论文中文题名: | 熔体浸浮条件下 Fe-Cu 难混溶合金的亚稳液相分离动力学研究 |
姓名: | |
学号: | 20211225053 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 金属材料快速凝固 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Kinetics of Metastable Liquid Phase Separation of Fe-Cu Immiscible Alloys under Glass Fluxing Condition |
论文中文关键词: | |
论文外文关键词: | Liquid phase separation ; Rapid solidification ; High undercooling ; Immiscible alloy ; Lattice-Boltzmann method |
论文中文摘要: |
由于难混溶合金优异的导电性和自润滑性能,其在最近引起了科学界的广泛关注。难混溶合金的快速凝固动力学的研究有助于为新型合金材料的组织调控提供科学依据。本文采用熔体浸浮实验技术和格子玻尔兹曼模拟方法,系统研究了深过冷液态Fe-Cu 合金的亚稳液相分离动力学,取得以下研究结果: 1、 二元Fe-Cu难混溶合金的宏观偏析演变动力学研究 深过冷液态Fe65Cu35合金在熔体浸浮条件下获得的过冷度范围在24 K和291 K (0.17 TL)之间。当过冷度低于121 K时,样品的组织形貌相对均匀,没有发生相分离。随着过冷度超过189 K,亚稳液相分离发生,形成了两种典型的宏观偏析模式,且相分离过冷度和相分离时间均线性增加。在189 K~248 K的过冷度范围内,相分离形态主要表现为偏心的三层壳核结构,由富Cu壳、富Fe层和向地面偏离的富Cu核组成。当过冷度超过248 K时,通常会保留由富Fe核和月牙形富Cu壳组成的两层壳核宏观偏析结构。 本文提出了一个格子玻尔兹曼模型,该模型考虑了马兰戈尼对流、表面偏析和重力场的组合效应,以充分阐明深过冷液态Fe65Cu35合金宏观偏析模式的演变动力学。理论分析表明,马兰戈尼对流和斯托克斯运动是导致熔体浸浮条件下宏观偏析演变的主要动力学机制。此外,证实了亚稳相分离发生时的温度梯度以及相分离时间在宏观偏析模式的选择中起着关键作用。 2、 过冷度和过热度控制下Fe-Cu难混溶合金的液相分离研究 通过熔体浸浮实验技术和格子玻尔兹曼计算方法,研究了过热度和过冷度对深过冷液态Fe65Cu35合金亚稳液相分离动力学的影响机理。实验结果表明,亚稳液相分离发生在175 ~ 297 K的过冷度范围内,并诱发了偏心壳核结构的形成。首次给出了相分离过冷度和相分离时间与过热度和过冷度之间的函数关系。在过热度降低或过冷度升高时,相分离过冷度随之增加。过热度和过冷度的上升都有助于相分离时间的延长,富Cu区的扩展,富Fe区维氏硬度的提高,表明此时亚稳液相分离也进行的更加彻底。计算结果显示,表面偏析、马兰戈尼对流和斯托克斯沉降作用是推动宏观偏析演变的主要因素。 3、 自然冷却和强制冷却下Fe-Cu合金的亚稳液相分离研究 在13 K~285 K的过冷度范围内,过冷液态Fe35Cu65合金发生了亚稳液相分离。随着过冷度的增加,相分离时间线性增加。当过冷度较低时,偏析形貌在样品表面附近表现为富Fe相颗粒,在远离样品表面的地方表现为αFe枝晶。随着过冷水平的提高,凝固组织形貌转变为由漂浮的富Fe核和下沉的富Cu壳组成的偏心壳核宏观偏析形态。 与自然冷却相比,强制冷却条件下样品宏观偏析结构的形成需要的临界过冷度更大。在相同的过冷度下,强制冷却样品的相分离时间更短,样品宏观偏析结构的偏心水平和富Fe区的体积分数都较小。对自然冷却和强制冷却条件下液态Fe35Cu65合金的亚稳液相分离和微观组织演变进行了相关探索。研究表明,富Fe相微滴的斯托克斯运动和马兰戈尼迁移的强弱依赖于亚稳液相分离时合金的冷却方式、富Fe微滴的大小和位置。 4、 深过冷Fe-Cu合金的组织硬化机制及室温电学性能调控 熔体浸浮实验条件下Fe87Cu13合金取得的过冷度高达399 K (0.23 TL)。在244 K以下的小过冷区,样品发生包晶凝固,过冷度的增加有助于提高初生枝晶生长速度和枝晶中Cu含量,细化凝固组织,提高维氏硬度和阻抗。当过冷度升高到244 K时,样品出现亚稳相分离,形成富Cu壳,并伴随着初生枝晶中Cu含量、维氏硬度和阻抗的突然下降。随着过冷度的进一步提高,初生枝晶的生长速度逐渐增加,在最大过冷度时初生枝晶的生长速度接近22.0 m/s。同时,由于溶质截流效应,枝晶中含有更多的Cu元素,致使维氏硬度和阻抗呈上升趋势。 理论分析发现,当Fe-Cu合金中Cu的比例很低时,液相分离过程主要受表面偏析控制。过冷Fe87Cu13合金的维氏硬度与初生相的晶粒尺寸、溶质含量和凝固速度密切相关,而晶界、晶体缺陷和空位数量对阻抗有显著影响。 |
论文外文摘要: |
Due to the excellent electrical conductivity and self-lubricating properties of immiscible alloys, it has recently attracted considerable attention in the scientific community. The study of rapid solidification kinetics of immiscible alloys is helpful to provide scientific basis for the microstructure control of new alloy materials. In this paper, metastable liquid phase separation kinetics of deeply undercooled liquid Fe-Cu alloy was systematically studied by using glass fluxing technology and lattice Boltzmann method. The following results were obtained: 1. Research on macrosegregation evolution kinetics of binary Fe-Cu immiscible alloy The undercooling range of undercooled liquid Fe65Cu35 alloy obtained under the conditions of glass fluxing is between 24 K and 291 K ( 0.17 TL ). When the undercooling is lower than 121 K, the microstructure of the sample is relatively uniform and phase separation does not occur. When the undercooling exceeds 189 K, two typical macrosegregation modes are formed by metastable liquid phase separation. The phase separation undercooling and phase separation time increase linearly. In the supercooling range of 189 K~248 K, the phase separation morphology is mainly characterized by an eccentric three-layer shell-core structure, which is composed of Cu-rich shell, Fe-rich layer and Cu-rich core deviating from the ground. When the undercooling exceeds 248 K, the two-layer core-shell macrosegregation structure composed of Fe-rich core and crescent-shaped Cu-rich shell is usually preserved. In this paper, a lattice-Boltzmann model is proposed, which takes into account the combined effects of Marangoni convection, surface segregation and gravity field to fully elucidate the evolution kinetics of macrosegregation mode of deeply undercooled liquid Fe65Cu35 alloy. Theoretical analysis shows that Marangoni convection and Stokes motion are the main dynamic mechanisms leading to the evolution of macrosegregation under glass fluxing conditions. It is confirmed that the temperature gradient and phase separation time during metastable phase separation play a key role in the selection of macrosegregation mode. 2. Liquid phase separation kinetics controlled by superheating and undercooling of Fe-Cu alloys The influence mechanism of superheating and undercooling on the metastable liquid phase separation kinetics of Fe65Cu35 alloy was studied by glass fluxing technique and lattice-Boltzmann method. The experimental results show that the metastable liquid phase separation occurs in the undercooling range of 175-297 K and induces the formation of an eccentric shell-core structure. For the first time, the relationship between phase separation undercooling (or phase separation time) and superheating and undercooling is given. When the superheating decreases or the undercooling increases, the phase separation undercooling increases. The increase of superheating and undercooling degree contributes to the prolongation of phase separation time, which makes the Cu-rich region expand, resulting in the increase of Vickers hardness in the Fe-rich region, and the metastable liquid phase separation proceeds more sufficiently. The results show that surface segregation, Marangoni convection and Stokes sedimentation are the main factors driving the evolution of macrosegregation. 3. Metastable liquid phase separation of Fe-Cu alloy under natural and forced cooling conditions In the undercooling range of 13 K ~ 285 K, metastable liquid phase separation occurs in the undercooled liquid Fe35Cu65 alloy. With the increase of undercooling, the phase separation time increases linearly. When the undercooling is low, the segregation morphology is Fe-rich phase particles near the sample surface and αFe dendrites far away from the sample surface. With the increase of undercooling level, the solidification structure morphology is transformed into an eccentric shell-core macrosegregation morphology composed of a floating Fe-rich core and a sinking Cu-rich shell. Compared with natural cooling, the critical undercooling required for the formation of macrosegregation structure is larger under forced cooling condition. At the same undercooling, the phase separation time of the forced cooled sample is shorter, and the eccentricity level of the macrosegregation structure and the volume fraction of the Fe-rich region are smaller. The metastable liquid phase separation and microstructure evolution of liquid Fe35Cu65 alloy under natural cooling and forced cooling conditions were explored. The results show that the Stokes motion and Marangoni migration of Fe-rich droplets depend on the alloy cooling mode, the size and position of Fe-rich droplets during metastable liquid phase separation. 4. Microstructural hardening mechanisms and electrical properties modulations of undercooled Fe-Cu alloy Under the experimental conditions of glass fluxing, the undercooling degree of liquid Fe87Cu13 alloy is as high as 399 K ( 0.23 TL ). In the small undercooling region below 244 K, the sample undergoes peritectic solidification behavior. The increase of undercooling helps to increase the growth velocity of primary dendrites and the Cu content in dendrites, refine the solidification structure, and improve the Vickers hardness and impedance. When the undercooling increases to 244 K, the sample undergoes a metastable phase separation and forms a Cu-rich shell, accompanied by a sudden decrease in Cu content, Vickers hardness and impedance in the primary dendrite. With the further increase of undercooling, the growth velocity of primary dendrite increases gradually, and the growth velocity of primary dendrite reaches to 22.0 m/s at the maximum undercooling. At the same time, due to the solute trapping effect, the dendrite contains more Cu elements, resulting in an upward trend in Vickers hardness and impedance. Theoretical analysis shows that the liquid phase separation process is mainly controlled by surface segregation when the proportion of Cu in Fe-Cu alloy is very low. The Vickers hardness of undercooled Fe87Cu13 alloy is closely related to the grain size, solute content and solidification rate of the primary phase, while the impedance is influenced by the number of grain boundaries, crystal defects and vacancies. |
参考文献: |
[17] 吴宇昊. 深过冷液态Fe/Co基合金凝固动力学的高速摄影和相场模拟研究[D]. 西安:西北工业大学, 2016. [27] 林茂杰, 常健, 吴宇昊, 等. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究[J]. 物理学报, 2017, 66(13): 136401. [33] 张蜡宝, 代富平, 熊予莹, 等. 深过冷Ni-15%Sn合金熔体表面张力研究[J]. 物理学报, 2006, 55(1): 419-423. [39] 罗盛宝. 超常条件下Fe/Ni基复相合金的快速凝固机理研究[D]. 西安:西北工业大学, 2016. [40] 张龙, 张曙光, 余建定. 气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织[J]. 金属学报, 2013, 49(04): 451-456. [49] 沙莎, 王伟丽, 吴宇昊, 等. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究[J]. 物理学报, 2018, 67(4): 046402. [65] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能[J]. 物理学报, 2005, 54(7): 3444-3450. |
中图分类号: | TG111.4 |
开放日期: | 2023-06-19 |