- 无标题文档
查看论文信息

题名:

 新颖自驱动同步整流有源钳位反激变换器研究    

作者:

 李洁    

学号:

 21206029025    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关电源    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2024-06-28    

答辩日期:

 2024-06-05    

外文题名:

 Research on Novel Self-driven Synchronous Rectification Active Clamp Flyback Converter    

关键词:

 反激变换器 ; 有源钳位 ; 软开关 ; 同步整流    

外文关键词:

 Flyback Converte ; Active Clamp ; Soft Switch ; Synchronous Rectification    

摘要:

反激变换器具有结构简单、成本低、可靠性高等优势,在电源适配器、模块电源等中小功率场合得到广泛应用,但其存在损耗大及电磁干扰问题。为此,本文提出了一种原边采用有源钳位技术,副边采用自驱动同步整流电路的新颖自驱动同步整流有源钳位反激变换器,可有效提升变换器的整体效率,具有重要理论研究意义及工程应用价值。

首先分析了有源钳位反激变换器的原理,并对所提出新颖自驱动同步整流电路原理进行了深入研究,指出该驱动电路可使同步整流管结电容充放电速度更快,进而可有效提升开关管的开关速度及变换器效率。根据流过变换器二次侧电感电流是否降为零将变换器划分为DCM、CCM及CrCM三种工作模式,并分别对其能量传输过程及其对开关性能的影响进行了深入分析,得出了确保原边主开关管实现ZVS及副边同步整流开关管实现ZCS的最优工作模式,并对保证变换器工作在最优工作模式下的调制技术及控制策略进行了深入研究。通过对变换器的软开关特性及实现条件进行分析,得出了原边开关管均实现ZVS的最小死区时间。分析了变压器原边寄生电容对软开关性能的影响,指出开关管的ZVS性能可通过减小寄生电容得到改善,并提出了一种可有效降低变压器寄生电容的新颖变压器绕制方法——分段累进型绕法。综合考虑变换器的纹波电压指标要求、开关管的电压电流应力及其实现软开关的条件,得出了元件参数设计方法。

研制了一台5V/10A的新颖自驱动同步整流有源钳位反激变换器样机,仿真及实验结果表明变换器能可靠实现软开关性能,且各项技术指标均达到设计要求,有效提高了效率,验证了理论分析的正确性及所提出自驱动同步整流电路和参数设计方法的可行性。

外文摘要:

The flyback converter has the advantages of simple structure, low cost and high reliability. It is widely used in small and medium power occasions such as power adapters and module power supplies, but it has large losses and electromagnetic interference problems. To this end, this paper proposes a novel self-driven synchronous rectification active clamp flyback converter with active clamping technology on the primary side and self-driven synchronous rectification circuit on the secondary side, which can effectively improve the overall efficiency of the converter and has important theoretical research significance and engineering application value.

Firstly, the principle of the active clamp flyback converter is analyzed, and the principle of the proposed novel self-driven synchronous rectification circuit is deeply studied. It is pointed out that the driving circuit can make the synchronous rectifier tube junction capacitance charge and discharge faster, thereby effectively improving the switching speed of the switch tube and the converter efficiency. The converter is divided into three working modes: DCM, CCM and CrCM according to whether the current flowing through the secondary inductor of the converter drops to zero. The energy transfer process and its influence on the switch performance are analyzed in depth, and the optimal working mode to ensure that the primary main switch tube achieves ZVS and the secondary synchronous rectification switch tube achieves ZCS is obtained. The modulation technology and control strategy to ensure that the converter works in the optimal working mode are studied in depth. By analyzing the soft switching characteristics and implementation conditions of the converter, the minimum dead time for the primary switch tube to achieve ZVS is obtained. The influence of the primary parasitic capacitance of the transformer on the soft switching performance is analyzed, and it is pointed out that the ZVS performance of the switch tube can be improved by reducing the parasitic capacitance. A novel transformer winding method that can effectively reduce the parasitic capacitance of the transformer is proposed-the segmented progressive winding method. Considering the ripple voltage index requirements of the converter, the voltage and current stress of the switch tube and the conditions for achieving soft switching, the component parameter design method is obtained.

A 5V/10A novel self-driven synchronous rectification active clamp flyback converter prototype was developed. The simulation and experimental results show that the converter can reliably achieve soft switching performance, and all technical indicators meet the design requirements, effectively improving the efficiency, verifying the correctness of the theoretical analysis and the feasibility of the proposed self-driven synchronous rectification circuit and parameter design method.

参考文献:

[1] 吴京文. 直流-直流模块电源的发展趋势及热点探讨[J]. 通信世界, 2002,(17): 35-36.

[2] F Blaabjerg, A Consoli, J A. Ferreira, etc. The future of electronic power Processing and conversion[J]. IEEE Transactions on Power Electronics, 2005, 20(3): 715-72.

[3] WATSON R, LEE F C, HUA G C. Utilization of an activeclamp circuit to achieve soft switching in flyback converters[J]. IEEE Transactions on Power Electronics, 1996, 11 (1):162-169.

[4] Duran E, Andujar J M,Segura F, et al. A high-flexibility DC load for. fuel cell and solar arrays power sources based on DC-DC converters[J]. Applied Energy, 2011, 88(5): 1690-1702.

[5] Baek J B, Kim J T, Cho B H. Low-profile AC/DC converter for laptop adaptor[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011: 60-64.

[6] 刘秉科. 高性能开关电源的设计探讨[J]. 电子制作, 2021(04): 87-89.

[7] Zarghani M, Mohsenzade S, Hadizade A, et al. An extremely low ripple high voltage power supply for pulsed current applications[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7991-8001.

[8] 袁帆, 郝瑞祥, 游小杰, 项鹏飞, 等. 一种高电压增益宽范围软开关双向 DC-DC 变换器[J]. 中国电机工程学报, 2023, 1-15.

[9] 惠海. 基于氮化镓器件的有源箝位反激变换器分析与设计[D]. 西安科技大学, 2020.

[10] 王忠, 曹通, 王福学, 等. 具有自驱动有源缓冲器的 GaN 基高效准谐振反激式功率变换器[J]. 半导体技术, 2024, 49(03): 263-271.

[11] Zhang W, Yin W J, Qiu X B, et al. Electromagnetic Compatibility Analysis and Optimization Design of Switching Power Supply Printed Circuit Board[J]. Journal of Nanoelectronics and Optoelectronics, 2021, 16(4): 552-558.

[12] 刘树林, 刘健著. 开关变换器分析与设计[M]. 北京: 机械工业出版社, 2010.

[13] Abdel-Rahim O, Chub A, Blinov A, et al. Current-Fed Dual Inductor Push-Pull Partial Power Converter[C]//2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC). IEEE, 2022: 327-332.

[14] 陈刚. 软开关双向 DC-DC 变换器的研究[D]. 浙江大学, 2001.

[15] 曹萱, 程鹏铭, 杨奕, 等. 一种基于 DCM 下的漏极反馈反激变换器在 PFM 峰值电流模式控制下的稳定性分析[J]. 电气工程学报, 2024: 1-9

[16] 丁杰, 尹华杰, 赵世伟. 反激式隔离型高增益DC/DC变换器[J]. 电源学报, 2022(02).

[17] Zhang J, Huang X, Wu X, et al. A high efficiency flyback converter with new active clamp technique[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1775-1785.

[18] 陈波. 基于同步整流控制器的 ZVS 反激开关电源技术分析[J]. 自动化应用, 2024,65(04): 96-98.

[19] Park J, Moon Y J, Jeong M G, et al. Quasi-resonant (QR) controller with adaptive switching frequency reduction scheme for flyback converter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3571-3581.

[20] 宁平华. 基于双 RCD 箝位电路和饱和电抗器的多输出开关电源研究[J]. 齐齐哈尔大学学报(自然科学版), 2016, 32(03): 1-6.

[21] Qin X, Hu H, Wu H, et al. A series-input forward converter with shared RCD cell for highreliability and wide input voltage range applications[C]//2013 IEEE Energy Conversion Congress and Exposition. IEEE, 2013: 154-158.

[22] 余寅实. 高效率的软开关有源钳位反激变换器的研究与实现[D]. 电子科技大学,

2023.

[23] 凡绍桂, 巩冰, 游江, 等. 低电压电流应力的有源钳位 ZVS 软开关技术[J]. 中国电机工程学报, 2021, 41(13): 4616-4628.

[24] Zhou G, Tian Q, Wang L. Soft-switching high gain three-port converter based on coupled inductor for renewable energy system applications[J]. IEEE Transactions on Industrial Electronics, 2021, 69(2): 1521-1536.

[25] 洪良, 杜建华, 王均等. 非对称半桥 LLC 谐振变换器同步整流数字设计[J]. 电源学报, 2018, 16(04): 113-119.

[26] 管乐诗, 程怡, 施震宇, 等. 一种 10 MHz 高频 DC-DC 功率变换器及其同步整流技术[J]. 电工技术学报, 2023, 38(18): 5029-5038.

[27] 周国华, 赵泓博, 毛桂华, 周述晗, 徐顺刚. 开关变换器调制技术的分类与综述[J]. 中国电机工程学报, 2018, 38(21): 6383-6400+6501.

[28] 孙泽, 陈息坤, 王佳军, 等. 反激变换器开关噪声抑制策略[J]. 电子技术应用, 2023,49(05): 111-114.

[29] Li Y C, Chen C L. A novel single-stage high-power-factor AC-to-DC LED driving circuit with leakage inductance energy recycling[J]. IEEE Transactions on Industrial Electronics, 2011, 59(2): 793-802.

[30] 刘树林, 曹晓生, 马一博. RCD 钳位反激变换器的回馈能耗分析及设计考虑[J]. 中国电机工程学报, 2010, 30(33): 9-15.

[31] 刘国伟, 董纪清. 反激变换器中 RCD 箝位电路的研究[J]. 电工电气, 2011, (01): 20-23+33.

[32] 汪礼, 何宁业, 陈珍海, 等. 反激变换器无源耗散型 RCD 箝位电路分析与设计[J].兰州工业学院学报, 2021, 28(03):66-71.

[33] Halder T. An improved hybrid energy recovery soft switching snubber for the flyback converter[C]//2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2012: 1-6.

[34] 姜艳姝, 徐兴. 反激式开关电源钳位保护电路设计仿真研究[J]. 计算机仿真, 2017,34(10): 114-118.

[35] Xu S, Wang C, Qian Q, et al. A single-switched high-switching-frequency quasi-resonant flyback converter with zero-current-switching and valley-switching[C]//2019 IEEE applied power electronics conference and exposition (APEC). IEEE, 2019: 2123-2127.

[36] 钱海, 于锁平, 陈乾宏. 采用同步整流技术的准谐振反激变换器[J]. 电力电子技术,2008(11): 40-42.

[37] 吴庆, 安少亮, 徐义轩, 等. 准谐振 Flyback 变换器分析与设计[J]. 电气传动, 2024,54(01): 20-26.

[38] 王忠, 曹通, 王福学, 等. 具有自驱动有源缓冲器的 GaN 基高效准谐振反激式功率变换器[J]. 半导体技术, 2024, 49(03): 263-271.

[39] Watson R, Hua G C, Lee F C. Characterization of an active clamp flyback topology for power factor correction applications[J]. IEEE Transactions on power electronics, 1996, 11(1): 191-198.

[40] 管月, 纪飞, 汪渭滨. 有源箝位反激式 DC-DC 变换器恒定谷值电流控制策略[J]. 电子与封装, 2022, 22(11): 56-61.

[41] 夏鲲, 丁晓波, 袁印, 等. 低边有源钳位交错反激式微型光伏逆变器设计[J]. 阳

能学报, 2015, 36(06): 1468-1473.

[42] 孙涛, 王涛. 带自驱同步整流的半无桥 PFC 电路技术研究[J]. 电气传动, 2024,

54(03): 10-14.

[43] 史晓燕. 同步整流 Buck 型 DC-DC 变换器关键技术研究[D]. 电子科技大学, 2023.

[44] 周筱珍. 应用于推挽电路的同步整流的研究[D]. 西安科技大学, 2004.

[45] 邹谦, 王俊武, 于卫锋, 等. 基于同步整流技术的低压大电流拓扑研究[J]. 电工技术, 2022, (05): 74-76.

[46] 闫亮. 同步整流电路中控制器选型与应用研究[J]. 科技创新与应用, 2024, 14(08):129-132+136.

[47] 张恒浩, 宋浩谊, 黄超. 一种反激变换器自驱同步整流设计[J]. 电器与能效管理技术, 2021, (11): 80-84.

[48] 胡宗波, 张波. 同步整流器中 MOSFET 的双向导电特性和整流损耗研究[J]. 中国电机工程学报, 2002, (03): 89-94.

[49] 张国澎, 孙新迪, 王浩, 等. CLLC 谐振变换器同步整流软开关失效分析与应对[J].电机与控制学报, 2024: 1-10.

[50] Perrin R, Quentin N, Allard B, et al. High-temperature GaN active-clamp flyback converter with resonant operation mode[J]. IEEE Journal of emerging and selected topics in power electronics, 2016, 4(3): 1077-1085.

[51] Zhang J, Liao J, Wang J, et al. A current-driving synchronous rectifier for an LLC resonant converter with voltage-doubler rectifier structure[J]. IEEE Transactions on Power Electronics, 2011, 27(4): 1894-1904.

[52] 程铭, 黄吉, 陈立川. 一种高效率绕组自驱同步整流反激 DC/DC 变换器研究[J]. 电器与能效管理技术, 2022, (08): 18-22.

[53] Spiazzi G, Mattavelli P, Costabeber A. High step-up ratio flyback converter with active clamp and voltage multiplier[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3205-3214.

[54] 宋晋峰, 陈国栋, 祝志成. 用于直流送出型光伏电站功率波动平抑的级联式电池储能系统变换器损耗优化[J]. 太阳能学报, 2023, 44(11):100-109.

[55] 徐晓贤, 沙广林, 庄园, 等. IGBT 模块的新型开关模型与损耗分析[J]. 电源学报,2018, 16(06): 152-158.

[56] 朱姝姝, 刘倩倩, 原熙博, 等. 发电机定子环形励磁绕组寄生电容解析模型与容值降低方法[J]. 中国电机工程学报, 2024, 1-12.

[57] 陈泽中. 电机励磁绕组寄生电容对 SiC 励磁调压器开关性能影响研究[D]. 南京航空航天大学, 2022.

[58] 李泽农. 双有源桥变换器中高频变压器的磁芯损耗模型与实验研究[D]. 天津: 河北工业大学, 2022.

[59] 曹小鹏. 大功率高频变压器优化设计[D]. 南京:东南大学, 2018.

[60] 谢东冬, 谢运祥. 平面变压器寄生参数对 LLC 谐振变换器性能的影响分析及优化设计验证[J]. 磁性材料及器件, 2023, 54(04): 37-42.

[61] 郑曦, 尹华. 反激变压器高频寄生参数的仿真分析研究[J]. 微电子学, 2022, 52(03):372-375+382.

[62] 屠腾, 张方华, 张钊荣, 等. 基于矩阵磁结构的平面电感寄生电容优化设计[J]. 中国电机工程学报, 2024: 1-9.

中图分类号:

 TM46    

开放日期:

 2027-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式