- 无标题文档
查看论文信息

论文中文题名:

 基于模型化合物的煤活性官能团氧化反应机理研究    

姓名:

 杨超萍    

学号:

 18220089042    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张玉涛    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Study on oxidation reaction mechanism of coal active functional groups based on model compound    

论文中文关键词:

  ; 模型化合物 ; 活性官能团 ; 氧化反应机理 ; 量子计算 ; 活性位点    

论文外文关键词:

 Coal ; Model compound ; Active functional groups ; Mechanism of oxidation reaction ; Quantum computation ; Active site    

论文中文摘要:

       煤自燃实质上是煤中活性基团反应产热并积聚的结果,而煤结构复杂,各种活性基团混杂在一起,现有测试手段难以准确识别煤中参与反应的分子和官能团,从而给煤氧化反应机理的揭示带来巨大的困难。为此,本文基于模型化合物,结合实验测试和量子化学模拟计算,采用活性结构离散化的研究思路,探究了煤中关键活性官能团的氧化反应机理。

      本文选取烟煤为研究对象,测定其碳谱和红外吸收光谱,确定其活性官能团及结构特征参数。结果表明,所选煤样的基本结构单元是萘环,芳香层平均碳原子数是12,关键活性官能团包括羟基(-OH)、芳香醚(Ar-CO)、烷基醚(C-O-C)、羰基(-C=O-)、亚甲基(-CH2-)、甲基(-CH3)。以此为基础,采用量子化学模拟软件构建了5种可代表该煤样主要分子结构特征的简易小分子结构模型:苄基苯基醚、二苯基甲烷、萘乙酸、2-甲氧基萘、2-苯基乙醛。依据所建的小分子模型合成了5个类煤模型化合物。

       通过TG/DSC和TG/MS等实验手段,对类煤模型化合物氧化升温中的质量、热量、生成产物等变化情况进行了研究。结果显示,化合物的失重主要是气体的释放所致,且到达一定温度节点时,活性官能团会一直处于活性增强状态,并发生剧烈化学反应,释放出大量指标性气体。化合物在氧化升温过程中产生了多种物质,各物质出现的起始温度点也不同,说明了其氧化过程是多步反应。同时,对原煤样氧化特性测试结果表明,在整个氧化过程中,羟基一直处于降低趋势,而脂肪烃在200℃出现骤降,煤样在200℃左右开始逸出CO、CO2气体,H2O从30℃开始产生,120℃开始呈现指数增长。

       通过对比分析类煤模型化合物和原煤的氧化升温过程中的特征参数,结合量子计算,确定了活性官能团的氧化反应历程,进而归纳了其氧化反应机理。研究结果显示,煤在氧化过程中,脂肪烃类活性官能团的C-H键被氧气依次氧化为-OOH和C-O键,且亚甲基(-CH2-)与氧气的抽氢反应活性要高于甲基(-CH3)与氧气的抽氢反应,氧化生成的过氧化氢物发生-OH键断裂产生H2O,C-O键断裂产生CO、CO2气体,同时伴随着中间体酚类、醛类、酸类物质的产生。羰基类物质会优先发生-OH夺氢生成H2O的反应,生成的物质再发生C-C键的断裂,生成CO、CO2气体。而CO2的直接来源是羧基,CO的直接来源是醛基。亚甲基(-CH2-)会改变了醛基(-CHO)的活性,使其活性增强。在反应过程中生成的羟基一定程度上会促进反应的进行,加速反应的进程。

论文外文摘要:

       The spontaneous combustion of coal is essentially the result of heat production and accumulation of reactive groups in coal, while the structure of coal is complex and various reactive groups are mixed together. The existing testing methods are difficult to accurately identify the molecules and functional groups involved in the reaction in coal. Thus, it brings great difficulties to reveal the mechanism of coal oxidation reaction. Therefore, based on model compounds, combined with experimental tests and quantum chemical simulation calculations, this paper uses the research idea of discretization of active structures to explore the oxidation reaction mechanism of key active functional groups in coal.

       In this paper, a bituminous coal is selected as the research object, its carbon spectrum and infrared absorption spectrum are measured, and its active functional groups and structural characteristic parameters are determined. The results show that the basic structural units of the coal sample are naphthalene rings, and the average number of carbon atoms in the aromatic layer is 12, and the key active functional groups include hydroxyl (-OH), aromatic ether (Ar-CO), alkyl ether (-C-O-C-), and carbonyl group (-C=O-), methylene (-CH2-), methyl (-CH3). Based on this, five simple small molecular structure models (Benzyl phenyl ether, diphenylmethane, naphthalene acetic acid, methoxy naphthalene, 2-phenylacetaldehyde) that can represent the main molecular structure characteristics of the coal sample were constructed using quantum chemistry simulation software. Based on the established small molecule model, five coal-like model compounds were synthesized.

       Through experimental methods such as TG/DSC and TG/MS, the changes in mass, heat, and products of coal-like model compounds during oxidation and heating were studied. The results show that the weight loss of the compound is mainly caused by the release of gas, and when it reaches a certain temperature node, the active functional group will always be in a state of enhanced activity, undergo a violent chemical reaction, and release a large amount of index gas. The compound produced a variety of substances during the oxidation and heating process. The initial appearance temperature and time points of the substances were also different, indicating that the oxidation process was a multi-step reaction. At the same time, the test results of the oxidation characteristics of the raw coal sample showed that during the entire oxidation process, the hydroxyl group had been in a decreasing trend, while aliphatic hydrocarbons dropped sharply at 200℃. The coal sample began to emit CO and CO2 around 200℃. H2O started to be produced at 30℃ and began to rise exponentially at 120℃.

       By comparing and analyzing the characteristic parameters in the oxidation heating process of coal-like model compounds and raw coal, combined with quantum calculation, the oxidation reaction process of the active functional groups is determined, and then the oxidation reaction mechanism is summarized. The research results showed that during the oxidation process of coal, the CH bonds of the active functional groups of aliphatic hydrocarbons were sequentially oxidized by oxygen to -OOH bonds and CO bonds, and the hydrogen extraction reaction activity of methylene (-CH2-) with oxygen was higher than that of methyl (-CH3). The hydrogen peroxide generated by oxidation would break the -OH bond to produce H2O, and the break of the CO bond would produce CO and CO2. At the same time, it would be accompanied by the production of intermediate phenols, aldehydes, and acids. Oxygen of carbonyls would preferentially undergo the reaction of -OH abstraction of hydrogen to generate H2O, and the resulting material could then break the C-C bond to generate CO and CO2. The direct source of CO2 was carboxyl groups, and the direct  source of CO was aldehyde groups. Methylene (-CH2-) would change the activity of aldehyde group (-CHO) and increased its activity. The hydroxyl generated during the reaction might promote the reaction to a certain extent and accelerated the progress of the reaction.

参考文献:

[1]煤炭资源的开发现状及前景[N]. 中国煤炭资源网,2021.

[2]Ma L, Zou L, Ren LF, et al. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China[J].Fuel, 2020,264:1-10.

[3]徐精彩. 煤自燃危险区域判定理论[M]. 煤炭工业出版社, 2001.

[4]Danuta B, Anna M. Molecular Components of Coal Structure[J].Fuel,1981,60: 47-51.

[5]Zheng YN, Li QZ, Lin BQ, et al. Real-time analysis of the changing trends of functional groups and corresponding gas generated law during coal spontaneous combustion[J].Fuel Processing Technology,2020,199,106237.

[6]Ni GH, Li Z, Sun Q, et al. Effects of [Bmim][Cl] ionic liquid with different concentrations on the functional groups and wettability of coal [J].Advanced Powder Technology,2019,30:610-624.

[7]Cai JW, Yang SQ, Hu XC, et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation[J].Fuel,2019,253:339-348.

[8]Naktiyok J. Investigation of the oxidation behavior of a Turkey coal at low temperature by TGA, FTIR and BET analysis[J].Energy Sources,2020,42: 2370-2380.

[9]Xu Q, Yang SQ, Tang ZQ, et al. Free radical and functional group reaction and index gas CO emission during coal spontaneous combustion [J].Combustion Science and Technology,2018,190(5):834-848.

[10]Kam AY, Hixson AN, Perlmutter DD. The oxidation of bituminous coal-II experimental kinetics and interpretation[J].Chemical Engineering Science, 1976,31(9):821-834.

[11]Itay M, Hill CR, Glasser D. A study of the low temperature oxidation of coal [J]. Fuel Processing Technology,1989,21(2):81-97.

[12]Yuan L, Smith AC. Experimental study on CO and CO2 emissions from spontaneous heating of coals at varying temperatures and O2 concentrations [J].Journal of Loss Prevention in the Process Industries,2013,26(6): 1321-1327.

[13]Zhao JY, Deng J, Wang T, et al. Assessing the effectiveness of a high temperature programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages[J].Energy,2019,169:587-96.

[14]沈云鸽, 王德明, 朱云飞. 不同自燃倾向性煤的指标气体产生规律实验研究[J].中国安全生产科学技术,2018,14(4):102-104.

[15]邓军, 张宇轩, 赵婧煜, 等. 基于程序升温的不同粒径煤氧化活化能试验研究[J].煤炭科学技术,2019,45(1):53-55.

[16]赵兴国, 戴广龙. 氧化煤自燃特性实验研究[J].中国安全生产科学技术, 2020,16 (6):55-60.

[17]Li JH, Li ZH, Yang YL, et al. Examination of CO, CO2 and Active Sites Formation during Isothermal Pyrolysis of Coal at Low Temperatures [J]. Energy,2019,185:28-38.

[18]Li JL, Lu W, Liang YT, et al. Variation of CO2/CO ratio during pure-oxidation of feed coal[J].Fuel,2020,262:1-13.

[19]徐精彩, 文虎, 邓军, 等. 煤自燃极限参数研究[J].火灾科学,2000,9 (2):14-18.

[20]文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J].煤炭学报, 2003,28(4):370-374.

[21]余明高, 袁壮, 褚廷湘, 等. 不同预氧化程度煤二次氧化特性研究[D].重庆大学学报,2017,40(2):37-44.

[22]朱建芳, 段嘉敏, 郭文杰. 基于DSC的煤自燃倾向性研究[J].华北科技学院学报, 2018,15(2):32-40.

[23]梁运涛, 罗海珠. 煤低温氧化自热模拟研究[J].煤炭学报,2010,35(6): 956-959.

[24]许涛. 煤自燃过程分段特性及机理的实验研究[D].中国矿业大学,2012.

[25]李青蔚, 任立峰, 任帅京. 煤低温贫氧氧化放热特性研究[J].煤矿安全. 2020,51 (11):34-38.

[26]王亚超, 袁泉, 肖旸, 等. 水分对白皎无烟煤氧化过程放热特性的影响[J].西安科技大学学报,2018,38(5):721-727.

[27]Zhang YT, Li YQ, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC-FTIR technology[J].Journal of Thermal Analysis and Calorimetry,2017,38(5):1-12.

[28]Rish SK, Tahmasebi A, Yu JL. A DSC study on the impact of low-temperature oxidation on the behavior and drying of water in lignite[J].Fuel ,2020,139:3507-3517.

[29]Nyakuma BB, Jauro A, Akinyemi SA, et al. Physicochemical, mineralogy, and thermo-kinetic characterisation of newly discovered Nigerian coals under pyrolysis and combustion conditions[J].International Journal of Coal Science & Technology,2020,7(4):807-815.

[30]Zhao TY, Yang SQ; Hu XC; et al. Restraining effect of nitrogen on coal oxidation in different stages:Non-isothermal TG-DSC and EPR research[J]. International Journal of Mining Science and Technology,2020,30(3),387-395.

[31]Trivedi MK, Tallapragada RM, Branton A, et al. Potential Impact of Biofield Energy Treatment on the Atomic,Physical and Thermal Properties Indium Powder[J].Journal of Material Sciences & Engineering,1975,4(6):1-6.

[32]Marzec A. New structural concept for carbonized coals[J].Energy & Fuel, 1997,11(4):837-842.

[33]Painter PC, Snyder RW, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: acritical assessment of band assignment sand the application of spectral analysis programs[J].Applied Spectroscopy,1981,35 (5):475-485.

[34]Ibarra JV, Munoz E, Moliner R, et al. FTIR study of thee volution of coal structure during the coal ification process[J].Organic geochemistry, 1996,24(6):725-735

[35]Took PB, Grint A. Fourier transform infra-red studies of coal[J].Fuel, 1983,62 (9):1003-1008.

[36]Calemma G, Norman W. The rate of coal and char in relation to their tendency to self-heat[J].Fuel,1978,58:443-448.

[37]Orrego-Ruiz JA, Cabanzo R, Mejía-Ospino E, et al. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy[J]. International Journal of Coal Geology,2011;85(3-4):307-310.

[38]Xu T, Shen XT, Chen JY, et al. Distribution of the functional groups in various coals with different spontaneous propensity[J].International Journal of Coal Preparation and Utilization,2019,40:349-358.

[39]Qi XY, Chen LZ, Zhang LB, et al. In situ FTIR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions[J].Journal of the Energy Institute,2018,32:1-10.

[40]Jiang JY, Yang WH, Cheng YP, et al.Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J].Fuel,2019,239:559-572.

[41]He XQ, Xu L, Nie B, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J].Fuel,2017,206:555-563.

[42]Fu YS, Liu XF, Ge BQ, et al. Role of chemical structures in coalbed methane adsorption for anthracites and bituminous coals[J].Adsorption Journal of the International Adsorption Society,2017,23(5):711-721.

[43]Mustafa, Baysal, Alp, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J].International Journal of Coal Geology,2016,163:166-176.

[44]Niu ZY, Liu GJ, Yin H, et al. In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy conversion & management,2016,124:180-188.

[45]Zhang YT, Yang CP, Li YQ, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion[J]. Fuel,2019,242:287-294.

[46]辛海会, 王德明, 许涛, 等. 低阶煤低温反应特性的原位红外研究[J].煤炭学报, 2011,36(9):1528-1532.

[47]葛岭梅, 李建伟. 神府煤低温氧化过程中官能团结构演变[J].西安科技大学学报, 2003,23(2):187-190.

[48]Song HJ, Liu GR, Wu JH. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model[J].Energy Conversion & Management,2016,126:1037-1046

[49]Okolo GN, Neomagus HW, Everson RC, et al. Chemical structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C-NMR, and HRTEM techniques [J]. Fuel,2015,158:779-792.

[50]Supaluknari S, Larkins FP, Redlich P, et al. Determination of aromaticities and other structural features of Australian coals using solid state 13C-NMR and FTIR spectroscopies[J].Fuel Processing Technology,1989, 23(1):47-61.

[51]Oluwadayo O, Sonibare, Tobias Haeger, et al. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347-5353.

[52]Yan JC, Lei ZP, Li ZK, et al. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C-NMR and FTIR spectroscopy[J]. Fuel,2020,268:117038.

[53]Wang J, He YQ, Li H, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques [J]. Fuel,2017,20(31):764-773.

[54]Mano JB, Kunjomana AG. Study of stacking structure of amorphous carbonby X-ray diffraction technique[J].International journal of electrochemical science,2012,7(4):3127-3134.

[55]Baysal M, Yürüm A, Yildiz B, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction [J].International Journal of Coal Geology,2016,(07):1-9.

[56]Zhu H, Huo Y, He X, et al. Molecular model construction of Danhou lignite and study on adsorption of CH4 by oxygen functional groups[J]. Environmental Science and Pollution Research,2021,1:1-14.

[57]叶朝辉, 李新安.煤的固体高分辨13C-NMR谱[J].科学通报,1985,30 (20):1545-1547.

[58]汤达祯, 杨起, 潘治贵, 等. 华北晚古生代煤的交叉极化/魔角自旋碳-13核磁共振研究[J].石油与天然气地质,2019,12(2):177-184.

[59]魏帅, 严国超, 张志强等. 晋城无烟煤的分子结构特征分析[J].煤炭学报,2018, 43(2):555-562.

[60]Ikeda E, Mackie JC. Thermal decomposition of two coal model compounds — pyridine and 2-picoline,Kinetics and product distributions[J].Journal of Analytical and Applied Pyroylsis,1995,34(1):47-63.

[61]Suelves I, Lázaro MJ, Moliner R. Synergetic effects in the co-pyrolysis of samca coal and a model aliphatic compound studied by analytical pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2002,65(2):197-206.

[62]Doughty A, Mackie JC. Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic analogue of toluene. 2. The 2-picolyl radical and kinetic modeling[J].Journal of Physical Chemistry(United States),1992,96(25):10339-10348.

[63]Wornat MJ, Ledesma EB. C16H10 ethynyl-substituted polycyclic aromatic hydrocarbons from the pyrolysis of coal, coal volatiles, and anthracene[J]. Polycyclic Aromatic Compounds,2000,18(2):129-147.

[64]Shimizu K, Miki K, Saitou I. Acid-catalysed depolymerization of coal model compounds and subbituminous coal in a superacid-isopentane medium[J]. Fuel, 2017,76(1),23-27.

[65]唐一博. 基于模型化合物的煤表面活性基团低温氧化研究[D].中国矿业大学,2014.

[66]Zheng HY, Li YT, Zhang LJ, et al. Study on the effect of organic sulfur on coal spontaneous combustion based on model compounds[J].Fuel,2021, 289:1-10.

[67]张晨. 类煤模型化合物热解过程中脱羧反应和C-C/C-O断键规律研究[D].中国矿业大学,2020.

[68]孔令浩. 类煤结构模型化合物的热解研究[D].大连理工大学,2015.

[69]许宁, 陶秀祥. 煤含硫模型化合物微波脱硫前后的FTIR研究[J].煤炭技术, 2018, 11:341-343.

[70]耿浩尧, 李钢, 魏曰. 类煤模型化合物在两种铁基催化剂作用下的热解[J].应用化工,2020,49(01):39-42+47.

[71]VanHeek KH. Progress of coal science in the 20th century[J].Fuel,2000, 41(2):124.

[72]邓军, 侯爽, 李会荣. 煤分子中HCOH初期氧化反应机理研究[J].煤炭转化,2006, 29(3):1-4.

[73]王继仁, 金智新, 邓存宝. 煤自燃量子化学理论[M].北京:科学出版社, 2007.

[74]王三跃. 褐煤结构的动力学模拟机量子化学研究[D].太原理工大学,2004.

[75]王宝俊, 凌丽霞, 赵清艳,等. 气体与煤表面吸附作用的量子化学研究[J].化工学报,2009,60(4):995-1000.

[76]张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D].西安科技大学,2012.

[77]王德明, 辛海会, 戚绪尧,等.煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J].煤炭学报,2014,39(8):1667-1674.

[78]Xi ZL, Gao K, Guo XY, et al. Mechanistic Study of the Inhibition of Active Radicals in Coal by Catechin[J].Combustion Science and Technology, 2020,12(6):1-18.

[79]王怀伟, 梁忠秋. 煤自燃过程中-CH2-官能团量子化学反应机理研究[J].能源技术与管理,2020,45(8):136-138.

[80]Zheng HY, Li YT, Zhang LJ, et al. Study on the effect of organic sulfur on coal spontaneous combustion based on model compounds[J].Fuel,2021, 289:1-10.

[81]Qi XY, Li YW, Chen LZ, et al. Reaction Mechanism of Aldehyde Groups during Coal Self-Heating[J].ACS Omega,2020,35:1-9.

[82]相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机制[J].煤炭学报,2016,41(6):1498-1506.

[83]Solum MS, Sarofim AF, Pugmire RJ, et al. 13C-NMR Analysis of Soot Produced from Model Compounds and a Coal[J].Energy & Fuels,2001,15: 961-971.

[84]冯杰, 李文英, 谢克昌. 傅里叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.

[85]Yan HB, Mao F, Wang J. Thermogravimetric-mass spectrometric characterization of thermal decomposition of lignite with attention to the evolutions of small molecular weight oxygenates[J].Journal of Analytical and Applied Pyrolysis,2020,146:1-10.

[86]肖旸, 马砺, 王振平, 等. 采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,35(5):73-77.

[87]福井谦一. 化学反应与电子轨道[M].科学出版社,1985.

[88]何娜. HOMO-LUMO能隙对分子稳定性的判断[N].都市家教,2014-05.

[89]邓军, 李亚清, 张玉涛, 等. 羟基(OH)对煤自燃侧链活性基团氧化反应特性的影响[J].煤炭学报,2020,45(1):232-240.

[90]Lu T, Chen FW. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry,2012,33(5):580-592.

[91]卢天, 陈飞武. 分子轨道成分的计算[J].化学学报,2011,69(20):2393-2406.

[92]Murray JS, Politzer Peter. The electrostatic potential: an overview[J]. WIREs Computational Molecular Science,2011,1:153-163.

[93]付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J].物理化学学报,2014,30(4):628-639.

[94]Lu T, Chen FW. Quantitative analysis of molecular surface based on improved marching tetrahedral algorithm[J].Journal of Molecular Graphics and Modelling,2012,38:314-323.

[95]李艳梅. 高等有机化学反应、机理与结构[M].化学工业出版社,2018.

中图分类号:

 TD752.2    

开放日期:

 2022-09-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式