- 无标题文档
查看论文信息

论文中文题名:

 王家山煤矿大倾角综放面采空区防灭火技术研究    

姓名:

 王喆    

学号:

 20220226131    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 王凯    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Study on fire prevention and extinguishing technology in goaf of fully mechanized top-coal caving face with large dip angle in Wangjiashan coal mine    

论文中文关键词:

 大倾角煤层 ; 采空区“三带” ; 数值模拟 ; 采空区注氮 ; 防灭火技术    

论文外文关键词:

 Large dip coal seams ; “Three belts” in goaf ; Numerical simulation ; Nitrogen injection in goaf ; Anti-firefighting technology    

论文中文摘要:

采空区遗煤自燃是矿井生产面临的主要灾害之一,尤其是大倾角煤层综放开采过程中面临采空区丢煤量大、遗煤分布不均匀、工作面推进缓慢以及采空区漏风严重等问题,煤自燃危险性更加突出。本文以王家山煤矿大倾角煤层中二401综放面为对象,对采空区煤自燃规律及防治技术开展研究。

通过程序升温实验,对该煤层煤样进行氧化升温研究,进而测算煤样放热强度、耗氧速率以及煤自燃极限参数,并确定出该煤层自燃指标气体及预警指标。通过搭建相似模拟实验台,对大倾角煤层在开采过程中沿走向和倾向的采空区空间分布和遗煤分布情况进行研究,在沿倾向推进的过程中,遗留顶煤垮落后向工作面中下部区域滚滑堆积,主要集中在工作面中下部区域,结合现场观测,推算出采空区遗煤分布情况为在工作面中部,遗煤分布厚度自采空区低位处到高位处逐渐减少,回风侧遗煤厚度为1.97m;进风侧遗煤厚度为1.5m。通过现场观测结合数值模拟采空区氧气浓度分布规律,综合确定出采空区煤自燃氧化升温带范围,进风侧:39.5m~63m;回风侧:18m~55.5m,同时计算出工作面最小安全推进速度为0.58m/d。

基于数值模拟方法,通过设置不同工况注氮条件,分析采空区氧气分布规律,确定出采空区最佳注氮位置为距工作面进风侧30m处,最佳注氮流量为500m3/h。结合中二401综放面实际情况,提出了以监测、预防为主导,异常区域重点控制的综合性防灭火技术体系,保障了工作面的安全回采。研究结果为类似煤层开采的防灭火工作具有借鉴意义。

论文外文摘要:

Spontaneous combustion of coal left in the mining areas is one of the main hazards of mine production. In the process of integrated mining of large inclined coal seams, there are problems such as large amount of lost coal and uneven distribution of coal left in the mining area, slow advancement of the working face and serious air leakage in the mining area. The risk of spontaneous combustion of coal is more prominent, and the prevention of fire extinguishing in the mining area of large inclined coal seams is particularly important. In this paper, the spontaneous combustion of coal in the mining area is analysed and studied at the Middle No.401 comprehensive release face in the large inclined coal seam of Wangjiashan coal mine.

The oxygen consumption rate, exothermic intensity and coal spontaneous combustion limit parameters of the coal samples from this seam were analysed and studied through programmed temperature rise experiments, and the indicator gases and critical values for this seam were determined. The spatial distribution of the mined-out area along strike and dip and the distribution of residual coal are studied by building a similar simulation test bed. In the process of advancing along the inclination of the working face, the leftover top coal rolls, and accumulates in the lower area of the working face after collapsing, mainly concentrated in the middle and lower area of the working face; combined with the on-site observation of the coal left in the mining area, the distribution of the coal left in the mining area is deduced as follows: in the middle of the working face, the distribution thickness of residual coal gradually increases from the high position to the bottom position of goaf and finally accumulates in the lower part of goaf; The thickness of residual coal on the return air side reaches 1.97m; The thickness of residual coal on the air inlet side reaches 1.5m. By laying a beam pipe on the inlet side of the site to observe and analyse the oxygen concentration in the mining area, and comparing with the numerical simulation of the oxygen concentration on the inlet side of the mining area to verify, the final determination of the danger zone of coal spontaneous combustion in the mining area was made.The final determination of the risk area of coal spontaneous combustion in the mining area is 18m~55.5m on the return side and 39.5m~63m on the inlet side.At the same time, based on the maximum width of the oxidation zone in the mining area, the minimum safe advance speed of the working face was calculated to be 0.58m/d.

Finally, based on the numerical simulation method, by setting up different working conditions of nitrogen injection, analyzing the law of oxygen distribution in the mining area, the best location for nitrogen injection in the mining area is 30m from the inlet side of the working face, and the best nitrogen injection flow rate is 500m3/h. Combined with the Middle No.401 comprehensive release face, a comprehensive fire prevention technology system is proposed with monitoring and prevention as the main focus and abnormal areas as the key control. The results of the study have implications for the prevention of fire suppression in similar coal seam mining.

参考文献:

[1] 孙友祥, 李淑琪, 王镇东, 等. 我国煤炭产业碳达峰、碳中和实现对策研究[J]. 内蒙古煤炭经济, 2022, (07):109-111.

[2] Wang G, Ren H, Zhao G, et al. Research and practice of intelligent coal mine technology systems in China[J]. International Journal of Coal Science & Technology, 2022, 9(1): 24.

[3] 国家统计局. 2021年国民经济和社会发展统计公报.

[4] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[5] Caineng Z, Songqi P, Qun H. On the connotation, challenge, and significance of China's “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 449-462.

[6] Zhang H, Hu G, Zhao G. Research on the Movement Law of Roof Structure in Large-Inclined Coal Seam Working Face: A Case Study in Liu. Pan. Shui. Mining Area[J]. Shock and Vibration, 2022, 2022.

[7] Cao W, Liu H, Hang Y, et al. Similarity simulation on the movement characteristics of surrounding rock and floor stress distribution for large-dip coal seam[J]. Sensors, 2022, 22(7): 2761.

[8] 武永强. 大倾角大采高工作面底板活动规律研究[D]. 西安科技大学, 2018.

[9] 刘明. 煤矿大倾角作业面综采技术的研究[J]. 山西冶金, 2019, 42(05): 117-118+133.

[10] Dawei Z, Kan W, Zhihui B, et al. Formation and development mechanism of ground crack caused by coal mining: effects of overlying key strata[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1025-1044.

[11] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020, 30(3): 303-311.

[12] 卢鉴章. 我国煤矿一通三防技术的发展与进步[J]. 煤炭科学技术, 2007, 35(1): 8-13.

[13] Deng J, Xiao Y, Li Q, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015, 157: 261-269.

[14] Jun D, Jingyu Z, Yanni Z, et al. Study on coal spontaneous combustion characteristic temperature of growth rate analysis[J]. Procedia Engineering, 2014, 84: 796-805.

[15] 田双奇. 大倾角煤层长壁伪俯斜采场顶板运移规律[D]. 西安科技大学, 2020.

[16] 郝彬彬, 吕秀江, 王金喜. 大倾角厚煤层开采方法的选择[J]. 煤炭技术, 2008, 27(2): 43-45.

[17] 段西凯, 齐怀远, 陈东升, 等. 大倾角综放工作面化学膨胀惰泡治理自然发火技术[J]. 煤矿安全, 2012, 43(4): 38-41.

[18] Zhou B, Yang S, Yang W, et al. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2[J]. Fuel, 2022, 307: 121893.

[19] Lei B, He B, Xiao B, et al. Comparative study of single inert gas in confined space inhibiting open flame coal combustion[J]. Fuel, 2020, 265: 116976.

[20] 徐精彩, 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001.

[21] Deng J, Xu, Cheng X. Perspectives on spontaneous combustion mechanism and prediction theory of coal[J]. Liaoning Tech Univ, 2003,22(04): 455-459.

[22] Kong B, Li Z, Yang Y, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research, 2017, 24(30): 23453-23470.

[23] Liang Y, Hou X, Luo H, et al. Development countermeasures and current situation of coal mine fire prevention & extinguishing in China. Coal Science and Technology 2016, 44(06): 1-6+13.

[24] 李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(3): 111-114.

[25] 朱令起, 刘聪, 王福生. 煤自燃过程中自由基变化规律特性研究[J]. 煤炭科学技术, 2016, 44(10):44-47.

[26] 侯欣然, 乔建, 王福生. 煤炭自燃机理的研究进展[J]. 煤炭与化工, 2018, 41(06): 104-107.

[27] Lopez D, Sanada Y, Mondragon F. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel, 1998, 77(14): 1623-1628.

[28] 邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报(自然科学版), 2003, 22(4): 455-459.

[29] 张志明. 煤的自燃倾向性影响因素研究[D]. 华北理工大学, 2020.

[30] 赵文彬, 张培伟, 王金凤, 等. 煤岩组分对蓄热及自燃特性的影响[J]. 煤矿安全, 2022, 53(03):36-42.

[31] 贾雪梅, 蔺亚兵, 马东民. 高、低煤阶煤中宏观煤岩组分孔隙特征研究[J]. 煤炭工程, 2019, (06): 24-27.

[32] Chen L, Qi X, Yang J, et al. Thermogravimetric and infrared spectral analysis of candle coal pyrolysis under low-oxygen concentration[J]. Thermochimica Acta, 2021, 696: 178840.

[33] 赵维国, 李经文, 张辛亥, 等. 东荣矿区煤样氧化反应动力学热分析[J]. 西安科技大学学报, 2020, 40(02): 238-243.

[34] 邓军, 张敏, 雷昌奎, 等. 不同变质程度煤自燃特性及低温氧化动力学分析[J]. 安全与环境学报, 2021, 21(01): 94-100.

[35] Song Z, Fan H, Jiang J, et al. Insight into effects of pore diffusion on smoldering kinetics of coal using a 4-step chemical reaction model[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 312-319.

[36] 伍永平, 贠东风, 解盘石, 等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报, 2020, 45(01): 24-34.

[37] Ye Q, Wang W, Wang G, et al. Numerical simulation on tendency mining fracture evolution characteristics of overlying strata and coal seams above working face with large inclination angle and mining depth[J]. Arabian journal of geosciences, 2017, 10(4): 1-15.

[38] 伍永平, 刘孔智, 贠东风, 等. 大倾角煤层安全高效开采技术研究进展[J]. 煤炭学报, 2014, 39(08): 1611-1618.

[39] Luo S, WAng T, Wu Y, et al. Internal mechanism of asymmetric deformation and failure characteristics of the roof for longwall mining of a steeply dipping coal seam[J]. Archives of Mining Sciences, 2021, 66(1).

[40] 伍永平. 大倾角煤层开采“顶板-支护-底板”系统稳定性及动力学模型[J]. 煤炭学报, 2004(05): 527-531.

[41] 王金安, 张基伟, 高小明, 等. 大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅰ)—初次破断[J]. 煤炭学报, 2015, 40(06):1353-1360.

[42] 王家臣, 张锦旺. 综放开采顶煤放出规律的BBR研究[J]. 煤炭学报, 2015, 40(03): 487-493.

[43] 罗生虎, 伍永平, 刘孔智, 等. 大倾角煤层长壁开采空间应力拱壳形态研究[J]. 煤炭学报, 2016, 41(12): 2993-2998.

[44] 伍永平, 刘孔智, 贠东风, 等. 大倾角煤层安全高效开采技术研究进展[J]. 煤炭学报, 2014, 39(8): 1611-1618.

[45] 解盘石, 田双奇, 段建杰. 大倾角伪俯斜采场顶板运移规律实验研究[J]. 煤炭学报, 2019, 44(10): 2974-2982.

[46] 池小楼, 杨科, 刘文杰, 等. 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学, 2022, 43(05): 1391-1400.

[47] 李海, 韩进忠, 李殿春, 等. 大倾角煤层多重扰动煤巷围岩应力分布规律[J]. 中国矿业, 2021, 30(12): 98-105.

[48] 王正义, 何江, 杨文连, 等. 大倾角煤层孤岛工作面采动应力演化规律研究[J]. 矿业安全与环保, 2021, 48(05): 7-12.

[49] Cao W, Liu H, Hang Y, et al. Similarity Simulation on the Movement Characteristics of Surrounding Rock and Floor Stress Distribution for Large-Dip Coal Seam[J]. Sensors, 2022, 22(7): 2761.

[50] Ye Q, Wang G, Jia Z, et al. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip[J]. Journal of Petroleum Science and Engineering, 2018, 165: 477-487.

[51] 肖家平, 刘帅, 池小楼. 近距离采空区下大倾角俯伪斜工作面矿压显现特征研究[J]. 煤炭工程, 2019, 51(06): 93-98.

[52] 潘瑞凯, 曹树刚, 沈大富, 等. 俯伪斜开采采场顶板破断模型与工程实测研究[J]. 采矿与安全工程学报, 2017, 34(04): 637-643.

[53] 孟宪锐, 常振兴, 王永望, 等. 综放面采空区自燃 “三带” 分布规律研究[J]. 煤炭技术, 2015 (9): 128-130.

[54] Liu L, Shen Z, Chen J, et al. Study on Spontaneous Combustion “Three Zones” of the Distribution Law and Integrated Fire Prevention Technology in Mined-Out Area of Lingquan Mine[J]. Computational intelligence and neuroscience, 2022, 2022.

[55] 王俊峰, 周斌, 安帮, 等. 黄白茨矿采空区自燃危险区域“三位一体”预测应用[J]. 煤炭学报, 2018, 43(S1): 178-184.

[56] 董子文, 刘爱群, 齐庆杰, 等. 采场气体涌出与煤自燃的动态数值模拟研究[J]. 中国安全科学学报, 2017, 27(07): 30-35.

[57] 崔杰. 极近距离复合采空区三维自燃“三带”分布规律研究[J]. 煤矿安全, 2018, 49(05): 183-186.

[58] 赵彤宇, 杨胜强, 陈登照, 等. 采空区自燃“三带”自动化分析技术[J]. 煤矿安全, 2020, 51(04): 118-121.

[59] 孙维丽, 曲宝, 李东发, 等. 采空区自燃“三带”划分方法改进[J]. 煤矿安全, 2017, 48(08): 159-161+165.

[60] 褚廷湘, 李品, 余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报, 2019, 48(3): 529-537.

[61] 王庆国, 杨帅, 杨程. 不同回采进度与煤质条件下采空区自燃 “三带” 划分[J]. 煤矿现代化, 2020, 3.

[62] 刘志文, 史建设, 傅琦, 等. 上下行通风对东峡矿大倾角采空区自燃危险区域的影响[J]. 煤炭技术, 2020, 39(08): 129-132.

[63] 王芳. 基于FLUENT动网格的煤矿采空区三带动态特性模拟技术[J]. 科学技术创新, 2020, (13): 23-25.

[64] 王伟东, 王伟, 李鹏, 等. 浅埋深高瓦斯工作面瓦斯抽放对采空区自燃“三带”的影响研究[J]. 煤矿安全, 2020, 51(01): 181-186.

[65] 刘志文, 史建设, 傅琦, 等. 不同通风方式对大倾角采空区煤自燃危险区域的影响研究[J]. 中国煤炭, 2020.

[66] 何俊, 牛帅, 陈亮. 大倾角综放面采空区自燃 “三带” 分布规律研究[J]. 煤炭技术, 2014, (9): 54-56.

[67] 麻强, 梁建国, 张亚波, 等. 大倾角特厚煤层综放工作面综合防灭火技术[J]. 山西焦煤科技, 2021, 45(08): 27-29.

[68] 王震, 王鹏飞. 大倾角大仰角特厚煤层综放工作面回撤期间防灭火技术研究与应用[J]. 煤炭科技, 2019, 40(06): 23-25.

[69] 张新生, 王文彬, 胡继周. 复合煤层大倾角综放工作面综合防灭火技术研究[J]. 山东煤炭科技, 2015, (12): 68-70.

[70] Dong S, Lu X, Wang D, et al. Experimental investigation of the fire-fighting characteristics of aqueous foam in underground goaf[J]. Process Safety and Environmental Protection, 2017, 106: 239-245.

[71] 陈永银. 易自燃厚煤层综放工作面快速回撤技术及实践[J]. 煤炭工程, 2015, 47(4): 63-65.

[72] 张辛亥, 万旭, 许延辉, 等. 厚煤层分层开采采空区自燃“三带”规律及防治研究[J]. 煤炭科学技术, 2016, 44(10): 24-28.

[73] 吕英华, 王伟, 陈明浩, 等. 近距离煤层群超大采空区注浆防灭火技术及其应用[J]. 煤矿安全, 2018, 49(A01): 30-35.

[74] 易欣, 康付如, 邓军, 等. 矿用无机固化泡沫充填材料研究及应用[J]. 中国安全生产科学技术, 2017, 13(10): 136-142.

[75] 李喜员, 徐成林, 刘广金. 易燃突出煤层工作面重氮防灭火技术[J]. 煤矿安全, 2015, 46(7): 88-90.

[76] Jia H, Yang Y, Ren W, et al. Experimental study on the characteristics of the spontaneous combustion of coal at high ground temperatures[J]. Combustion Science and Technology, 2022, 194(14): 2880-2893.

[77] Wang K, Wang Z, Zhai X, et al. An experimental investigation of early warning index for coal spontaneous combustion with consideration of particle size: A case study[J]. International Journal of Coal Preparation and Utilization, 2023, 43(2): 233-247.

[78] 易欣, 张敏, 邓军. 煤自燃指标体系分析与优选实验研究[J]. 煤矿安全, 2023, 54(01): 85-93.

[79] 王亚超. 神东北部矿区水浸煤自燃标志性气体产生规律[J]. 煤矿安全, 2018, 49(09): 52-58.

[80] 张辛亥, 李青蔚, 张长山. 空气湿度对煤自燃特性影响的试验研究[J]. 安全与环境学报, 2017, 17(01): 147-150.

[81] Qin Y, Song Y, Liu W, et al. Assessment of low-temperature oxidation characteristics of coal based on standard oxygen consumption rate[J]. Process Safety and Environmental Protection, 2020, 135: 342-349.

[82] Yutao Z, Yuanbo Z, Yaqing L, et al. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents[J]. Energy, 2021, 234: 121299.

[83] Wen H, Guo J, Jin Y, et al. Experimental study on the influence of different oxygen concentrations on coal spontaneous combustion characteristic parameters[J]. International Journal of Oil, Gas and Coal Technology, 2017, 16(2): 187-202.

[84] 张玉涛, 杨杰, 李亚清, 等. 氧气浓度和升温速率对煤自燃特性影响[J]. 安全与环境学报, 2023, 23(01): 43-48.

中图分类号:

 TD752.2    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式