- 无标题文档
查看论文信息

论文中文题名:

 单兵雷达系统建模与仿真    

姓名:

 王展鹏    

学号:

 19207205049    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 雷达系统建模与仿真    

第一导师姓名:

 郭苹    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Modeling and Simulation of Individual Radar System    

论文中文关键词:

 单兵雷达 ; 线性调频连续波 ; 建模和仿真 ; 模型库 ; 显控平台    

论文外文关键词:

 Individual radar ; LFMCW ; Modeling and simulation ; Model library ; Display and control platform    

论文中文摘要:

单兵雷达是一种用于战场探测近距离军事目标和获取战场信息的重要侦察设备。因为单兵雷达系统的外场模拟环境单一、试验次数有限且实验结果不全面,所以对其进行仿真研究,可以高效地为单兵雷达的设计方式、分析论证提供重要理论基础。单兵雷达要兼顾性能与便携,因此需要整个雷达系统结构简单、体积小、灵活性强。根据其功能特点,将具有发射功率低、无距离盲区、易于小型化等优点的线性调频连续波(Linear Frequency Modulation Continuous Wave,LFMCW)体制应用于单兵雷达系统中。所以,本文通过计算机进行全数字化的仿真,利用MATLAB软件,实现了多周期的三角LFMCW单兵雷达系统在复杂电磁环境下的建模和仿真工作。

本文基于LFMCW雷达的工作原理,结合雷达仿真系统模块化思想,提出单兵雷达仿真系统的总体设计方案。首先建立单兵雷达仿真系统模型库,然后调用各个模型,完成仿真系统的搭建。其次,对各模型(发射机、天线、接收机、环境回波、信号处理和数据处理)建立仿真数学表达式,并详细阐述了各模型的基本原理和建模方法,对这些模型进行了仿真实验,它们均通过样例的参数测试验证。再次依据所建立的仿真模型,基于灵活性、可拓展性以及封装性原则,在MATLAB开发平台上完成单兵雷达系统开发,并建立仿真系统显控平台,实现了系统参数的可视化设置和跟踪结果的直观显示,最后对不同复杂电磁环境下的多目标参数测量、跟踪功能进行仿真分析,仿真结果验证了该系统建模的正确性和有效性。

本文使用标准化、模块化的雷达仿真系统建模思想对单兵雷达系统进行实现,一方面利于以后工作的维护和移植,另一方面便于雷达系统的二次开发。通过对单兵雷达系统的建模与仿真,可以为整个单兵雷达作战的分析评估提供可靠的平台和依据,符合设计要求,在工程应用上具有重要的价值。

论文外文摘要:

Individual radar is an important reconnaissance equipment used to detect military targets and obtain battlefield information. Because the field simulation environment of individual radar system is single, the number of tests is limited and the experimental results are not comprehensive, the simulation research on it can provide an important theoretical basis for the design and analysis of individual radar system efficiently. Individual radar needs to give consideration to both performance and portability, so the whole radar system needs to be simple in structure, small in size and flexible. According to its functions and characteristics, the Linear Frequency Modulation Continuous Wave (LFMCW) system, which has the advantages of low transmitting power, no distance blind area and easy miniaturization, is applied to the individual radar system. Therefore, in this thesis, the modeling and simulation work of multi-period triangular LFMCW radar system in complex electromagnetic environment is realized through computer simulation and MATLAB software.

Based on the working principle of LFMCW radar and combined with the modularization idea of radar simulation system, the overall design scheme of individual radar simulation system is proposed in this thesis. Firstly, the model library of radar simulation system is established, and then each model is called to complete the construction of the simulation system. Secondly, the mathematical expressions of each model (transmitter, antenna, receiver, environmental echo, signal processing and data processing) are established, and the basic principles and modeling methods of each model are described in detail. Simulation experiments are carried out on these models, and they are verified by the parameter test of the sample. Thirdly, based on the established simulation model and the principle of flexibility, extensibility and encapsulation, the development of individual radar system is completed on the MATLAB development platform, and the simulation system display and control platform is established to realize the visual setting of system parameters and the intuitive display of tracking results. Finally, the multi-target parameter measurement and tracking function in different complex electromagnetic environments are simulated and analyzed, and the simulation results verify the correctness and effectiveness of the system modeling.

In this thesis, the idea of standardized and modular radar simulation system modeling is used to realize the individual radar system, which is beneficial to the maintenance and transplantation of the future work on the one hand and the secondary development of the radar system on the other hand. Through the modeling and simulation of individual radar system, it can provide a reliable platform and basis for the analysis and evaluation of the entire individual radar operation, which meets the design requirements and has important value in engineering application.

参考文献:

[1] 王恒科. 国外地面战场侦察雷达发展现状与趋势[J]. 电讯技术, 2015, 55(7): 106-113.

[2] Jinghui Qiu, Chen Liu, Zonghuan Wu, Nannan Wang. A 35GHz Microstrip Array Module Design for Reconnaissance Radar[C]//International Symposiumon Antennas and Propagation(ISAP). IEEE, 2018: 1-2.

[3] 宋之玉. 陆军战术雷达对抗技术研究[J]. 航天电子对抗, 2020, 36(1): 39-45.

[4] 郑志宽, 何强, 韩壮志. 战场侦察雷达的研究与发展[J]. 飞航导弹, 2013, 45(17): 79-83.

[5] Qin J, Lei M, Shen N. Analysis of the Interception Ability of Electronic Reconnaissance Satellite on Ground-based Radars[C]//2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2021: 698-701.

[6] Bystrov A, Daniel L, Hoare E, et al. Comparative Analysis of 300 GHz and 79 GHz Radar Performance in Fire Environments[C]//2020 IEEE Radar Conference (RadarConf20). IEEE, 2020: 1-4.

[7] 左雷. 基于移动平台的某型雷达模拟训练系统仿真研究[J]. 舰船电子工程, 2020, 40(8): 84-88.

[8] Athanasios Papageorgiou, Johan OElvander, Kristian Amadori. Development of Analysis and Simulation Models for Evaluating Airborne Radar Surveillance System of Systems[C]//AIAA SciTech Forum and Exposition. AIAA, 2021: 90-102.

[9] Wang Lei, Zhang Wei, Chen Mingyan, Lu Xianliang. A Universal Program Framework for radar System Simulation[C]//IEEE International Conference on Computer Science and Automation Engineering(CSAE2012). 2018: 595-599.

[10] Zhang Na, Xie Honren, Lijinjie, Chen Hong. Application of radar signal processing and image display algorithm based on computer hardware system in intelligence processing[J]. Microprocessors and microsystems, 2021: 1-6.

[11] 皇甫一江, 王向敏, 臧勤等. 基于构建的雷达显控终端软件开发技术[J]. 雷达与对抗, 2020, 40(02): 60-63.

[12] Marek Brzozowski, Mariusz Pakowski, Miroslaw Myszka. Polish Field Tests of the PGSR-3I Beagle Ground Surveillance Radar[C]//IEEE International Workshop on Metrology for AeroSpace. IEEE, 2020: 265-270.

[13] 郑大壮. 单兵步战神器: 美俄“地面监视雷达”[J]. 轻兵器, 2015, (13): 16-19.

[14] 张楠. 俄罗斯“前灯”便携式近程侦察雷达[J]. 环球军事, 2015, (9): 52-53.

[15] Guner K K, Gulum T O, Erkmen B. FPGA Based Wigner-Hough Transform System for Detection and Parameter Extraction of LPI Radar LFMCW Signals[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(99): 1-15.

[16] 堵开源. 解放军报: 我军新型毫米波侦察雷达列装可识破各种伪装[DB/OL]https://www.guancha.cn/military-affairs/2016_04_07_356296.shtml.

[17] 万建岗, 葛代河, 蔺美青等. 便携式地面监视雷达技术现状及发展趋势[J]. 火控雷达技术, 2017, 2: 1-5.

[18] 臧雪静, 徐卫卫, 王庆国. 世界一流军工企业近年的发展[J]. 国防科技工业, 2020, 4: 54-57.

[19] Mbeutcha M, Ulisse G, Krozer V. Millimeter-wave imaging radar system design based on detailed system radar simulation tool[C]//2018 22nd International Microwave and Radar Conference (MIKON). IEEE, 2018: 517-520.

[20] 陈楠楠, 宫尚玉, 刘小平. 国外海军新一代护卫舰及其雷达装备研究[J]. 舰船电子对抗, 2020, 4: 14-19.

[21] 白文, 程小梦, 任新涛等. 基于真实作战场景的雷达训练模拟器构想[J]. 舰船电子工程, 2022, 42(3): 110-113.

[22] 姚智刚, 马俊涛, 吕萌. 某雷达维修训练模拟器的设计与实现[M]. 测控技术, 2018, 37(9): 64-66,130.

[23] 张晓东, 张林让. 基于GPU的相控阵雷达并行仿真技术[J]. 计算机仿真, 2019, 36(12): 20-24.

[24] Taiga Suzuki, Yoshihiko Kuwahara. Study on Clutter Suppression on Ground Penetration Radar[C]//2018 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition(iWEM). IEEE, 2018: 1-2.

[25] 陈黎, 温博, 李新欣等. 连续波战场侦察雷达技术发展综述[J]. 无线电工程, 2017, 47(06): 65-69.

[26] 颜卫忠, 陈栋志. 线性调频连续波雷达目标参数测量[J]. 无线电工程, 2021, 51(2): 129-133.

[27] 高星. 基于FPGA的线性调频连续波雷达信号处理设计与实现[J]. 舰船电子对抗, 2019, 42(1): 89-91.

[28] 邹丽蓉, 朱莉, 邵文浩. 基于改进LFMCW雷达的多目标识别算法[J]. 雷达科学与技术, 2020, 18(5): 509-516.

[29] Qingliang Shen. A Signal Processing Technique for LFMCW Radar[C]//2019 IEEE International Conference on Signal, Information and Data Processing. IEEE, 2019: 1-5.

[30] 刘晨. 毫米波单兵雷达阵列天线研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

[31] Florian Corrado, Tracerso Pier Andrea, Santarielli Alberto. A Ka-Band MMIC LNA in GaN-on-Si 100-nm Technology for High Dynamic Range Radar Receivers[J]. IEEE microwave and wireless components letters, 2021, 2: 161-164.

[32] 戚昊琛, 张鉴, 张杰等. 一种用于FMCW雷达系统的中频信号滤波器[J]. 合肥工业大学学报(自然科学版), 2015, 5: 635-638.

[33] 邓斌, 李松兰, 吕伟等. 雷达性能参数测试训练与考核系统[P]. 中国专利: CN202111470102.6, 2022-03-04.

[34] 丁鹭飞, 耿富禄, 陈建春. 雷达原理(第6版)[M]. 北京: 电子工业出版社, 2020.

[35] Mohammed EI-Shennawy, Belal AI-Qudsi, Niko Joram, Frank Ellinger. A dual band FMCW radar receiver with integrated active balun and baseband AGC loop[C]//IEEE International Symposium on Circuits and Systems. IEEE, 2017: 722-726.

[36] 王茜. 基于带通采样的多通道接收机数字下变频研究[J]. 数码设计, 2021, 10(2): 282.

[37] 宿文涛, 刘润华, 汪枫. 球载雷达地杂波建模与仿真分析[J]. 雷达科学与技术, 2020, (2): 163-168.

[38] 谢永亮, 胡辉, 刘尚福. 雷达地物回波建模方法与应用[J]. 火控雷达技术, 2020, 49(3): 87-91.

[39] Michael Kohler, Daniel W. O Hagan, Matthias Weiss, David Wegner. Statistical Analysis of Bistatic Radar Ground Clutter for Different German Rural Environments[J]. Sensors, 2020, 20(11): 1-17.

[40] 齐小燕. 基于果蝇优化算法的雷达杂波统计模型参数估计方法[J]. 舰船电子工程, 2022, 42(1), 64-66.

[41] Bin Yang, Mo Huang, Yao Xie. Classification Method of Uniform Circular Array Radar Ground Clutter Data Based on Chaotic Genetic Algorithm[J]. Sensors, 2021, 21(13): 4596-4615.

[42] 叶灵伟, 夏栋, 郭维波. 雷达海杂波K分布序列模型仿真ZMNL和SIRP方法比较分析[J]. 建模与仿真, 2018, 7(1): 8-13.

[43] 李波. 基于ZMNL法的雷达杂波算法仿真[J]. 中国信息科技, 2019, (24): 78-82.

[44] 史厚宝, 戴健. LFMCW雷达信号处理算法研究[J]. 舰船电子对抗, 2020, 43(5): 64-67.

[45] 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2016.

[46] Taiwen Tang, Chen Wu, Janaka Elangage. A Signal Processing Algorithm of Two-Phase Staggered PRI and Slow Time Signal Integration for MTI Triangular FMCW Multi-Target Tracking Radars[J]. Sensors, 2021, 21(7): 2296-2319.

[47] 宋志华, 陈锟山, 曾江源等. 一种基于FMCW雷达的慢速目标检测自适应滤波器[J]. 中国科学院大学学报, 2021, 38(3): 382-391.

[48] 史林, 程亮, 杨万海. 雷达系统建模与仿真[M]. 北京: 国防工业出版社, 2017.

[49] Mohamed G Shehata, Fathy M.Ahmed, Sameh Salem. Design and Implementation of LFMCW Radar Signal Processor for Slowly Moving Target Detection Using FPGA[C]//2020 12th International Conference on Electrical Engineering(ICEENG). IEEE, 2020: 241-248.

[50] Cong Liu, Yunqing Liu, Qi Li, Zikang Wei. Radar Target MTD 2D-CFAR Algorithm Based on Compressive Detection[C]//IEEE International Conference on Mechatronics and Automation. IEEE, 2021: 83-88.

[51] 李浩, 程伟, 李晓柏. 一种雷达信号处理方法[P]. 中国专利: CN202011551657.9, 2020-12-24.

[52] Gouri Amel, Mezache Amer, Oudira Houcine. Radar CFAR detection in Weibull clutter based on zlog(z) estimator[J]. Remote sensing letters, 2020, 11(4): 581-589.

[53] Khaldi F, Soltani F, Baadeche M. Fuzzy CFAR Detectors for MIMO Radars in Homogeneous and Non-Homogeneous Pareto Clutter[J]. Journal of Communications Technology and Electronics, 2021, 66(1): 62-69.

[54] 李杨, 蔡俊, 王飞. 毫米波雷达多目标距离速度去耦合配对算法研究[J]. 科技视界, 2017, (34): 44,23.

[55] 陈晓楠, 杜豪, 赵春晖等. 改进型变周期三角波FMCW雷达的多目标识别[J]. 现代电子技术, 2021, 44(15): 70-74.

[56] 宋健强, 刘云学, 李珂. 基于梯形波调制FMCW雷达的多目标检测[J]. 空间电子技术, 2018, 15(6): 12-16.

[57] 陈希信. 和-差单脉冲雷达的测角精度分析[J]. 现代雷达, 2021, 43(6): 15-18.

[58] 管金称, 李会勇, 谢菊兰. 宽带自适应和差波束形成与测角方法研究[J]. 信号处理, 2020, 36(7): 1085-1095.

[59] 刘全周, 贾鹏飞, 李占旗等. 改进的交互式卡尔曼滤波对雷达数据处理技术研究[J]. 机械科学与技术, 2020, 39(8): 1248-1255.

[60] A.N.Grachev, S.A.Kurbatsky, A.V.Khomyakov. Algorithm of Low-Flying Target Tracking in Monopulse Radar Stations Based on a Unscented Kalman Filter[J]. Journal of Communications Technology and Electronics, 2021, 66(2): 149-154.

[61] 赵梦倩. 地面监视雷达数据处理与显控软件的设计与实现[D]. 南京: 南京理工大学, 2020.

[62] 何友, 修建娟, 关欣等. 雷达数据处理及应用(第3版)[M]. 北京: 电子工业出版社, 2013.

中图分类号:

 TN955+.1    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式