势展望[J]. 自然资源学报, 2021, 36(8): 1909-1922.

[64] 赵雪雁, 马平易, 李文青等. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 2021, 76(11): 2780-2796.

[65] Pan Z, Wang J. Spatially heterogeneity response of ecosystem services supply and demand to urbanization in China[J]. Ecological Engineering, 2021, 169(4): 106303.

[66] 李征远, 李胜鹏, 曹银贵等. 生态系统服务供给与需求:基础内涵与实践应用[J]. 农业资源与环境学报,2022, 39(03): 456-466.

[67] Chen F, Li L, Niu J, et al. Evaluating Ecosystem Services Supply and Demand Dynamics and Ecological Zoning Management in Wuhan, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(13): 2332.

[68] Shi Y, Shi D, Zhou L, et al. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai[J]. Ecological Indicators, 2020, 115(2): 106418.

[69] 郑自宽. 泾河流域暴雨洪水特性[J]. 水文, 2003(05): 57-60.

[70] 白继洲. 气候变化背景下泾河流域生态系统土壤保持服务模拟[D]. 西安科技大学, 2021.

[71] 王峥. 基于GIS的泾河流域特征信息提取分析和降水径流预测[D]. 西北农林科技大学, 2012,

[72] 扶松林, 孔令颖, 周海香等. 泾河流域粮食产量与生产潜力时空分布特征及其与MODIS-GPP的关系[J]. 干旱地区农业研究, 2020, 38(06): 192-199.

[73] 屠新武, 廉高峰, 李国保等. 泾河流域水文特性分析[J]. 现代物业:新建设, 2010,(4): 2.

[74] 李超英. 泾河支流马莲河洪水分析[J]. 甘肃农业, 2014(16): 43-44.

[75] Meng X, Mao K, Meng F, et al. A fine-resolution soil moisture dataset for China in 2002–2018[J]. Earth System Science Data, 2021, 13(7): 3239-3261.

[76] 张利敏, 杨明祥, 王浩. CMADS、CFSR与实测气象数据在浑河流域的适用性评价[J]. 中国农村水利水电, 2020(09): 132-137.

[77] 杨丽萍, 邹进. 土地利用变化对盘龙江流域产流过程的影响分析[J]. 中国农村水利水电, 2020(07): 36-40.

[78] Ervinia A, Huang J, Zhang Z. Land-use changes reinforce the impacts of climate change on annual runoff dynamics in a southeast China coastal watershed[J]. Hydrology and Earth System Sciences Discussions, 2015, 12(6): 6305-6325.

[79] 赫晓慧, 孟军令, 郭恒亮等. 土地利用与气候变化对洛河流域径流的影响[J]. 水电能源科学, 2021, 39(10): 31-34.

[80] 颜小平, 吴雷祥, 谢军等. 基于RUSLE模型的承德市土壤侵蚀敏感性及其对土地利用变化响应研究[J]. 水利水电技术, 2021, 52(12): 221-232.

[81] 周自翔. 延河流域景观格局与水文过程耦合分析[D]. 陕西师范大学, 2014.

[82] 张丽, 柳烨, 蔡朵朵等. SWAT模型参数自动校准方法对比及适用性研究——以泾河中上游地区为例[J]. 中国农村水利水电, 2016(11): 76-81.

[83] 荣易, 秦成新, 孙傅等. SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究, 2020, 33(11): 2571-2580.

[84] 陈海涛, 曹向真. 基于SUFI-2参数最适置信区间的参数优化方法结果对比分析[J]. 节水灌溉, 2021(06): 24-30.

[85] 刘宁, 张霞, 祝雪萍等. 基于SWAT模型和SUFI-2算法的碧流河流域径流模拟[J]. 水力发电, 2019, 45(03): 18-22.

[86] 李泽利, 吕志峰, 赵越等. 新安江上游流域SWAT模型的构建及适用性评价[J]. 水资源与水工程学报, 2015,26(01): 25-31.

[87] Bai J, Zhou Z, Zou Y, et al. Watershed Drought and Ecosystem Services: Spatiotemporal Characteristics and Gray Relational Analysis[J]. International Journal of Geo-Information, 2021, 10(2): 43.

[88] 邢春燕, 郭中领, 常春平等. RWEQ模型在河北坝上地区的适用性[J]. 中国沙漠, 2018, 38(06): 1180-1192.

[89] 国世友, 周振伟, 刘春生. 用风廓线指数律模拟风速随高度变化[J]. 黑龙江气象, 2008, 25(S1): 20-22.

[90] Li J, Jiang H, Bai Y, et al. Indicators for spatial–temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China[J]. Ecological Indicators, 2016, 60: 1008-1016.

[91] Chen L, Wang J, Fu B, et al. Land-use change in a small catchment of northern Loess Plateau, China[J]. Agric Ecosyst Environ, 2001, 86(2): 163-172.

[92] 朱青. 基于土地利用模拟的泛河流域生态系统土壤保持服务研究[D]. 西安科技大学, 2021.

[93] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool[J]. Users Manual Version, 2005.

[94] 杨新, 郭江峰, 刘洪鹄等. 东北典型黑土区土壤风蚀环境分析[J]. 地理科学, 2006(04):4443-4448.

[95] 李云. 风云卫星在沙尘天气监测中的业务应用[J]. 卫星应用, 2018(11): 24-28.

[96] 吴硕秋, 马晓燕. 利用风云四、MODIS及CALIPSO卫星资料分析西北沙尘过程的垂直和水平分布特征[J]. 环境科学学报, 2020, 40(08): 2892-2901.

[97] 李志, 郑粉莉, 刘文兆. 1961—2007年黄土高原极端降水事件的时空变化分析[J]. 自然资源学报. 2010,25(02): 291-299.

[98] 燕玲玲, 巩杰, 徐彩仙等. 子午岭地区土壤保持服务时空变化及其影响因素[J]. 水土保持学报, 2021, 35(01): 188-197.

[99] 梁丽丽. 基于SPANs模型土壤保持服务和洪水调控服务供给、需求和服务流的量化评估与制图[D]. 山西师范大学, 2018.

中图分类号:

 X171    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式