- 无标题文档
查看论文信息

题名:

 GQDs/Bi2WO6光催化降解地塞米松机理及其共混膜性能研究    

作者:

 孙沛东    

学号:

 21204228112    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 085900    

学科:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 市政工程    

研究方向:

 水环境控制与修复    

导师姓名:

 王佳璇    

导师单位:

 西安科技大学    

提交日期:

 2024-06-12    

答辩日期:

 2024-05-31    

外文题名:

 Study on the mechanism of dexamethasone degradation by photocatalytic degradation of GQDs/Bi2WO6 and its blended membrane properties    

关键词:

 可见光催化剂 ; 光催化膜 ; 地塞米松 ; 钨酸铋 ; 石墨烯量子点 ; 机理    

外文关键词:

 visible light photocatalyst ; photocatalytic membrane ; dexamethasone ; bismuth tungstate ; graphene quantum dots ; mechanism    

摘要:

糖皮质激素类药物(如地塞米松、皮质醇和泼尼松)在治疗炎症和自身免疫疾病中作用显著,但广泛存在于制药废水、医疗废水和生活污水中,难以通过传统处理工艺去除,排入水体后可能威胁水生生态系统和人类健康。因此,亟需开发高效、环保、经济的水处理技术来解决糖皮质激素药物污染问题。光催化技术通过光源激发催化剂产生强氧化性的活性自由基,能够高效分解难降解有机物,降低二次污染风险,是一种环境友好的技术,可在室温常压下进行且无需额外化学试剂。将光催化技术与膜分离技术结合形成的固定型光催化膜反应器,克服了单一光催化工艺中光能利用效率低、光催化剂回收难等问题。光催化膜是其核心组件,能够即时降解和分离污染物,减少光催化剂消耗,易于回收,扩展了其在水处理中的应用潜力。

本研究利用石墨烯量子点(GQDs)改性钨酸铋(Bi2WO6)催化剂,提高其光吸收性能和电子-空穴对的分离效率。采用水热法成功制备了GQDs/Bi2WO6光催化剂,研究其对地塞米松的去除效果和降解机理。通过相转换法将催化剂共混进超滤膜中,制备了共混型光催化膜,系统评估其性能,为提升光催化技术的效率和实用性提供新策略。主要研究成果如下

以柠檬酸作为碳源制备GQDs,采用水热法制备GQDs/Bi2WO6光催化剂,探究其对地塞米松的去除效果并分析其结构特征。结果如下:①通过微观形貌结构观察发现,所制备的Bi2WO6光催化剂为三维花朵状结构,其尺寸约为3-5μm,晶体结构为单相正交晶系。②通过X射线衍射分析,发现Bi2WO6催化剂具有斜方晶系结构。引入GQDs后,复合催化剂的衍射峰强度有所提升,说明GQDs的加入对Bi2WO6的晶体结构产生了影响。③通过傅里叶变换红外光谱进一步确认了GQDs在Bi2WO6上的成功加入。④通过分析GQDs/Bi2WO6的物理性质,发现GQDs的改性,增大了复合催化剂的比表面积,由25.08变成37.3m2 g −1。⑤基于紫外-可见漫反射光谱和光致发光光谱分析可知,Bi2WO6的禁带宽度为2.70 eV,GQDs/Bi2WO6的禁带宽度为2.67 eV,GQDs改性后得到的 GQDs/Bi2WO6不仅吸收带拓宽,而且电子-空穴传输得到促进,电子-空穴重组被抑制。

GQDs/Bi2WO6光催化剂对地塞米松的去除效果与降解机理分析试验结果如下:

 

①GQDs/Bi2WO6催化剂对地塞米松表现出优异的降解性能,在180 min内降解了32.4%的地塞米松,是原始Bi2WO6降解率的四倍。②地塞米松的光催化降解机制是GQDs/Bi2WO6在可见光激发下产生电子-空穴对。GQDs的共轭π结构促进电荷分离并防止电子-空穴对重组,可以吸收较宽范围的可见光,其表面的羟基和羧基促进地塞米松吸附。光照激发Bi2WO6产生电子-空穴对,电子迁移到GQDs并与氧气反应生成·O2自由基,有效降解地塞米松;Bi2WO6产生的空穴直接氧化地塞米松分子,促进降解;光生电子和空穴与水反应产生·OH自由基,·OH直接降解地塞米松或进一步氧化·O2,增强降解效率。

通过相转换法将GQDs/Bi2WO6共混在PVDF超滤膜中获得光催化膜,考察了催化剂共混量对光催化膜结构和性能的影响。结果表明:①GQDs/Bi2WO6最佳共混量为1%,在可见光照射下,空白PVDF超滤膜的地塞米松去除率仅为8.24%,而1%共混量光催化膜的地塞米松去除率高达39.19%。②经过6个周期的循环实验,180 min的光催化反应后,地塞米松的去除率仍然可达29.83%,相比第1个周期只降低了8.63%。③催化膜抗污染性能试验发现,连续过滤罗丹明B的过程中,1%共混量光催化膜展现了最低的总污染指数,为57.67%。上述结果表明1% GQDs/Bi2WO6共混型光催化膜具有良好的光催化性能、稳定性和抗污染能力。

光催化膜的结构特征和性质分析结果如下:①扫描电子显微镜图像显示,光催化膜表面散布着颗粒和不规则物质,这是由于光催化剂颗粒共混所致。原子力显微镜观察表明,随着GQDs/Bi2WO6催化剂共混浓度从0.5%提高到1.5%,光催化膜的表面粗糙度显著提升,其中1%共混量光催化膜的表面粗糙度增至32.6nm。②光学性质分析显示,光催化膜对紫外光和可见光部分波长具有优异吸收能力。尤其在400nm至800nm可见光区域,光响应性显著增强,在200nm至400nm紫外光范围内也有一定响应。③光催化膜的XRD图谱中,观察到α-PVDF和β-PVDF的特征衍射峰,以及斜方晶型钨酸铋的特征衍射峰,表明通过表面杂化技术,可有效将GQDs/Bi2WO6锚定于PVDF膜基质中。④傅里叶变换红外光谱未显示明显变化,其红外特征峰与PVDF超滤膜基本一致,说明催化剂的引入未改变分离膜的化学性质。⑤1%共混量光催化膜的接触角最小,为67.28°,纯水通量最高,为840.37 L/(m²·h),表明光催化剂的引入显著改善了膜的亲水性和水传输效率。

外文摘要:

Corticosteroid drugs, such as dexamethasone, cortisol, and prednisone, play an important role in the treatment of inflammation, autoimmune diseases, and various other conditions. Due to their widespread use and the challenge in their complete metabolism, these drugs can enter domestic wastewater through pharmaceutical waste, medical waste, and incomplete human metabolism. Traditional wastewater treatment processes struggle to effectively remove these substances, which may then enter aquatic environments. Residual corticosteroids in water bodies pose a potential risk to aquatic ecosystems and human health, making the development of efficient, eco-friendly, and economical water treatment technologies to address corticosteroid drug pollution an urgent need.

Photocatalysis, stimulated by a light source, generates highly oxidative active radicals capable of non-selectively decomposing recalcitrant organic compounds, helping to minimize the risk of secondary pollution. Thus, photocatalysis represents an environmentally friendly technology that operates at ambient temperature and pressure without the need for additional chemical reagents. Combining membrane separation with photocatalysis effectively overcomes the limitations of sole photocatalytic methods, such as low light energy utilization efficiency and difficulties in catalyst recovery. The hybrid photocatalytic membrane not only achieves immediate degradation and separation of pollutants but also reduces catalyst consumption and is easily recyclable, expanding its application potential in water treatment.

This study focuses on the visible light photocatalyst bismuth tungstate (Bi2WO6) and

 

modifies it with graphene quantum dots (GQDs) to enhance its light absorption properties and electron-hole separation efficiency. A GQDs/Bi2WO6 photocatalyst was successfully prepared using the hydrothermal method, exploring its removal efficiency and degradation mechanism for the typical corticosteroid—dexamethasone. The catalyst was incorporated into an ultrafiltration membrane via phase inversion, producing a hybrid photocatalytic membrane. The performance and characteristics of the photocatalytic membrane were systematically evaluated, offering new strategies to enhance the efficiency and practicality of photocatalytic technology. The main research findings are as follows:

Graphene quantum dots (GQDs) were synthesized using citric acid as a carbon source, and a GQDs/Bi2WO6 photocatalyst was prepared via the hydrothermal method to investigate its dexamethasone removal efficiency and analyze its structural characteristics. The results are as follows: ① Microscopic morphological observations revealed that the prepared Bi2WO6 photocatalyst exhibits a three-dimensional flower-like structure composed of orderly arranged nanosheets, with sizes around 3-5μm and a single-phase orthorhombic crystal structure. ② Crystal structure analysis indicated that the introduction of GQDs significantly impacts the microstructure and photocatalytic performance of Bi2WO6. Due to the nanoscale size of GQDs, their changes at the crystalline level might not be easily observable directly through XRD technology. ③ Fourier-transform infrared spectroscopy further confirmed the successful incorporation of GQDs onto Bi2WO6. ④ Analysis of the physical properties of GQDs/Bi2WO6 revealed that GQDs modification increased the specific surface area of the composite catalyst from 25.08 to 37.3 m^2 g^−1. ⑤ Based on UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy analysis, the bandgap width of Bi2WO6 was found to be 2.70 eV, and that of GQDs/Bi2WO6 was 2.67 eV. The GQDs-modified GQDs/Bi2WO6 not only exhibited a broadened absorption band but also enhanced electron-hole transmission, suppressing electron-hole recombination.

The removal efficiency and degradation mechanism analysis of GQDs/Bi2WO6 photocatalyst for dexamethasone are as follows: ① The GQDs/Bi2WO6 catalyst exhibited excellent degradation performance for dexamethasone, degrading 32.4% of the substance within 180 minutes, which is four times the degradation rate of the original Bi2WO6. ② The photocatalytic degradation mechanism of dexamethasone by GQDs/Bi2WO6 involves the generation of electron-hole pairs under visible light stimulation. The conjugated π structure of GQDs promotes charge separation and prevents electron-hole pair recombination, allowing for the absorption of a broad range of visible light. The hydroxyl and carboxyl groups on the surface of GQDs enhance the adsorption of dexamethasone. Light irradiation stimulates

 

Bi2WO6 to produce electron-hole pairs, with electrons transferring to GQDs and reacting with oxygen to generate ·O2 radicals, effectively degrading dexamethasone. The holes generated by Bi2WO6 directly oxidize dexamethasone molecules, facilitating degradation. Photogenerated electrons and holes reacting with water produce ·OH radicals, which either directly degrade dexamethasone or further oxidize ·O2, enhancing the degradation efficiency.

A photocatalytic membrane was obtained by blending GQDs/Bi2WO6 into a PVDF ultrafiltration membrane via the phase inversion method, and the impact of catalyst blending ratio on the structure and performance of the photocatalytic membrane was examined. The results indicate: ① The optimal blending ratio of GQDs/Bi2WO6 was 1%, under which the photocatalytic membrane exhibited good photocatalytic performance and higher stability. Under visible light irradiation, the dexamethasone removal rate of the blank PVDF ultrafiltration membrane was only 8.24%, while the 1% blended photocatalytic membrane achieved a dexamethasone removal rate of 39.19%. ② After six cycles of photocatalytic reactions lasting 180 minutes each, the removal rate of dexamethasone could still reach 29.83%, which only decreased by 8.63% compared to the first cycle. ③ The anti-pollution performance test of the photocatalytic membrane, during the continuous filtration of Rhodamine B, revealed that the 1% blended photocatalytic membrane exhibited the lowest total pollution index, at 57.67%.

The structural characteristics and properties analysis of the photocatalytic membrane shows: ① Scanning Electron Microscope (SEM) images reveal that the surface of the photocatalytic membrane is scattered with particles and irregular substances due to the blending of photocatalyst particles. Atomic Force Microscopy (AFM) observations indicate that as the blending concentration of the GQDs/Bi2WO6 catalyst increases from 0.5% to 1.5%, the surface roughness of the photocatalytic membrane significantly increases, with the 1% blended photocatalytic membrane’s surface roughness reaching 32.6nm. ② Optical property analysis found that the photocatalytic membrane exhibits excellent absorption capability for ultraviolet light and certain wavelengths of visible light. Particularly in the visible light region of 400nm to 800nm, the membrane's photoresponsiveness is significantly enhanced, while still showing a certain degree of response in the ultraviolet light range of 200nm to 400nm. ③ In the X-ray Diffraction (XRD) patterns of the photocatalytic membrane, not only are the characteristic diffraction peaks of α-PVDF and β-PVDF observed, but also the characteristic diffraction peaks of orthorhombic bismuth tungstate are displayed. This phenomenon indicates that through surface hybridization technology, GQDs/Bi2WO6 can be effectively anchored in the PVDF membrane substrate, creating a blended photocatalytic membrane with a

 

GQDs/Bi2WO6 functional layer. ④ The Fourier-Transform Infrared Spectroscopy (FTIR) of the photocatalytic membrane showed no significant changes, with its infrared characteristic peaks remaining consistent with those of the PVDF ultrafiltration membrane. ⑤ The smallest contact angle of the 1% blended photocatalytic membrane was 67.28°, indicating that the introduction of the photocatalyst significantly altered the membrane's hydrophilicity. The highest pure water flux reached 840.37 L/(m²·h), suggesting that the addition of the photocatalyst not only improved the membrane's surface characteristics but also optimized the membrane's pore structure or reduced pore blockage, thereby enhancing the membrane's water transport efficiency.

参考文献:

参考文献

[1]世界气象组织发布首份《全球水资源状况报告》[J].饮料工业,2022,25(06):48.

[2]余周,胡志伟,吴佳,余芷若,黄子蒙.我国水污染现状、危害及处理措施研究[J].环境与发展,2019,31(06):61+63.DOI:10.16647/j.cnki.cn15-1369/X.2019.06.038.

[3]Musee N, Kebaabetswe L P, Tichapondwa S, et al. Occurrence, fate, effects, and risks of dexamethasone: Ecological implications post-COVID-19[J]. International journal of environmental research and public health, 2021, 18(21): 11291.

[4]Sonavane M, Schollée J E, Hidasi A O, et al. An integrative approach combining passive sampling, bioassays, and effect‐directed analysis to assess the impact of wastewater effluent[J]. Environmental toxicology and chemistry, 2018, 37(8): 2079-2088.

[5]Gilbert N. Drug waste harms fish[J]. Nature, 2011, 476(7360): 265.

[6]Hamilton C M, Winter M J, Margiotta-Casaluci L, et al. Are synthetic glucocorticoids in the aquatic environment a risk to fish?[J]. Environment International, 2022, 162: 107163.

[7]Lin S M, Lee C S, Huang A C C, et al. Effects of Dexamethasone Use on Viral Clearance Among Patients with COVID-19: A Multicenter Cohort Study[J]. International Journal of Infectious Diseases, 2023.

[8]Rhen T, Cidlowski J A. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs[J]. New England Journal of Medicine, 2005, 353(16): 1711-1723.

[9]RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19[J]. New England Journal of Medicine, 2021, 384(8): 693-704.

[10]Quaresma A V, Rubio K T S, Taylor J G, et al. Removal of dexamethasone by oxidative processes: Structural characterization of degradation products and estimation of the toxicity[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106884.

[11]Zhang H C, Yu X, Yang W, et al. MCX based solid phase extraction combined with liquid chromatography tandem mass spectrometry for the simultaneous determination of 31 endocrine-disrupting compounds in surface water of Shanghai[J]. Journal of Chromatography B, 2011, 879(28): 2998-3004.

[12]Schriks M, van Leerdam J A, van der Linden S C, et al. High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands[J]. Environmental science & technology, 2010, 44(12): 4766-4774.

[13]Goh S X L, Goh H A, Lee H K. Automation of ionic liquid enhanced membrane bag-assisted-liquid-phase microextraction with liquid chromatography-tandem mass spectrometry for determination of glucocorticoids in water[J]. Analytica Chimica Acta, 2018, 1035: 77-86.

[14]Plotkin B J, Roose R J, Erikson Q, et al. Effect of androgens and glucocorticoids on microbial growth and antimicrobial susceptibility[J]. Current Microbiology, 2003, 47: 514-520.

[15]Guo Z, Guo A, Guo Q, et al. Decomposition of dexamethasone by gamma irradiation: kinetics, degradation mechanisms and impact on algae growth[J]. Chemical Engineering Journal, 2017, 307: 722-728.

[16]DellaGreca M, Fiorentino A, Isidori M, et al. Toxicity of prednisolone, dexamethasone and their photochemical derivatives on aquatic organisms[J]. Chemosphere, 2004, 54(5): 629-637.

[17]Jerez-Cepa I, Gorissen M, Mancera J M, et al. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2019, 231: 1-10.

[18]Xu D, Chen M, Pan X, et al. Dexamethasone induces fetal developmental toxicity through affecting the placental glucocorticoid barrier and depressing fetal adrenal function[J]. Environmental toxicology and pharmacology, 2011, 32(3): 356-363.

[19]DellaGreca M, Fiorentino A, Isidori M, et al. Toxicity of prednisolone, dexamethasone and their photochemical derivatives on aquatic organisms[J]. Chemosphere, 2004, 54(5): 629-637.

[20]Tahar A, Choubert J M, Coquery M. Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review[J]. Environmental Science and Pollution Research, 2013, 20: 5085-5095.

[21]Bal N, Kumar A, Du J, et al. Multigenerational effects of two glucocorticoids (prednisolone and dexamethasone) on life-history parameters of crustacean Ceriodaphnia dubia (Cladocera)[J]. Environmental Pollution, 2017, 225: 569-578.

[22]Jia A, Wu S, Daniels K D, et al. Balancing the budget: accounting for glucocorticoid bioactivity and fate during water treatment[J]. Environmental science & technology, 2016, 50(6): 2870-2880.

[23]Fan Z, Wu S, Chang H, et al. Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: comparison to estrogens[J]. Environmental Science & Technology, 2011, 45(7): 2725-2733.

[24]Liu S, Ying G G, Zhao J L, et al. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(10): 1367-1378.

[25]Verlicchi P, Galletti A, Petrovic M, et al. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options[J]. Journal of hydrology, 2010, 389(3-4): 416-428.

[26]Oulton R L, Kohn T, Cwiertny D M. Pharmaceuticals and personal care products in effluent matrices: a survey of transformation and removal during wastewater treatment and implications for wastewater management[J]. Journal of Environmental Monitoring, 2010, 12(11): 1956-1978.

[27]Sulaiman S, Khamis M, Nir S, et al. Stability and removal of dexamethasone sodium phosphate from wastewater using modified clays[J]. Environmental technology, 2014, 35(15): 1945-1955.

[28]Mohseni S N, Amooey A A, Tashakkorian H, et al. Removal of dexamethasone from aqueous solutions using modified clinoptilolite zeolite (equilibrium and kinetic)[J]. International journal of environmental science and technology, 2016, 13: 2261-2268.

[29]Forteza M, Galán E, Cornejo J. Interaction of dexamethasone and montmorillonite—Adsorption-degradation process[J]. Applied Clay Science, 1989, 4(5-6): 437-448.

[30]Dolar D, Vuković A, Ašperger D, et al. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes[J]. Journal of Environmental Sciences, 2011, 23(8): 1299-1307.

[31]Jia A, Wu S, Daniels K D, et al. Balancing the budget: accounting for glucocorticoid bioactivity and fate during water treatment[J]. Environmental science & technology, 2016, 50(6): 2870-2880.

[32]Luo Y, Guo W, Ngo H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the total environment, 2014, 473: 619-641.

[33]Sui Q, Huang J, Deng S, et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China[J]. Water research, 2010, 44(2): 417-426.

[34]Jia A, Wu S, Daniels K D, et al. Balancing the budget: accounting for glucocorticoid bioactivity and fate during water treatment[J]. Environmental science & technology, 2016, 50(6): 2870-2880.

[35]Kovalova L, Siegrist H, Singer H, et al. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination[J]. Environmental science & technology, 2012, 46(3): 1536-1545.

[36]Guo Z, Guo A, Guo Q, et al. Decomposition of dexamethasone by gamma irradiation: kinetics, degradation mechanisms and impact on algae growth[J]. Chemical Engineering Journal, 2017, 307: 722-728.

[37]Vadi M, Hossinie N, Shekari Z. Comparative study of adsorption isotherms steroidal anti-inflammatory drug dexamethasone on carbon nanotube and activated carbon[J]. Orient. J. Chem, 2013, 29(2): 491-496.

[38]Pazoki M, Parsa M, Farhadpour R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis[J]. Journal of environmental chemical engineering, 2016, 4(4): 4426-4434.

[39]王传彩, 李文娟, 吕东梅, 等. 掺杂银的纳米二氧化钛的制备及其光催化性能[J]. 曲阜师范大学学报: 自然科学版, 2010 (2): 97-100.

[40]宋宏宇, 卢华, 管海燕, 等. 辐照对地塞米松磷酸钠注射液含量影响的考察[J]. 中国药业, 2013, 22(13): 14-16.

[41]Koe W S, Lee J W, Chong W C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environmental Science and Pollution Research, 2020, 27: 2522-2565.

[42]Zhang L, Li Y, Li Q, et al. Recent advances on Bismuth-based Photocatalysts: Strategies and mechanisms[J]. Chemical Engineering Journal, 2021, 419: 129484.

[43]杨春明. 铋系异质结光催化剂的可控制备及性能研究[D]. 吉林大学, 2019.

[44]Qiang Z, Liu X, Li F, et al. Iodine doped Z-scheme Bi2O2CO3/Bi2WO6 photocatalysts: Facile synthesis, efficient visible light photocatalysis, and photocatalytic mechanism[J]. Chemical Engineering Journal, 2021, 403: 126327.

[45]Li B, Lai C, Zeng G, et al. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity[J]. ACS applied materials & interfaces, 2018, 10(22): 18824-18836.

[46]王宏娟, 郑楠, 董晓丽. 碘掺杂氯氧化铋光催化剂的制备及性能[J]. Journal of Dalian Polytechnic University, 2020, 39(6).

[47]Zhou Y, Lv P, Zhang W, et al. Pristine Bi2WO6 and hybrid Au-Bi2WO6 hollow microspheres with excellent photocatalytic activities[J]. Applied Surface Science, 2018, 457: 925-932.

[48]Pinchujit S, Phuruangrat A, Wannapop S, et al. Synthesis and characterization of heterostructure Pt/Bi2WO6 nanocomposites with enhanced photodegradation efficiency induced by visible radiation[J]. Solid State Sciences, 2022, 134: 107064.

[49]Belousov A S, Parkhacheva A A, Suleimanov E V, et al. Potential of Bi2WO6-based heterojunction photocatalysts for environmental remediation[J]. Materials Today Chemistry, 2023, 32: 101633.

[50]Jin K, Qin M, Li X, et al. A low-dosage silver-loaded flower-like Bi2WO6 nanosheets toward efficiently photocatalytic degradation of sulfamethoxazole[J]. Materials Science in Semiconductor Processing, 2022, 139: 106338.

[51]Wang L, Wang Z, Zhang L, et al. Enhanced photoactivity of Bi2WO6 by iodide insertion into the interlayer for water purification under visible light[J]. Chemical Engineering Journal, 2018, 352: 664-672.

[52]Belousov A S, Parkhacheva A A, Suleimanov E V, et al. Potential of Bi2WO6-based heterojunction photocatalysts for environmental remediation[J]. Materials Today Chemistry, 2023, 32: 101633.

[53]Lu Y, Sun Y, Li J, et al. Preparation of a novel pn BiOI/Bi2WO6 photocatalyst and its application in the treatment of tetracycline[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(29): 23212-23223.

[54]Peng R, Kang Y, Deng X, et al. Topotactic transformed face-to-face heterojunction of BiOCl/Bi2WO6 for improved tetracycline photodegradation[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106750.

[55]Guo M, Zhou Z, Yan S, et al. Bi2WO6–BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline[J]. Scientific reports, 2020, 10(1): 18401.

[56]Bing X, Li J, Liu J, et al. Biomimetic synthesis of Bi2O3/Bi2WO6/MgAl-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysis performance[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364: 449-460.

[57]汪子润. Bi2WO6/生物炭基复合光催化剂的制备及对水中抗生素的降解去除[J]. 2021.

[58]Wang G, Cheng D, He T, et al. Enhanced visible-light responsive photocatalytic activity of Bi 25 FeO 40/Bi 2 Fe 4 O 9 composites and mechanism investigation[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 10923-10933.

[59]Wu K, Song S, Wu H, et al. Facile synthesis of Bi2WO6/C3N4/Ti3C2 composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production[J]. Applied Catalysis A: General, 2020, 608: 117869.

[60]Orimolade B O, Idris A O, Feleni U, et al. Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis–A comprehensive review[J]. Environmental Pollution, 2021, 289: 117891.

[61]水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.

[62]费锡智, 杨晶晶, 白仁碧. 光催化-膜分离耦合技术的水处理应用研究进展[J]. 水处理技术, 2014, 40(12): 11-18.

[63]Argurio P, Fontananova E, Molinari R, et al. Photocatalytic membranes in photocatalytic membrane reactors[J]. Processes, 2018, 6(9): 162.

[64]Kumar S, Sharma R, Gupta A, et al. TiO2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization[J]. Science of The Total Environment, 2022, 845: 157221.

[65]Nasrollahi N, Ghalamchi L, Vatanpour V, et al. Photocatalytic-membrane technology: a critical review for membrane fouling mitigation[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 101-116.

[66]Martínez F, López-Muñoz M J, Aguado J, et al. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants[J]. Water research, 2013, 47(15): 5647-5658.

[67]Chen Q, Wu S, Xin Y. Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline[J]. Chemical Engineering Journal, 2016, 302: 377-387.

[68]Gong Y, Wu Y, Xu Y, et al. All-solid-state Z-scheme CdTe/TiO2 heterostructure photocatalysts with enhanced visible-light photocatalytic degradation of antibiotic waste water[J]. Chemical Engineering Journal, 2018, 350: 257-267.

[69]Sun S, Ding H, Mei L, et al. Construction of SiO2-TiO2/g-C3N4 composite photocatalyst for hydrogen production and pollutant degradation: Insight into the effect of SiO2[J]. Chinese Chemical Letters, 2020, 31(9): 2287-2294.

[70]石中全, 周裕珍, 杨致邦, 等. 废水中地塞米松污染的探讨[J]. 中国医药指南, 2012, 10(9): 319-321.

[71]Pazoki M, Parsa M, Farhadpour R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis[J]. Journal of environmental chemical engineering, 2016, 4(4): 4426-4434.

[72]Ghenaatgar A, Tehrani R M A, Khadir A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies[J]. Journal of Water Process Engineering, 2019, 32: 100969.

[73]Zhao Y, Liang X, Wang Y, et al. Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst[J]. Journal of colloid and interface science, 2018, 523: 7-17.

[74]Cui Y, Wang T, Liu J, et al. Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts[J]. Chemical Engineering Journal, 2021, 420: 129595.

[75]赵艳艳, 范敬煜, 魏景, 等. 碳量子点/Bi2WO6 复合材料高效光催化降解 RhB 和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.

[76]He Z, Que W, Chen J, et al. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization[J]. Journal of Physics and Chemistry of Solids, 2013, 74(7): 924-928.

[77]唐建军, 王岳俊, 谢炜平, 等. N/TiO2 光催化剂的制备及掺杂过程分析[J]. 过程工程学报, 2008, 8(1): 172-176.

[78]张凯, 钱君超, 陈志刚, 等. 大比表面积, 高孔隙率多孔仿生 CeO_2-CuO 光催化剂[J]. 材料导报, 2016, 30(20): 39-43.

[79]Leofanti G, Padovan M, Tozzola G, et al. Surface area and pore texture of catalysts[J]. Catalysis today, 1998, 41(1-3): 207-219.

[80]Gracia F, Holgado J P, Caballero A, et al. Structural, Optical, and Photoelectrochemical Properties of M n+− TiO2 Model Thin Film Photocatalysts[J]. The Journal of Physical Chemistry B, 2004, 108(45): 17466-17476.

[81]Hao X, Zhou J, Cui Z, et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 229: 41-51.

[82]Ghenaatgar A, Tehrani R M A, Khadir A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies[J]. Journal of Water Process Engineering, 2019, 32: 100969.

[83]Han Q, Wang M, Sun F, et al. Effectiveness and degradation pathways of bisphenol A (BPA) initiated by hydroxyl radicals and sulfate radicals in water: Initial reaction sites based on DFT prediction[J]. Environmental Research, 2023, 216: 114601.

[84]王佳璇, 胡御宁, 岳向雷, 等. 溶液特性及共存物对纳滤膜去除水中全氟辛酸的影响[J]. 中国环境科学, 2022, 42(2): 665-671.

[85]Shi F, Ma Y, Ma J, et al. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2[J]. Journal of Membrane Science, 2012, 389: 522-531.

[86]Senol‐Arslan D, Gul A, Dizge N, et al. The different impacts of g‐C3N4 nanosheets on PVDF and PSF ultrafiltration membranes for Remazol black 5 dye rejection[J]. Journal of Applied Polymer Science, 2023, 140(41): e54514.

[87]刘文超, 洪勇琦, 周勇, 等. 高通量聚砜/磺化聚砜超滤膜制备研究[J]. 水处理技术, 2014, 40(3): 60-63.

[88]李燕芬, 刘元法, 郭静, 等. 聚丙烯腈超滤膜的亲水改性及抗污染性能[J]. Journal of Dalian Polytechnic University, 2020, 39(6).

[89]Saha N K, Balakrishnan M, Ulbricht M. Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling[J]. Journal of Membrane Science, 2007, 306(1-2): 287-297.

[90]Wong P C Y, Kwon Y N, Criddle C S. Use of atomic force microscopy and fractal geometry to characterize the roughness of nano-, micro-, and ultrafiltration membranes[J]. Journal of Membrane Science, 2009, 340(1-2): 117-132.

[91]Bakhtiarnia S, Sheibani S, Billard A, et al. Enhanced photocatalytic activity of sputter-deposited nanoporous BiVO4 thin films by controlling film thickness[J]. Journal of Alloys and Compounds, 2021, 879: 160463.

[92]Uzunova-Bujnova M, Kralchevska R, Milanova M, et al. Crystal structure, morphology and photocatalytic activity of modified TiO2 and of spray-deposited TiO2 films[J]. Catalysis Today, 2010, 151(1-2): 14-20.

[93]Simonsen M E, Li Z, Søgaard E G. Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film[J]. Applied Surface Science, 2009, 255(18): 8054-8062.

[94]Wang B, Cao Q, Cheng M, et al. Photocatalytic degradation of antibiotics in water by pollution-free photocatalytic films with a three-dimensional layered structure and the reaction mechanism study[J]. Journal of Water Process Engineering, 2023, 52: 103550.

[95]Tran D T, Mendret J, Mericq J P, et al. Study of permeate flux behavior during photo-filtration using photocatalytic composite membranes[J]. Chemical Engineering and Processing-Process Intensification, 2020, 148: 107781.

[96]Ravichandran K, Uma R, Sriram S, et al. Fabrication of ZnO: Ag/GO composite thin films for enhanced photocatalytic activity[J]. Ceramics International, 2017, 43(13): 10041-10051.

[97]Pazoki M, Parsa M, Farhadpour R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis[J]. Journal of environmental chemical engineering, 2016, 4(4): 4426-4434.

[98]Ghenaatgar A, Tehrani R M A, Khadir A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies[J]. Journal of Water Process Engineering, 2019, 32: 100969.

[99]Chen Z, Chen G E, Xie H Y, et al. Photocatalytic antifouling properties of novel PVDF membranes improved by incorporation of SnO2-GO nanocomposite for water treatment[J]. Separation and Purification Technology, 2021, 259: 118184.

[100]Wang Q, Wang P, Xu P, et al. Visible-light-driven photo-Fenton reactions using Zn1-1.5 xFexS/g-C3N4 photocatalyst: Degradation kinetics and mechanisms analysis[J]. Applied Catalysis B: Environmental, 2020, 266: 118653.

中图分类号:

 X703    

开放日期:

 2028-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式