- 无标题文档
查看论文信息

题名:

     

作者:

 兰国庆    

学号:

 20220226059    

保密级别:

 2    

语种:

 chi    

学科代码:

 085224    

学科:

  - -     

学生类型:

     

学位:

     

学位年度:

 2023    

学校:

 西    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

     

导师姓名:

 肖鹏    

导师单位:

 西安科技大学    

提交日期:

 2023-06-15    

答辩日期:

 2023-06-03    

外文题名:

 Experimental study on crack propagation law around gas drainage borehole in soft coal seam    

关键词:

 松软煤体 ; 裂隙扩展 ; 钻孔破坏 ; 含孔试件 ; 钻孔模拟    

外文关键词:

 Soft coal ; fracture propagation ; drilling damage ; specimens with holes ; drilling simulation    

摘要:
<p>使使</p> <p>西XX</p> <p>0&deg;10&deg;30&deg;3.16&times;10<sup>-3</sup> mm4.31&times;10<sup>-3</sup> mm5.29&times;10<sup>-3</sup> mm4 mm6 mm8 mm3.16&times;10<sup>-3</sup> mm5.27&times;10<sup>-3</sup> mm8.43&times;10<sup>-3</sup> mm-6</p> <p></p>
外文摘要:
<p>With the use of new technologies and new equipment in coal mines, the mining intensity and mining extension speed of coal mines have been further accelerated, the gas content in deep coal seams has increased, the gas pressure has increased, and the gas disaster accidents have become more and more serious. Mine gas extraction is the most important technology for gas disaster prevention and control in coal mining in China. In particular, the soft coal seam has the characteristics of low mechanical strength, fast gas desorption speed, relatively high gas content and pressure, which leads to the collapse and deformation of gas extraction boreholes in soft coal seams, and it is difficult to form boreholes. At the same time, there are many cracks in the coal around the borehole after sealing, which leads to gas leakage, making it difficult to carry out gas extraction in soft coal seam efficiently and stably. Therefore, it is of great significance to study the law of crack propagation around boreholes under multi-factor conditions to achieve efficient gas extraction in soft coal seams.</p> <p>The experimental coal samples were selected from the soft coal seam of a mine in Shaanxi Province. Through the briquette ratio experiment, the hole-containing specimens with different drilling <font color='red'>parameter</font>s were made. Acoustic emission monitoring technology was used to analyze the deformation and failure characteristics of specimens with different drilling <font color='red'>parameter</font>s during uniaxial loading. With the increase of drilling angle and diameter, the compressive strength of specimens decreased, the number of acoustic emission ringing counts, energy and events increased, and the number of cracks produced by specimen rupture increased. When the drilling angle increases, the failure type of the specimen remains unchanged, showing X-type shear failure. When the borehole diameter increases, the failure type of the specimen changes from X-type shear failure to fracturing failure.</p> <p>The ultrasonic experimental device was used to calculate the equivalent crack width of the specimen by wave velocity. It was found that the maximum equivalent crack width increased with the increase of drilling angle and drilling diameter. The maximum equivalent crack width of the specimen with drilling angle of 0 &deg;, 10 &deg; and 30 &deg; was 3.16 &times; 10-3 mm, 4.31 &times; 10-3 mm and 5.29 &times; 10-3 mm, respectively. The maximum crack equivalent widths of specimens with borehole diameters of 4 mm, 6 mm and 8 mm are 3.16 &times; 10-3 mm, 5.27 &times; 10-3 mm and 8.43 &times; 10-3 mm, respectively. Using the self-designed and built solid-gas coupling three-dimensional physical similar drilling simulation experiment platform, the activity law of acoustic emission signals under different drilling angles and gas pressures was studied. It was found that with the increase of drilling angle and gas pressure, the distribution characteristics of cracks around boreholes changed from concentrated distribution in the middle of boreholes to concentrated distribution in the lower part of boreholes. The number of borehole cracks was positively correlated with drilling angle and gas pressure. By analyzing the variation of transmission wave signal, amplitude transmission coefficient and sound pressure distribution characteristics in 6 groups of hole-containing models, the distribution characteristics of fracture areas around boreholes with different borehole angles and borehole diameters are inverted. It is found that the fracture expansion area around boreholes increases with the increase of borehole angle and diameter, and the damage of boreholes is more serious.</p> <p>The research results obtained the law of crack propagation around borehole under multi-factor conditions, which has positive significance for improving the control of gas disasters and the utilization of gas resources in soft coal mines.</p>
参考文献:

[1]国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[R]. 中国统计, 2023.

[2]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[3]谢和平, 李存宝, 高明忠, 等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报, 2021, 40(02): 217-232.

[4]刘玉强, 陈南欣. 综合采煤机械化设备用系列橡胶密封件[J]. 世界橡胶工业, 2004, (05): 19-21.

[5]周福宝, 刘春, 夏同强, 等. 煤矿瓦斯智能抽采理论与调控策略[J]. 煤炭学报, 2019, 44(08): 2377-2387.

[6]林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(01): 28-35.

[7]聂百胜, 薛斐. 软煤钻杆研究进展及发展趋势[J]. 煤炭科学技术, 2016, 44(01): 47-54.

[8]郝晋伟, 齐庆新, 舒龙勇, 等. 煤岩塑性软化及扩容特性对钻孔密封性的影响[J]. 煤炭学报, 2019, 44(05): 1536-1543.

[9]袁亮. 松软低透煤层群瓦斯抽采理论与技术[M]. 北京: 煤炭工业出版社, 2004.

[10]Carter B J, Lajtai E Z, Petukhov A. Primary and remote fracture around underground cavities[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 15(1): 21-40.

[11]Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833-847.

[12]Gong Feng-qiang, Ye Hao, Luo Yong. The Effect of High Loading Rate on the Behaviour and Mechanical Properties of Coal-Rock Combined Body[J]. Shock and Vibration, 2018, 2018.

[13]王笑然, 王恩元, 刘晓斐, 等. 煤样三点弯曲裂纹扩展及断裂力学参数研究[J]. 岩石力学与工程学报, 2021, 40(04): 690-702.

[14]朱传奇, 谢广祥, 王磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报: 2022, 47(07): 2609-2622.

[15]张镇, 孙永新, 付玉凯, 等. 松软破碎煤体瓦斯抽采钻场预加固技术研究与应用[J]. 煤炭工程, 2019, 51(8): 44-47.

[16]张天军, 张磊, 李树刚, 等. 含孔试样渐进性破坏的表面变形特征[J]. 煤炭学报, 2017, 42(10): 2623-2630.

[17]马少鹏, 金观昌, 潘一山. 白光DSCM 方法用于岩石变形观测的研究[J]. 实验力学, 2002, 17(1): 10-16.

[18]包林海, 马少鹏, 王建新. 含转折非连通断层岩石破坏过程的试验研究[J]. 土木工程与管理学报, 2011, 28(4): 58-60.

[19]赵程, 田加深, 松田浩, 等. 单轴压缩下基于全局应变场分析的岩石裂纹扩展及其损伤演化特性研究[J]. 岩石力学与工程学报, 2015, 34(4): 763-769.

[20]杨慧明, 张明明. 煤体力学性质对其破坏过程声发射特征的影响研究[J]. 矿业安全与环保, 2018, 45(04): 6-11.

[21]潘红宇, 董晓刚, 张天军, 等. 单轴压缩下松软煤样破裂损伤演化特性研究[J]. 西安科技大学学报, 2018, 38(02): 202-209.

[22]齐黎明, 张旭锟. 松软煤层裂隙发育规律相似模拟实验研究[J]. 煤炭技术, 2018, 37(05): 156-158.

[23]张洪祯. 瓦斯抽采钻孔周围原位破碎煤岩体渗透特性试验研究[J]. 煤矿安全, 2022, 53(8): 33-41.

[24]Michael D P, Marie L. Characterizing Fracture Geometry from Borehole Images[J]. Mathematical Geosciences, 2018, 50 (4): 447-476.

[25]Haimson B. Micromechanisms of borehole instability leading to breakouts in rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(02): 157-173.

[26]Sophie L N, David J A, Evans, et al. Geomorphology and till architecture of terrestrial palaeo-ice streams of the southwest Laurentide Ice Sheet: A borehole stratigraphic approach[J]. Quaternary Science Reviews, 2018, 186: 186-214.

[27]David P S, Martin S, Eleni G, et al. Analysis of borehole breakout development using continuum damage mechanics[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 97: 134-143.

[28]谢和平, 鞠杨, 黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17): 3003-3010.

[29]王振, 梁运培, 金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程学报, 2008, 25(4): 444-448.

[30]张天军, 张磊, 李树刚, 等. 含孔试样渐进性破坏的表面变形特征[J]. 煤炭学报, 2017, 42(10): 2623.

[31]石占山, 梁冰, 王岩, 等. 加载与卸载过程瓦斯抽采钻孔变形特征[J]. 煤炭学报, 2017, 42(06): 1458-1465.

[32]肖福坤, 张峰瑞, 刘刚, 等. 固-气耦合作用下瓦斯抽采钻孔破裂规律研究[J]. 煤矿开采, 2016, 21(4): 123-126,137.

[33]张超, 林柏泉, 周延, 等. 本煤层近水平瓦斯抽采钻孔“强弱强”带压封孔技术研究[J]. 采矿与安全工程学报, 2013(6): 935-939.

[34]王宁, 刘长来, 李树刚, 等. 含孔试样破坏过程的变形特征研究[J]. 煤炭工程, 2021, 53(5): 162-167.

[35]齐黎明, 张旭锟, 王国玺, 等. 型煤钻孔裂隙发育的数值模拟研究[J]. 华北科技学院学报, 2018,15(02): 16-18+35.

[36]魏杰. 钻孔煤壁变形与渗流规律及钻孔参数优化研究[D]. 太原: 太原理工大学, 2018.

[37]陈才贤, 苏静, 赵忠义. 气体压力对软煤钻孔周围煤体应力及变形的影响实验研究[J]. 煤矿安全, 2016, 47(12): 1-3.

[38]Gaede O, Karpfinger F, Jocker J, et al. Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 53-63.

[39]郤保平, 赵阳升, 张昌锁, 等. 高温高压下花岗岩中钻孔变形规律实验研究[J]. 岩土工程学报, 2010, 32(02): 253-258.

[40]李忠辉, 王恩元, 郑安琪, 等.煤层瓦斯抽采钻孔变形破坏测试技术及其应用研究[J]. 煤炭科学技术, 2020, 48(10): 37-44.

[41]张学博, 高建良. 深部开采松软煤层抽采钻孔变形特性研究[J]. 中国安全生产科学技术, 2017, 13(8): 152-158.

[42]双海清, 赵艳军, 林海飞, 等. 稳压约束下钻孔倾角对煤体抗压强度影响实验研究[J]. 采矿与安全工程学报, 2019, 36(04): 805-811.

[43]Nur, Amos. Effects of stress on velocity anisotropy in rocks with cracks[J]. Journal of Geophysical Research, 1971, 76(76): 2022-2034.

[44]赵明阶, 吴德伦. 工程岩体的超声波分类及强度预测[J]. 岩石力学与工程学报, 2000, 19(1): 89-89.

[45]沈志华. 基于超声波技术的岩体稳定性研究[D]. 阜新: 辽宁工程技术大学, 2004.

[46]陈希瑞. 表面声波法监测裂纹[J]. 重庆工商大学学报(自然科学版), 2005, 22(2): 199-201.

[47]王永龙, 宋维宾, 孙玉宁, 等. 瓦斯抽采钻孔堵塞段力学模型及其应用[J]. 重庆大学学报, 2014, 37(9): 119-127.

[48]王永龙, 孙玉宁, 翟新献, 等. 基于GSI原理瓦斯抽采钻孔收缩比评估方法及其应用[J]. 中国安全生产科学技术, 2015, 11(2): 105-111.

[49]王永龙, 王振锋, 卢卫永, 等. 瓦斯抽采钻孔钻屑气固耦合运移压力损耗分析[J]. 中国安全生产科学技术, 2015, 11(4): 13-19.

[50]Furgason E S, Newhouse V L, Bilgutay N M, et al. Application of random signal correlation techniques to ultrasonic flaw detection[J]. Ultrasonics, 1975, 13(1): 11-17.

[51]Stephen E, Tilmann, Hugh F. Ultrasonic shear wave birefringence as a test of homogeneous elastic anisotropy[J]. Journal of Geophysical Research, 1973, 78(32): 7623-7629.

[52]Chandra S, Rai, Kenneth E. Shear-wave velocity anisotropy in sedimentary rocks: A laboratory study[J]. Geophysics, 2012, 53(6): 800-806.

[53]Wu B, King M S, Hudson J A. Stress-induced ultrasonic wave velocity anisotropy in a sand stone[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1991, 28(1): 101-107.

[54]Bernard Masserey, Edoardo Mazza. Analysis of the near-field ultrasonic scattering at a surface crack[J]. The Journal of the Acoustical Society of America, 2005, 118(6): 3585

[55]Molina J P, Wack B. Crack field characterization by ultrasonic attenuation preliminary study on rocks[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1982, 19(6): 267-278

[56]马锐. 小波分析在岩样破裂声发射检测中的应用[D]. 西安: 西安科技大学, 2013.

[57]董陇军, 张义涵, 孙道元, 等. 花岗岩破裂的声发射阶段特征及裂纹不稳定扩展状态识别[J]. 岩石力学与工程学报,2022, 41(01): 120-131.

[58]安定超, 张盛, 张旭龙, 等. 岩石断裂过程区孕育规律与声发射特征实验研究[J]. 岩石力学与工程学报, 2021, 40(02): 290-301.

[59]Jing Yang, Zong-Long Mu, Sheng-Qi Yang. Experimental study of acoustic emission multi-parameter information characterizing rock crack development[J]. Engineering Fracture Mechanics, 2020, 232(prepublish).

[60]RODRÍGUEZ P, CELESTINO T. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks[J]. Engineering Fracture Mechanics, 2019, 210: 54-69.

[61]JONG-SEOK H, CHUN-IN L, SEOKWON J. Measurement of acoustic emission and source location considering anisotropy of rock under triaxial compression[J]. Key Engineering Materials, 2004, 4(2): 1574-1579.

[62]SCHIAVI A, NICCOLINI G, TARIZZO P, et al. Analysis of acoustic emissions at low frequencies in brittle materials under compression[J]. Experimental Mechanics on Emerging Energy Systems and Materials, 2011, 3(2): 103-108.

[63]韩颖, 张飞燕, 刘晓, 等. 基于Hoek-Brown准则的煤层钻孔失稳破坏类型数值模拟研究[J]. 煤炭学报, 2020, 45(S1): 308-318

[64]朱红青, 盛锴. 全尺寸煤层钻孔稳定性的数值模拟研究[J]. 煤炭技术, 2017, 36(05): 136-138.

[65]姚向荣, 程功林, 石必明. 深部围岩遇弱结构瓦斯抽采钻孔失稳分析与成孔方法[J]. 煤炭学报, 2011, 35(12): 2074-2081.

[66]王振, 梁运培, 金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程学报, 2008, 25(4): 445-448.

[67]宋卫华, 兰永伟, 卸压(排放)钻孔破坏半径的数值模拟分析[J]. 辽宁工程技术大学学报, 2006, 25(14): 43-46.

[68]齐黎明, 张旭锟, 王国玺, 等. 型煤钻孔裂隙发育的数值模拟研究[J]. 华北科技学院学报, 2018, 40(70): 73-76.

[69]罗新荣, 李青, 刘泉霖, 等. 钻孔倾角对煤体应力及变形破坏的影响数值模拟研究[J]. 煤炭技术, 2018, 37(2): 45-49.

[70]孙臣, 翟成, 林柏泉. 钻孔应力分布特征及卸压增透技术的数值模拟[J]. 煤矿安全, 2012, 8(28): 36-40.

[71]赵鹏翔, 何永琛, 李树刚, 等. 类煤岩材料煤岩组合体力学及能量特征的煤厚效应分析[J]. 采矿与安全工程学报, 2020, 37(5): 1067-1076.

[72]肖福坤, 刘刚, 樊慧强, 等. 瓦斯抽采钻孔煤体破裂过程声发射特性试验研究[J]. 煤矿开采, 2013, 18(2): 7-10.

[73]肖鹏, 高振, 双海清, 等. 不同加载速率下煤体裂隙演化特征分析[J]. 中国安全科学学报, 2022, 32(11): 65-73.

[74]徐超平, 李贺, 鲁义, 等. 软煤瓦斯抽采钻孔失稳特性及控制技术研究现状[J]. 矿业安全与环保, 2022, 49(03): 131-135.

[75]张旭锟. 松软煤层钻孔周围裂隙发育规律的研究[D]. 廊坊: 华北科技学院, 2018.

[76]何生全, 金龙哲, 李雅阁, 等. 松软煤层瓦斯突出模拟试验相似材料研究[J]. 中国安全科学学报, 2017, 27(09): 45-50.

[77]肖福坤, 樊慧强, 刘刚, 等. 不同瓦斯钻孔倾角影响下煤岩单轴抗压强度研究[J]. 地下空间与工程学报, 2013, 9(S2): 1822-1826.

[78]张恒. 煤矸组合结构破坏失稳的卸荷机制及前兆规律研究[D]. 徐州: 中国矿业大学, 2021.

[79]杨丽荣, 黎嘉骏, 江川, 等. 岩样破裂过程声发射参数特征与时频特性分析[J]. 采矿与岩层控制工程学报, 2023, 5(01): 67-77.

[80]张天军, 纪翔, 张磊, 等. 瓦斯抽采钻孔孔周裂隙演化及等效裂纹宽度试验研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3625-3633.

[81]张凯, 李东会, 梁雁侠. 三轴加载煤样声波速度与孔隙率关系试验研究[J]. 煤炭科学技术, 2020, 48(5): 63-68.

[82]徐晓炼, 张茹, 戴峰, 等. 煤岩特性对超声波速影响的试验研究[J]. 煤炭学报, 2015, 40(4): 793-800.

[83]王琪. 基于超声波的巷旁充填混凝土承载性能表征及预测[D]. 西安: 西安科技大学, 2021.

[84]张磊. 抽采钻孔孔周裂隙扩展机理及其检测技术研究[D]. 西安: 西安科技大学, 2019.

[85]肖福坤, 张峰瑞, 刘刚, 等. 固-气耦合作用下瓦斯抽采钻孔破裂规律研究[J]. 煤矿开采, 2016, 21(4): 123-126,137.

[86]蒋兴科. 瓦斯预抽钻孔密封段受力变形特征及其漏气机理研究[D]. 西安: 西安科技大学, 2019.

[87]成小雨. 厚煤层综采覆岩破断及裂隙演化机理三维大型物理模拟研究[D]. 西安:西安科技大学, 2018.

[88]尹光志, 刘超, 李铭辉, 等. 椭圆形钻孔应力场解析解及水力压裂特性[J]. 煤炭学报, 2019, 44(S): 61-73.

[89]钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社, 2003.

[90]李树榜, 李书光, 刘学锋. 裂纹超声散射的有限元模拟[J]. 无损检测, 2007, 29(1): 27-31.

[91]吴顺涛. 超声波在类岩石材料裂隙扩展过程中的传播特性及应用[D]. 徐州: 中国矿业大学, 2018.

[92]生利英. 超声波检测技术[M]. 北京: 化学工业出版社, 2014.

[93]刘金. 超声波在非均匀气固两相介质中的传播特性研究[D]. 南京: 南京理工大学, 2019.

中图分类号:

 TD712    

开放日期:

 2025-11-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式