论文中文题名: | 基于模型化合物的煤活性官能团氧化反应机理研究 |
姓名: | |
学号: | 18220089042 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-15 |
论文答辩日期: | 2021-06-01 |
论文外文题名: | Study on oxidation reaction mechanism of coal active functional groups based on model compound |
论文中文关键词: | |
论文外文关键词: | Coal ; Model compound ; Active functional groups ; Mechanism of oxidation reaction ; Quantum computation ; Active site |
论文中文摘要: |
煤自燃实质上是煤中活性基团反应产热并积聚的结果,而煤结构复杂,各种活性基团混杂在一起,现有测试手段难以准确识别煤中参与反应的分子和官能团,从而给煤氧化反应机理的揭示带来巨大的困难。为此,本文基于模型化合物,结合实验测试和量子化学模拟计算,采用活性结构离散化的研究思路,探究了煤中关键活性官能团的氧化反应机理。 本文选取烟煤为研究对象,测定其碳谱和红外吸收光谱,确定其活性官能团及结构特征参数。结果表明,所选煤样的基本结构单元是萘环,芳香层平均碳原子数是12,关键活性官能团包括羟基(-OH)、芳香醚(Ar-CO)、烷基醚(C-O-C)、羰基(-C=O-)、亚甲基(-CH2-)、甲基(-CH3)。以此为基础,采用量子化学模拟软件构建了5种可代表该煤样主要分子结构特征的简易小分子结构模型:苄基苯基醚、二苯基甲烷、萘乙酸、2-甲氧基萘、2-苯基乙醛。依据所建的小分子模型合成了5个类煤模型化合物。 通过TG/DSC和TG/MS等实验手段,对类煤模型化合物氧化升温中的质量、热量、生成产物等变化情况进行了研究。结果显示,化合物的失重主要是气体的释放所致,且到达一定温度节点时,活性官能团会一直处于活性增强状态,并发生剧烈化学反应,释放出大量指标性气体。化合物在氧化升温过程中产生了多种物质,各物质出现的起始温度点也不同,说明了其氧化过程是多步反应。同时,对原煤样氧化特性测试结果表明,在整个氧化过程中,羟基一直处于降低趋势,而脂肪烃在200℃出现骤降,煤样在200℃左右开始逸出CO、CO2气体,H2O从30℃开始产生,120℃开始呈现指数增长。 通过对比分析类煤模型化合物和原煤的氧化升温过程中的特征参数,结合量子计算,确定了活性官能团的氧化反应历程,进而归纳了其氧化反应机理。研究结果显示,煤在氧化过程中,脂肪烃类活性官能团的C-H键被氧气依次氧化为-OOH和C-O键,且亚甲基(-CH2-)与氧气的抽氢反应活性要高于甲基(-CH3)与氧气的抽氢反应,氧化生成的过氧化氢物发生-OH键断裂产生H2O,C-O键断裂产生CO、CO2气体,同时伴随着中间体酚类、醛类、酸类物质的产生。羰基类物质会优先发生-OH夺氢生成H2O的反应,生成的物质再发生C-C键的断裂,生成CO、CO2气体。而CO2的直接来源是羧基,CO的直接来源是醛基。亚甲基(-CH2-)会改变了醛基(-CHO)的活性,使其活性增强。在反应过程中生成的羟基一定程度上会促进反应的进行,加速反应的进程。 |
论文外文摘要: |
The spontaneous combustion of coal is essentially the result of heat production and accumulation of reactive groups in coal, while the structure of coal is complex and various reactive groups are mixed together. The existing testing methods are difficult to accurately identify the molecules and functional groups involved in the reaction in coal. Thus, it brings great difficulties to reveal the mechanism of coal oxidation reaction. Therefore, based on model compounds, combined with experimental tests and quantum chemical simulation calculations, this paper uses the research idea of discretization of active structures to explore the oxidation reaction mechanism of key active functional groups in coal. In this paper, a bituminous coal is selected as the research object, its carbon spectrum and infrared absorption spectrum are measured, and its active functional groups and structural characteristic parameters are determined. The results show that the basic structural units of the coal sample are naphthalene rings, and the average number of carbon atoms in the aromatic layer is 12, and the key active functional groups include hydroxyl (-OH), aromatic ether (Ar-CO), alkyl ether (-C-O-C-), and carbonyl group (-C=O-), methylene (-CH2-), methyl (-CH3). Based on this, five simple small molecular structure models (Benzyl phenyl ether, diphenylmethane, naphthalene acetic acid, methoxy naphthalene, 2-phenylacetaldehyde) that can represent the main molecular structure characteristics of the coal sample were constructed using quantum chemistry simulation software. Based on the established small molecule model, five coal-like model compounds were synthesized. Through experimental methods such as TG/DSC and TG/MS, the changes in mass, heat, and products of coal-like model compounds during oxidation and heating were studied. The results show that the weight loss of the compound is mainly caused by the release of gas, and when it reaches a certain temperature node, the active functional group will always be in a state of enhanced activity, undergo a violent chemical reaction, and release a large amount of index gas. The compound produced a variety of substances during the oxidation and heating process. The initial appearance temperature and time points of the substances were also different, indicating that the oxidation process was a multi-step reaction. At the same time, the test results of the oxidation characteristics of the raw coal sample showed that during the entire oxidation process, the hydroxyl group had been in a decreasing trend, while aliphatic hydrocarbons dropped sharply at 200℃. The coal sample began to emit CO and CO2 around 200℃. H2O started to be produced at 30℃ and began to rise exponentially at 120℃. By comparing and analyzing the characteristic parameters in the oxidation heating process of coal-like model compounds and raw coal, combined with quantum calculation, the oxidation reaction process of the active functional groups is determined, and then the oxidation reaction mechanism is summarized. The research results showed that during the oxidation process of coal, the CH bonds of the active functional groups of aliphatic hydrocarbons were sequentially oxidized by oxygen to -OOH bonds and CO bonds, and the hydrogen extraction reaction activity of methylene (-CH2-) with oxygen was higher than that of methyl (-CH3). The hydrogen peroxide generated by oxidation would break the -OH bond to produce H2O, and the break of the CO bond would produce CO and CO2. At the same time, it would be accompanied by the production of intermediate phenols, aldehydes, and acids. Oxygen of carbonyls would preferentially undergo the reaction of -OH abstraction of hydrogen to generate H2O, and the resulting material could then break the C-C bond to generate CO and CO2. The direct source of CO2 was carboxyl groups, and the direct source of CO was aldehyde groups. Methylene (-CH2-) would change the activity of aldehyde group (-CHO) and increased its activity. The hydroxyl generated during the reaction might promote the reaction to a certain extent and accelerated the progress of the reaction. |
参考文献: |
[1]煤炭资源的开发现状及前景[N]. 中国煤炭资源网,2021. [3]徐精彩. 煤自燃危险区域判定理论[M]. 煤炭工业出版社, 2001. [4]Danuta B, Anna M. Molecular Components of Coal Structure[J].Fuel,1981,60: 47-51. [14]沈云鸽, 王德明, 朱云飞. 不同自燃倾向性煤的指标气体产生规律实验研究[J].中国安全生产科学技术,2018,14(4):102-104. [15]邓军, 张宇轩, 赵婧煜, 等. 基于程序升温的不同粒径煤氧化活化能试验研究[J].煤炭科学技术,2019,45(1):53-55. [16]赵兴国, 戴广龙. 氧化煤自燃特性实验研究[J].中国安全生产科学技术, 2020,16 (6):55-60. [19]徐精彩, 文虎, 邓军, 等. 煤自燃极限参数研究[J].火灾科学,2000,9 (2):14-18. [20]文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J].煤炭学报, 2003,28(4):370-374. [21]余明高, 袁壮, 褚廷湘, 等. 不同预氧化程度煤二次氧化特性研究[D].重庆大学学报,2017,40(2):37-44. [22]朱建芳, 段嘉敏, 郭文杰. 基于DSC的煤自燃倾向性研究[J].华北科技学院学报, 2018,15(2):32-40. [23]梁运涛, 罗海珠. 煤低温氧化自热模拟研究[J].煤炭学报,2010,35(6): 956-959. [24]许涛. 煤自燃过程分段特性及机理的实验研究[D].中国矿业大学,2012. [25]李青蔚, 任立峰, 任帅京. 煤低温贫氧氧化放热特性研究[J].煤矿安全. 2020,51 (11):34-38. [26]王亚超, 袁泉, 肖旸, 等. 水分对白皎无烟煤氧化过程放热特性的影响[J].西安科技大学学报,2018,38(5):721-727. [32]Marzec A. New structural concept for carbonized coals[J].Energy & Fuel, 1997,11(4):837-842. [35]Took PB, Grint A. Fourier transform infra-red studies of coal[J].Fuel, 1983,62 (9):1003-1008. [46]辛海会, 王德明, 许涛, 等. 低阶煤低温反应特性的原位红外研究[J].煤炭学报, 2011,36(9):1528-1532. [47]葛岭梅, 李建伟. 神府煤低温氧化过程中官能团结构演变[J].西安科技大学学报, 2003,23(2):187-190. [57]叶朝辉, 李新安.煤的固体高分辨13C-NMR谱[J].科学通报,1985,30 (20):1545-1547. [58]汤达祯, 杨起, 潘治贵, 等. 华北晚古生代煤的交叉极化/魔角自旋碳-13核磁共振研究[J].石油与天然气地质,2019,12(2):177-184. [59]魏帅, 严国超, 张志强等. 晋城无烟煤的分子结构特征分析[J].煤炭学报,2018, 43(2):555-562. [65]唐一博. 基于模型化合物的煤表面活性基团低温氧化研究[D].中国矿业大学,2014. [67]张晨. 类煤模型化合物热解过程中脱羧反应和C-C/C-O断键规律研究[D].中国矿业大学,2020. [68]孔令浩. 类煤结构模型化合物的热解研究[D].大连理工大学,2015. [69]许宁, 陶秀祥. 煤含硫模型化合物微波脱硫前后的FTIR研究[J].煤炭技术, 2018, 11:341-343. [70]耿浩尧, 李钢, 魏曰. 类煤模型化合物在两种铁基催化剂作用下的热解[J].应用化工,2020,49(01):39-42+47. [71]VanHeek KH. Progress of coal science in the 20th century[J].Fuel,2000, 41(2):124. [72]邓军, 侯爽, 李会荣. 煤分子中HCOH初期氧化反应机理研究[J].煤炭转化,2006, 29(3):1-4. [73]王继仁, 金智新, 邓存宝. 煤自燃量子化学理论[M].北京:科学出版社, 2007. [74]王三跃. 褐煤结构的动力学模拟机量子化学研究[D].太原理工大学,2004. [75]王宝俊, 凌丽霞, 赵清艳,等. 气体与煤表面吸附作用的量子化学研究[J].化工学报,2009,60(4):995-1000. [76]张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D].西安科技大学,2012. [77]王德明, 辛海会, 戚绪尧,等.煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J].煤炭学报,2014,39(8):1667-1674. [79]王怀伟, 梁忠秋. 煤自燃过程中-CH2-官能团量子化学反应机理研究[J].能源技术与管理,2020,45(8):136-138. [82]相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J].煤炭学报,2016,41(6):1498-1506. [84]冯杰, 李文英, 谢克昌. 傅里叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366. [86]肖旸, 马砺, 王振平, 等. 采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,35(5):73-77. [87]福井谦一. 化学反应与电子轨道[M].科学出版社,1985. [88]何娜. HOMO-LUMO能隙对分子稳定性的判断[N].都市家教,2014-05. [89]邓军, 李亚清, 张玉涛, 等. 羟基(OH)对煤自燃侧链活性基团氧化反应特性的影响[J].煤炭学报,2020,45(1):232-240. [91]卢天, 陈飞武. 分子轨道成分的计算[J].化学学报,2011,69(20):2393-2406. [93]付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J].物理化学学报,2014,30(4):628-639. |
中图分类号: | TD752.2 |
开放日期: | 2022-09-14 |