- 无标题文档
查看论文信息

论文中文题名:

 液态CO2-高温蒸汽冲击过程煤体传热变形试验及模拟研究    

姓名:

 王伟凯    

学号:

 21220089030    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 秦雷    

第一导师单位:

 西安科技大学    

第二导师姓名:

 石钰    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Experimental and simulation study of heat transfer deformation of coal body during liquid CO2-high temperature steam impingement process    

论文中文关键词:

 冷热冲击 ; 传热 ; 变形 ; 劣化机制 ; 有效作用范围    

论文外文关键词:

 Cold and hot shock ; Heat transfer ; Deformation ; Degradation mechanism ; Effective range of influence    

论文中文摘要:

液态CO2致裂凭借高效、清洁等优势成为近年来煤层增透技术研究的热点,其首要作用机制为温度交变作用下煤体热诱导破裂。然而,液态CO2温度、相变潜热较低,热应力作用范围有限,进而促使煤体增透有效区域较小。因此本文采用液态CO2-高温蒸汽协同致裂煤层技术,通过搭建液态CO2-高温蒸汽协同冲击实验平台,研究冷热冲击过程类钻孔煤体温度、应变、损伤演化特征,结合COMSOL软件探究液态CO2-高温蒸汽协同冲击过程煤体温度、应变作用范围。

利用红外热成像检测仪,定量分析液态CO2-高温蒸汽冲击过程煤体孔壁、孔底区域x、y、z方向温度演化规律。结果表明:冷热冲击过程中,干燥煤样温度扩散集中且剧烈,饱水煤样则为均匀且迟缓,表明裂隙水会吸收、储存热量,促使温度扩散更为均匀,但会堵塞低温介质运移通道,降低温度扩散效率;根据孔底、孔壁区域x、y、z三个方向温度演化曲线,得到煤体温度与其至冲击点间距呈负相关;冷冲击过程中,低温场扩散集中在煤体下侧,热冲击过程中高温场集中在上侧,位于液态CO2、高温蒸汽注入孔中间区域温度演化幅值最大,即冷热介质运移方向对煤体温度扩散影响显著;

通过DIC散斑监测系统,分析液态CO2-高温蒸汽冲击过程煤体孔壁、孔底区域x、y、z方向应变演化规律。结果表明:液态CO2-高温蒸汽协同致裂过程中,煤体表层应变均呈膨胀、收缩变形交错分布趋势,冷冲击过程煤体整体呈收缩变形,热冲击过程煤样呈膨胀变形,这表明内部原始裂隙、不同矿物颗粒分布对煤体应变演化特征影响显著;煤体孔底、孔壁区域x、y、z三个方向应变演化幅值随其到冲击点的距离增加而减小,煤体宏观变形最大值集中在液态CO2、高温蒸汽注入通道对应孔底区域;饱水煤样各方向应变演化幅值呈现均匀、轻微特征,干燥煤样则为集中且剧烈,即裂隙水在影响温度扩散,进而影响应变演化特征同时,具有一定缓冲作用延缓了变形进程。

通过非金属超声波检测仪,探究液态CO2-高温蒸汽冲击前后煤体孔壁、孔底区域x、y、z方向波速衰减率演化特征,此外,通过扫描电子显微镜观测冷热冲击前后煤体表明裂隙形貌演化。结果表明:煤体各测点波速衰减率均有一定提升,表明低温液态CO2-高温蒸汽协同致裂过程煤体孔隙不断延伸,逐渐形成裂隙,并产生大量新生孔隙;波速衰减率演化与煤体煤体温度扩散、变形趋势具有强相关性;冷热冲击前后,平行层理方向煤样形貌破坏主要体现在层理脱落以及“三翼型”裂隙新生,垂直层理方向煤样形貌破坏主要体现为原始层理裂隙发育及层理边缘脱落。

基于实验室研究成果,利用COMSOL软件实现低温液态CO2-高温蒸汽协同冲击过程温度、应变有效作用范围确定。模拟结果表明:冷热冲击过程中,数值计算中煤体孔底、孔壁区域x、y、z轴方向温度演化与实验结果相符;冲击过程中,煤体孔底、孔壁区域温度有效作用体积比随冲击时间增加而提升,冲击结束时分别为:14.032%、4.519%;孔壁、孔壁区域变形有效作用体积比随冲击时间增加呈“升-降-升”趋势,冲击结束时分别为:0.181%、0.047%;冷热冲击过程中,煤体孔壁区域温度、应变作用范围均小于孔底区域,即孔底区域在冷热介质初始冲击压力下,温度、应变有效作用范围显著提升。

本文采用液态CO2-高温蒸汽协同冲击煤层增透技术,探究液态CO2-高温蒸汽协同冲击下煤体温度、应变、损伤特征演化规律,为液态CO2-高温蒸汽协同冲击煤层增透技术工程应用提供一定理论依据。

论文外文摘要:

Liquid CO2 fracturing, with its high efficiency and cleanliness, has become a hot topic in recent years in the research of coal seam permeability enhancement techniques. Its primary mechanism of action is thermal-induced fracturing of the coal mass under temperature alternation. However, the temperature of liquid CO2 and its latent heat of phase change are relatively low, leading to a relatively small range of thermal stress effects. Therefore, this paper adopts the technique of liquid CO2-high temperature steam co-fracturing coal seams. By setting up an experimental platform for liquid CO2-high temperature steam co-impact, the temperature, strain, and damage evolution characteristics of the coal body near boreholes during the cold and hot shock process are studied. Additionally, the COMSOL software is used to explore the range of temperature and strain effects during the liquid CO2-high temperature steam co-impact process on the coal body.

Using an infrared thermal imaging detector, the temperature evolution in the x, y, and z directions of the coal body wall and bottom areas during the liquid CO2-high temperature steam shock process was quantitatively analyzed. The results show that during the cold and hot shock process, the temperature diffusion in the dry coal sample is concentrated and intense, while in the saturated coal sample, it is uniform and slow. This indicates that fracture water absorbs and stores heat, leading to more uniform temperature diffusion. However, it blocks the low-temperature medium migration channel, reducing the efficiency of temperature diffusion. According to the temperature evolution curves in the x, y, and z directions at the bottom and wall areas of the borehole, the temperature of the coal body is negatively correlated with its distance to the impact point. During the cold shock process, the low-temperature field is concentrated on the underside of the coal body, while during the hot shock process, the high-temperature field is concentrated on the upper side. The middle area between the liquid CO2 and high-temperature steam injection holes has the largest temperature evolution amplitude, indicating that the direction of cold and hot medium migration significantly affects the temperature diffusion in the coal body.

Through the DIC speckle monitoring system, the strain evolution in the x, y, and z directions of the coal body wall and bottom areas during the liquid CO2-high temperature steam shock process was analyzed. The results show that during the liquid CO2-high temperature steam co-fracturing process, the surface strain of the coal body alternates between expansion and contraction, indicating significant effects of the internal original fractures and different mineral particle distributions on the strain evolution characteristics of the coal body. The strain evolution amplitude in the x, y, and z directions at the bottom and wall areas of the coal body decreases with increasing distance from the impact point, with the maximum macroscopic deformation of the coal body concentrated at the bottom area corresponding to the liquid CO2 and high-temperature steam injection channels. The strain evolution amplitude in all directions of the saturated coal sample shows uniform and slight characteristics, while in the dry coal sample, it is concentrated and intense. This indicates that fracture water not only affects temperature diffusion but also has a buffering effect that delays the deformation process.

Using a non-metallic ultrasonic detector, the wave velocity attenuation rate evolution characteristics in the x, y, and z directions of the coal body wall and bottom areas before and after the liquid CO2-high temperature steam shock were explored. Additionally, the evolution of fracture morphology before and after cold and hot shocks was observed with a scanning electron microscope. The results show that the wave velocity attenuation rate at each measurement point of the coal body increased, indicating continuous extension of coal body pores, gradual formation of fractures, and generation of numerous new pores during the low-temperature liquid CO2-high temperature steam co-fracturing process. The evolution of wave velocity attenuation rate is strongly correlated with the trends of coal body temperature diffusion and deformation. Before and after the cold and hot shocks, the destruction of the coal sample morphology in the direction parallel to the bedding mainly manifested as bedding detachment and the generation of "trilateral" fractures, while in the direction perpendicular to the bedding, it mainly showed development of original bedding fractures and edge detachment.

Based on laboratory research results, the COMSOL software was used to determine the effective range of temperature and strain during the low-temperature liquid CO2-high temperature steam co-impact process. The simulation results show that during the cold and hot shock process, the numerical calculation of temperature evolution in the x, y, and z-axis directions in the bottom and wall areas of the coal body is consistent with the experimental results. During the shock process, the effective volume ratio of temperature in the bottom and wall areas of the coal body increases with shock time, reaching 14.032% and 4.519% at the end of the shock, respectively. The effective volume ratio of deformation in the wall and bottom areas follows a "rise-fall-rise" trend with increasing shock time, reaching 0.181% and 0.047% at the end of the shock, respectively.

This paper adopts liquid CO2 - high temperature steam synergistic impact coal seam penetration technology, to explore the liquid CO2 - high temperature steam synergistic impact under the coal body temperature, strain, damage characteristics of the evolution of the law, for the liquid CO2 - high temperature steam synergistic impact coal seam penetration technology engineering applications to provide a certain theoretical basis.

参考文献:

参考文献

[1] 谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012,37(04):535-542.

[2] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014,39(08):1391-1397.

[3] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016,41(01):1-6.

[4] 孙德强, 高文凯, 郑军卫, 等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源, 2021,43(01):33-38.

[5] 郭德勇, 张超, 李柯, 等. 松软低透煤层深孔微差聚能爆破致裂机理[J]. 煤炭学报, 2021,46(08):2583-2592.

[6] 林柏泉, 李子文, 翟成, 等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报, 2011,28(03):452-455.

[7] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021,46(01):1-15.

[8] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019,44(08):2277-2284.

[9] 苏现波, 宋金星, 郭红玉, 等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术, 2020,48(12):1-30.

[10] 路强. 低透气性煤层群无煤柱煤与瓦斯共采关键技术推广会在淮南举行[J]. 中国煤炭, 2008(06):95.

[11] 苏现波, 宋金星, 郭红玉, 等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术, 2020,48(12):1-30.

[12] 张天军, 许鸿杰, 李树刚, 等. 温度对煤吸附性能的影响[J]. 煤炭学报, 2009,34(06):802-805.

[13] Cao LT, Yao YB, Cui C, et al. Characteristics of in-situ stress and its controls on coalbed methane development in the southeastern Qinshui Basin, North China[J]. Energy Geoscience, 2020, (1):69-80.

[14] Burrows LC, Haeri F, Cvetic P, et al. A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs[J]. Energy & fuels, 2020,34(5):5331-5380.

[15] 胡国忠, 王宏图, 范晓刚. 邻近层瓦斯越流规律及其卸压保护范围[J]. 煤炭学报, 2010,35(10):1654-1659.

[16] 刘三钧, 林柏泉, 高杰, 等. 远距离下保护层开采上覆煤岩裂隙变形相似模拟[J]. 采矿与安全工程学报, 2011,28(01):51-55.

[17] 伍清, 石必明, 穆朝民, 等. 潘一矿东区下保护层开采保护范围合理性研究[J]. 煤矿安全, 2015,46(06):12-15.

[18] 翟成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报, 2011,36(12):1996-2001.

[19] 王耀锋, 何学秋, 王恩元, 等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报, 2014,39(10):1945-1955.

[20] 刘生龙, 朱传杰, 林柏泉, 等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报, 2020,37(05):983-990.

[21] Saikia BD, Mahadevan J, Rao D. Exploring mechanisms for wettability alteration in low-salinity waterfloods in carbonate rocks[J]. Journal of Petroleum Science and Engineering, 2018(164):595-602.

[22] 姜永东, 宋超, 王苏健, 等. 超声波激励下煤层气解吸扩散特性的研究[J]. 煤炭科学技术, 2020,48(03):174-179.

[23] 鲍先凯, 刘源, 郭军宇, 等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报, 2020,39(04):715-725.

[24] 田苗苗,张磊,薛俊华,等.液氮致裂煤体技术研究现状及展望[J].煤炭科学技术,2022,50(07):191-198.

[25] 严敏, 张一真, 林海飞, 等. 液氮浸融对不同预制温度煤体损伤特性试验研究[J]. 煤炭学报, 2020,45(08):2813-2823.

[26] 张磊, 田苗苗, 曾世攀, 等. 液氮溶浸对不同煤阶含水煤样渗流特性的影响[J]. 岩土力学, 2022,43(11):3015-3026.

[27] Du ML, Gao F, Cai CZ, et al. Experimental Study on the Damage and Cracking Characteristics of Bedded Coal Subjected to Liquid Nitrogen Cooling[J]. Rock Mechanics and Rock Engineering, 2021,54(11):5731-5744.

[28] Shang Z, Wang HF, Li B, et al. Fracture processes in coal measures strata under liquid CO2 phase transition blasting[J]. 2021(254): 0013-7944.

[29] 张道勇, 朱杰, 赵先良, 等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报, 2018,43(06):1598-1604.

[30] Allen JC, Bauer CL. Method of increasing the permeability of a subterranean hydrocarbon bearing formation [P]. America: US3638727 A, 1968-09-27.

[31] Sun XH, Wang ZY, Sun BJ, et al. Research on hydrate formation rules in the formations for liquid CO2 fracturing[J]. Journal of Natural Gas Science and Engineering, 2016,33:1390-1401.

[32] 王海柱, 李根生, 郑永, 等. 超临界CO2压裂技术现状与展望[J]. 石油学报, 2020,41(01):116-126.

[33] Mcdaniel BW BW, Grundma SR, Kendrick WD, et al. Field applications of cryogenic nitrogen as a hydraulic-fracturing fluid[J]. 1998, 50(3):38-39.

[34] Simon DE, Mcdaniel BW, Coon RM. Evaluation of Fluid pH Effects on Low Permeability Sandstones [C]. SPE Annual Fall Technical Conference and Exhibition. American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc,1976.

[35] 张嘉凡, 高壮, 程树范, 等. 煤岩HJC模型参数确定及液态CO2爆破特性研究[J]. 岩石力学与工程学报, 2021,40(S1):2633-2642.

[36] 张军涛,孙晓,吴金桥.CO2干法压裂新技术在页岩气藏的应用实践[C] 中国石油学会天然气专业委员会.2018年全国天然气学术年会论文集(03非常规气藏).陕西延长石油(集团)有限责任公司.

[37] 赵丹, 刘晓青. 液态CO2煤层增透技术及应用研究[J]. 煤炭科学技术, 2021,49(10):107-114.

[38] Huang ZW, Zhang SK, Yang RY, et al. A review of liquid nitrogen fracturing technology[J]. Fuel, 2020,266:117040.

[39] Xu JZ, Zhai C, Ranjith PG. Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery[J]. Energy, 2022(239):122145.

[40] 文虎, 李珍宝, 王旭, 等. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报, 2017,37(02):149-153.

[41] Wang Q, Huang L. Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite: Effect of clay structure and water content[J]. Fuel, 2019,239:32-43.

[42] 李树刚, 白杨, 林海飞, 等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018,43(09):2476-2483.

[43] 梁卫国, 张倍宁, 黎力, 等. 注能(以CO2为例)改性驱替开采CH4理论与实验研究[J]. 煤炭学报, 2018,43(10):2839-2847.

[44] Bullen RS, Lillies AT. Carbon dioxide fracturing process and apparatus[P]. America: US 4374545 A, 1983-02-22.

[45] 白鑫. 液态二氧化碳相变射孔致裂煤岩体增透机理及应用研究[D]. 重庆大学, 2019.

[46] 商政. 基于BLEVE的液态二氧化碳相变致裂煤体增透机制与应用研究[D]. 中国矿业大学, 2021.

[47] 王兆丰, 孙小明, 陆庭侃, 等. 液态CO2相变致裂强化瓦斯预抽试验研究[J]. 河南理工大学学报(自然科学版), 2015,34(01):1-5.

[48] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016,41(11):2793-2799.

[49] 刘磊. 煤层气井水力压裂液氮伴注与CO2驱替技术研究[J]. 煤炭工程, 2020,52(04):124-129.

[50] Zarębska K, Ceglarska-Stefańska G. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery[J]. International Journal of Coal Geology, 2008,74(3-4):167-174.

[51] 马征. 煤体层理方向对液态CO2致裂增透的影响规律研究[D]. 中国矿业大学, 2020.

[52] Xu JZ, Zhai C, Ranjith PG, et al. Petrological and ultrasonic velocity changes of coals caused by thermal cycling of liquid carbon dioxide in coalbed methane recovery[J]. Fuel, 2019,249:15-26.

[53] Xu J, Zhai C, Liu SM, et al. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery[J]. Fuel, 2017,208:41-51.

[54] Zheng XZ, Wang XL, Guo J, et al. Experimental Study on CH4 Displacement from Coal Seam Fractured by Liquid CO2[J]. IIETA, 2018,37(1):212-218.

[55] 苏伟伟. 石门揭煤区液态CO2致裂增透加速消突技术[J]. 煤矿安全, 2019,50(02):144-147.

[56] 王海东. 突出煤层掘进工作面CO2可控相变致裂防突技术[J]. 煤炭科学技术, 2016,44(03):70-74.

[57] 马小敏. 液态CO2相变致裂影响有效抽采半径试验研究[J]. 煤炭科学技术, 2019,47(02):88-93.

[58] 汪开旺. 基于CO2致裂影响的钻孔有效抽采半径研究[J]. 煤炭技术, 2020,39(04):114-116.

[59] 贾进章, 李斌, 王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报, 2021,31(04):57-63.

[60] 邹永洺. 煤与瓦斯突出煤层CO2相变致裂增透技术试验研究[J]. 煤矿安全, 2018,49(03):5-8.

[61] 丛钰洲, 翟成, 丁熊, 等. 煤层钻孔内注入液氮过程中的传热传质规律及煤损伤分析[J]. 煤炭学报, 2023,48(08):3128-3137.

[62] 曹钰,郤保平,赵璐敏,等.液氮深冷冲击作用下岩石传热规律试验研究[J].太原理工大学学报,2022,53(06):1014-1023.

[63] 李和万, 刘戬, 王来贵, 等. 节理煤体低温损伤机理及影响范围研究[J]. 实验力学, 2022,37(05):675-688.

[64] 张磊, 卢硕, 唐俊, 等. 液氮溶浸时间对烟煤渗流特性的影响及传热过程模拟[J]. 采矿与安全工程学报, 2021,38(06):1231-1239.

[65] Cha M, Yin XL, Kneafsey T, et al. Cryogenic fracturing for reservoir stimulation - Laboratory studies[J]. Journal of Petroleum Science and Engineering, 2014,124:436-450.

[66] Coetzee S, Neomagus HWJP, Bunt JR, et al. The transient swelling behaviour of large (-20+ 16 mm) South African coal particles during low-temperature devolatilisation[J]. Fuel, 2014,136:79-88.

[67] Chaudhary G, Li R. Freezing of water droplets on solid surfaces: An experimental and numerical study[J]. Experimental Thermal and Fluid Science, 2014,57:86-93.

[68] Wang D, Yao BH, Gao Y, et al. Effect of Cyclic T emperature Impact on Coal Seam Permeability[J]. Thermal Science, 2017,21: S351-357.

[69] Hebblewhite B, Galvin J. A review of the geomechanics aspects of a double fatality coal burst at Austar Colliery in NSW, Australia in April 2014[J]. International Journal of Mining Science and Technology, 2017,27(1):3-7.

[70] Wang DK, Wei JP, Fu QC, et al. Seepage law and permeability calculation of coal gas based on Klinkenberg effect[J]. Journal of Central South University, 2015,22(5):1973-1978.

[71] 张和伟, 申建, 李可心, 等. 不同煤组成与分布差异传热特征及其机理[J]. 煤炭学报, 2023,48(06):2519-2529.

[72] 刘雅瑞. 松散煤体渗流过程热-湿耦合变化规律研究[D]. 安徽理工大学, 2020.

[73] Park C, Synn J.H, Shin H.S, et al. Experimental study on the thermal characteristics of rock at low temperatures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41:81-86.

[74] Mottaghy D, Rath V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions[J]. Geophysical Journal International, 2006,164(1):236-245.

[75] Shen YJ, Yang Y, Yang GS, et al. Damage characteristics and thermo-physical properties changes of limestone and sandstone during thermal treatment from −30 °C to 1000 °C[J]. Heat and Mass Transfer, 2018,54(11):3389-3407.

[76] McDermott CI, Randriamanjatosoa ARL, Tenzer H, et al. Simulation of heat extraction from crystalline rocks: The influence of coupled processes on differential reservoir cooling[J]. Geothermics, 2006,35(3):321-344.

[77] 王来贵, 高晗, 郭子钰, 等. 受冻融循环作用的砂岩宏观变形特征研究[J]. 实验力学, 2020,35(06):1113-1120.

[78] 单仁亮, 白瑶, 孙鹏飞, 等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报, 2019,44(06):1742-1752.

[79] 刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报, 2016,35(10):2000-2012.

[80] Zhu CF, Li YZ, Tan HB, et al. Transient modeling of quench and recovery of LNG-HTS hybrid energy transmission system based on multi-field coupled analysis[J]. Applied Thermal Engineering, 2021,195:117139.

[81] 朱昌星, 赵伟浩, 刘旭. 相似材料煤样单轴压缩声发射试验及数值模拟研究[J]. 矿业研究与开发, 2023,43(02):133-137.

[82] 丁若尧. 液氮冷却作用下高温大理岩力学性质与损伤机理研究[D]. 中国矿业大学, 2021.

[83] 郝建峰, 梁冰, 孙维吉, 等. 煤与瓦斯的热流固耦合关系研究现状及展望[J]. 采矿与安全工程学报, 2022,39(05):1051-1060.

[84] 徐拴海, 李宁, 许刚刚, 等. 冻融环境中饱和岩石的热量传递与温度平衡规律[J]. 岩石力学与工程学报, 2016,35(11):2225-2236.

[85] Li BT, Lin HF, Li SG, et al. Exploration of pore structure evolution and damage mechanism of coal under liquid nitrogen freeze-thaw cycles[J]. Fuel, 2022,325:124875.

[86] 高娟, 冯梅梅, 杨维好. 渗流作用下裂隙岩体冻结温度场分布规律研究[J]. 采矿与安全工程学报, 2013,30(01):68-73.

[87] 张亮, 罗炯, 崔国栋, 等. 低温气体辅助煤层气压裂中的冷冲击机理[J]. 地球科学, 2016,41(04):664-674.

[88] 张云鹏. 煤层气井液氮压裂技术研究[D]. 西南石油大学, 2015.

[89] 张春会, 王来贵, 赵全胜, 等. 液氮冷却煤变形-破坏-渗透率演化模型及数值分析[J]. 河北科技大学学报, 2015,36(01):90-99.

[90] Finnie I, Cooper GA, Berlie J. Fracture propagation in rock by transient cooling[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1979,16(1):11-21.

[91] 李和万, 张子恒, 王来贵, 等. 循环冷浸致煤样结构损伤的力学性质演化规律[J]. 煤炭学报, 2021,46(S2):770-776.

[92] 刘忠鑫. 煤多孔介质内低温氮的传热传质研究[D]. 中国矿业大学, 2019.

[93] 李柯柯. 基于Comsol多孔介质热流固耦合特性研究[D]. 东北石油大学, 2022.

[94] Perkins TK, Gonzalez JA. The Effect of Thermoelastic Stresses on Injection Well Fracturing[J]. Society of Petroleum Engineers Journal, 1985,01(25):78-88.

[95] 樊世星, 文虎, 童校长, 等. 低透煤层液态CO2压裂增透理论与成套技术[J]. 煤矿安全, 2022,53(10):80-88.

[96] 张大同, 滕霖, 李玉星, 等. 管输CO2焦耳-汤姆逊系数计算方法[J]. 油气储运, 2018,37(01):35-39.

[97] 贾廷贵, 张智超, 郝长胜. 不同变质程度烟煤的自燃特性研究[J]. 煤矿安全, 2024,55(02):87-98.

[98] 贾蓬, 王晓帅, 王德超. 饱水裂隙岩石冻融变形特性研究[J]. 岩土力学, 2023,44(02):345-354.

[99] 何水鑫. 花岗岩热冲击破裂机理及其定量表征[D]. 太原理工大学, 2021.

[100] 曹运兴, 张新生, 张军胜, 等. CO2相变致裂煤的显微构造特征与成因机制[J]. 煤田地质与勘探, 2023,51(02):137-145.

[101] 王浩. 低温致裂煤体力学演化与数值模拟研究[D]. 太原理工大学, 2021.

中图分类号:

 TD712    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式