- 无标题文档
查看论文信息

论文中文题名:

 顾及紧邻工作面的矿区开采沉陷监测及岩移规律研究    

姓名:

 蒙延斌    

学号:

 21210226077    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 矿区开采沉陷监测与评价    

第一导师姓名:

 姚顽强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Study on mining subsidence monitoring and rock displacement regularity in mining area considering the influence of adjacent working face    

论文中文关键词:

 SBAS-InSAR ; 地表沉陷 ; 沉降预测 ; FLAC 3D ; 地表岩移规律    

论文外文关键词:

 SBAS-InSAR ; Surface subdidence ; Settlement prediction ; FLAC 3D ; Surface movement pattern    

论文中文摘要:

煤炭资源在我国经济发展中占据着主导地位,随着国民经济的快速发展,对于煤炭需求量日益增加。但是大规模开采会给矿区及周边带来一系列地质灾害,使得矿区人民生命安全受到严重威胁。为了减少开采沉陷对矿区环境的破坏力度,对矿区地表形变进行实时监测和预测非常必要。目前,矿区地表形变监测技术有很多,合成孔径雷达干涉测量(Interferometry Synthetic Aperture Radar, InSAR)技术作为一种新型的对地观测技术,在地表形变监测具有范围广、全天时、全天候等优势,相比于传统监测技术克服了监测周期长、受天气影响、范围小等缺点,因此在矿区地表形变监测中得到了广泛应用。所以如何实现矿区沉降监测和预测一体化,是当前地质灾害防治研究的热点。常用的预测方法虽然可以反应矿区某些区域未来的地表形变趋势,但是不能获取到矿区地表的动态变化过程,针对这个问题,本文主要是将SBAS-InSAR技术和PSO-SVR算法相结合对地表形变进行监测分析和预计研究,为矿区地质灾害预警提供了理论基础。最后运用FLAC 3D建立了紧邻工作面开采沉陷预测模型,对单一工作面和紧邻工作面开采进行了数值模拟,探究了工作面在不同推进距离下上覆岩层的变化特征和地表形变规律。主要研究内容如下:

(1)针对孟村矿区紧邻工作面开采条件下地表沉陷规律复杂问题,以矿区401101工作面和401102工作面为研究对象,利用SBAS-InSAR技术对覆盖孟村矿区的128景Sentinel-1A数据处理,获取到两个工作面年均沉降速率和地表时序累积沉降量。结合矿区资料从点、线、面等多个角度对地表形变特征进行分析。结果表明:地表沉陷结果在时间和空间和工作面分布位置有着良好的一致性,随着工作面的不断推进,地表沉降值和沉降速率逐渐增大。由于受紧邻工作面401102开采影响,401101工作面的下沉范围表现明显增加的趋势,地表沉陷出现了非对称特征,且靠近采空区越近的区域地表沉降值越大,沉降中心逐渐向采空区的一侧偏移。接着以GPS实测数据作为参考,利用修正模型对沉降结果修正,两者的决定系数达到了0.94,说明修正后结果可靠。

(2)针对传统开采沉陷预测方法的缺陷和预测精度较低的问题,本文基于SBAS-InSAR的监测结果和SVR算法、PSO-SVR算法相结合构建开采沉陷预计模型对矿区形变进行预测,在工作面上选取4个下沉趋势较为明显的特征点,提取出在2018年6月4日-2018年12月25日期间18期地表时序累积沉降量,以1-15期数据作为训练集,16-18期数据作为测试集。利用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)作为预测结果精度评价指标。结果表明:PSO-SVR预测模型的平均绝对误差和均方根误差相比SVR预测模型较小,决定系数达到了0.9,并将两者预测结果和SBAS-InSAR结果对比分析,得知PSO-SVR模型在解决较为复杂的非线性问题时学习能力更强,预测结果稳定性更高。

(3)针对孟村矿区工作面煤层开采地表岩移规律的特殊性,根据孟村煤矿地质采矿条件建立了开采沉陷预测模型模拟并分析了工作面在不同推进距离下覆岩与地表岩移规律变化,并结合形变理论和数值模拟实验分析。研究表明:随着工作面的推进,采空区范围逐步增大,当采空区对地表影响增大到一定程度后地表发生沉陷及变形。地表产生最大下沉点处均在采空区上方中央位置,并且下沉曲线关于采空区中央最大下沉点对称,在不同推进长度下,越远离采空区中央上方,地表沉降越不明显。然而紧邻工作面开采与近水平煤层单一工作面开采沉陷所表现出的对称性特征不同,在老采空区影响下,地表下沉关于采空区中心呈非对称分布,靠近老采空区一侧沉陷变形量和变形剧烈程度明显大于未采区一侧,沉降中心会向老采空区方向偏移。

论文外文摘要:

Coal resources occupy a dominant position in China's economic development, and with the rapid development of the national economy, the demand for coal is increasing. However, large-scale mining will bring a series of geological disasters to the mining area and the surrounding area, which will seriously threaten the life and safety of the people in the mining area. In order to reduce the damage of mining subsidence to the mining environment, it is very necessary to monitor and predict the surface deformation of the mining area in real time. At present, there are many surface deformation monitoring technologies in mining area, InSAR technology, as a new type of earth observation technology, has the advantages of wide range, all-day, all-weather in surface deformation monitoring, compared with the traditional monitoring technology to overcome the shortcomings of the monitoring cycle is long, affected by the weather, the range is small, and so on, so it is widely used in the monitoring of surface deformation in mining area. Therefore, how to achieve the integration of monitoring and prediction of mine subsidence is the hot spot of current research on prevention and control of geological disasters. Although the commonly used prediction methods can respond to the future surface deformation trend of some areas in the mining area, but they cannot obtain the dynamic change process of the surface in the mining area, to address this problem, this paper mainly combines the SBAS-InSAR technology and PSO-SVR algorithms to monitor and analyse and anticipate the research of surface deformation, which provides a theoretical basis for the early warning of geological hazards in the mining area. Finally, a prediction model of mining subsidence in the immediate working face was established by using FLAC 3D, and numerical simulation of single working face and immediate working face mining was carried out to explore the change characteristics of the overlying rock layer and the surface deformation law of the working face under different advancing distances. The main research contents are as follows:

(1)  Aiming at the complexity of the surface subsidence pattern under the mining conditions of the immediately neighbouring workings in the Mengcun mine area, we took the 401101 workings and 401102 workings in the mine area as the research objects, and processed the 128 views of Sentinel-1A data covering the Mengcun mine area with SBAS-InSAR technology, and obtained the annual average rate of the two workings and the time-sequence cumulative subsidence of the ground surface. The surface deformation characteristics were analysed from multiple perspectives, such as point, line and surface, in combination with the mine site data. The results show that the surface subsidence results have good consistency in time and space and the distribution location of the working face, and the surface subsidence value and subsidence rate gradually increase with the continuous advancement of the working face. Due to the influence of the mining of the adjacent working face 401102, the subsidence range of working face 401101 shows a significant increase in the trend, the surface subsidence appears asymmetric characteristics, and the closer the surface subsidence value of the area near the mining area is larger, and the centre of the subsidence is gradually shifted to the side of the mining area. Then, the GPS measured data were used as the reference, and the subsidence results were corrected by the correction model, and the coefficient of determination between the two reached 0.94, indicating that the corrected results were reliable.

(2)  Aiming at the defects of traditional mining subsidence prediction methods and the problem of low prediction accuracy, this paper constructs a mining subsidence prediction model based on the monitoring results of SBAS-InSAR and the combination of SVR algorithm and PSO-SVR algorithm to predict the deformation of the mining area, and selects four feature points on the workings with a more pronounced trend of subsidence, and extracts the cumulative subsidence of the ground surface in the period of 4 June 2018-25 December 2018, with the data of periods 1-15 as the training set and the data of periods 16-18 as the test set. During the period from 4 June 2018 to 25 December 2018, 18 periods of time-series cumulative subsidence of the surface were extracted, with the data of periods 1-15 as the training set and the data of periods 16-18as the test set. The root mean square error (RMSE), mean absolute error (MAE) and coefficien of determination (R2) were used as the evaluation indexes for the accuracy of the prediction results. The results show that the mean absolute error (MAE) and root mean square error (RMSE)of the PSO-SVR prediction model are smaller compared with the SVR prediction model, and the coefficient of determination reaches 0.9. Comparison and analysis of the two prediction results with the SBAS-InSAR results show that the PSO-SVR model has a stronger learning ability in solving the more complicated nonlinear problems, and the stability of the prediction results is higher.

(3)  Aiming at the special characteristics of the surface rock movement law of coal seam mining in the working face of Muncun mine, according to the geological and mining conditions of Muncun coal mine, a mining subsidence prediction model was established to simulate and analyse the changes of overburden rock and surface rock movement law under different advancing distances of the working face and analyse them by combining with the theory of deformation and numerical simulation experiments. The study shows that: with the advancement of the working face, the scope of the mining hollow area gradually increases, and when the influence of the mining hollow area on the ground surface increases to a certain degree, the ground surface will be subsided and deformed. The maximum subsidence point of the ground surface is in the central position above the mining area, and the subsidence curve is symmetrical about the maximumsubsidence point in the central part of the mining area, and the farther away from the central part of the mining area, the less obvious the ground surface subsidence is under different advancing lengths. However, the symmetry characteristics shown by the immediate working face mining and the single working face mining subsidence in the near horizontal coal seam are differen under the influence of the old mining airspace, the surface subsidence is asymmetrically distributed about the centre of the mining airspace, and the amount of subsidence deformation and thedegree of deformation intensity on the side close to the old mining airspace are obviously greater than that on the side of the unmined area, and the centre of the subsidence is shifted to the direction of the old mining airspace.

参考文献:

[1]赵秋雁.科技创新与煤炭高效清洁利用[J].国际经济合作,2012,(06):33-39.

[2]林春霞.煤炭清洁利用“卡脖子”问题亟须突破[N].中国经济时报,2021-12-21(002).

[3]钱鸣高.煤炭的科学开采及有关问题的讨论[J].中国煤炭,2008,(08):5-10+20.

[4]张玮.时序InSAR方法监测矿区地面沉降的研究[D].中国地质大学(北京),2021.

[5]王志岗, 周文韬.基于GPS-InSAR加权融合的矿区地表形变监测研究[J].地理空间信息,2022,20(11):81-84+92.

[6]赵丽娜.煤矿开采对矿区生态环境的影响与应对措施[J].煤炭技术,2013,32(12):77-78.

[7]Yue H, Liu G, Guo H, et al Coal mining induced land subsidence monitoring using multiband spaceborne differential interferometric synthetic aperture radar data[J]. Journal of Applied Remote Sensing, 2011, 5(1):053518.

[8]潘光永,陶秋香,陈洋等.基于SBAS-InSAR的山东济阳矿区沉降监测与分析[J].中国地质灾害与防治学报, 2020, 31(04):100-106+120.

[9]梁思语.基于SBAS-InSAR技术的煤矿区残余移动变形监测研究[D].太原理工大学,2022.

[10] Wang L, Deng K, Zheng M. Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking[J].International Journal of Applied Earth Observation and Geoinformation, 2020,85:101981.

[11] 王爽,杨可明,丁鑫铭等.PS-InSAR监测矿区建筑物及道路动态沉降安全分析[J].中国安全生产科学技术,2022,18(09):111-117.

[12] 李路,洪友堂.改进的SBAS技术在矿区地表沉降监测中的应用[J].测绘科学,2020,45(10):92-101.

[13] 王涛,王伟,覃应哲.基于无人机测绘技术的露天矿区边坡变形识别方法[J].地理信息世界,2022,29(01):58-62.

[14] 何倩,范洪冬,段晓晔等.三维激光扫描与DInSAR联合监测矿区地表动态沉降方法[J].煤矿安全,2017,48(12):70-73+77.

[15] 李宾,陶秋香,牛冲等.全分辨率与多视法DInSAR矿区地面沉降监测研究[J].西南大学学报(自然科学版),2023,45(01):173-182.

[16] 柴华彬,胡吉彪,耿思佳.融合实测数据的地表沉降SBAS-InSAR监测方法[J].煤炭学报,2021,46(S1):17-24.

[17] 陈洋,陶秋香,刘国林等.InSAR与概率积分法联合的矿区地表沉降精细化监测方法[J]地球物理学报,2021,64(10):3554-3566.

[18] 吴立新,高均海,葛大庆,等.基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J].地理学与国土研究, 2004, 20(2):5.

[19] Li-Xin W U , Jun-Hai G , Da-Qing G E ,et al.Experimental Study on Surface Subsidence Monitoring with D-InSAR in Mining Area[J].Journal of Northeastern University(Natural Science), 2005, 26(8):778-782.

[20] 李晶晶,郭增长.基于D-InSAR技术的煤矿区开采沉陷监测[J].河南理工大学学报:自然科学版, 2006, 25(4):4.DOI:10.3969/j.issn.1673-9787.2006.04.012.

[21] 焦明连,蒋廷臣.PS-InSAR技术在地表形变监测中的应用研究[J].全球定位系统, 2008, 33(4):4.

[22] Shaochun D, Sergey S, Hongwei Y, et al. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method[J].Environmental Earth Sciences, 2014, 72(3):677-691.

[23] Osmanoglu B.Dixon T.H.wdowinski . et al.Mexico City subsidence observed with persistent scatterer InSAR[J].International journal of applied earth observation and geoinformation,2011,13(1):1-12.

[24] 孙亚飞.藏东南和祁连山冰川物质平衡的双站InSAR探测研究[J].测绘学报,2019,48(09):1203.

[25] Jin B. Kim S .W. Park H. J. et al.Analysis of ground subsidence in coal mining area using SAR interferometry[J].Geosciences Journal,2008,12(3):277-284.

[26] Berardino P , Fornaro G , Lanari R , et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2375-2383.

[27] Ferretti A , Colesanti C , Prati C , et al.Radar permanent scatterers identification in urban areas: target characterization and sub-pixel analysis[C]//IEEE/ISPRS Joint Workshop on Remote Sensing & Data Fusion Over Urban Areas.IEEE, 2002.

[28] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(04):973-984.

[29] 杨逾,刘文生,缪协兴等.我国采煤沉陷及其控制研究现状与展望[J].中国矿业,2007,(07):43-46.

[30] Rogers,A.E. and Ingalls, R.P. Venus:Mapping the surface reflectivity by radar interferometry[J],Science,1969,(165):797-799

[31] 吴启红,谢飞鸿,杨何等.InSAR技术在高寒矿区地灾治理监测中的应用——以大通煤 矿为例[J].成都大学学报(自然科学版),2023,42(01):89-97.

[32] Carnec C ,Delacourt C .Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J].Journal of Applied Geophysics,2000,43(1):43-54.

[33] Gabriel A, Goldstein R, M , Zebker H. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research Atmospheres, 1994(B7):9183-9191.

[34] Massonnet D, Marc Ross, César Carmona, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433):138-142

[35] Ferretti A , Prati C , Rocca F .Permanent scatterers in SAR interferometry[J].IEEE Transactions on Geoscience & Remote Sensing, 2001, 39(1):8-20.

[36] Berardino P , Fornaro G , Lanari R ,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(11):2375-2383.D

[37] Mora O , Mallorqui J J , Duro J .Generation of deformation maps at low resolution using differential interferometric SAR data[J].IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2002.

[38] Hajek P .Review of: "The association of smoking status with SARS-CoV-2 infection, hospitalisation and mortality from COVID-19: A living rapid evidence review with Bayesian meta-analyses (version 7)[J]. Addiction, 2021, 116(6):1319-1368.

[39] 吴立新,高均海,葛大庆,等.基于D—InSAR的煤矿区开采沉陷遥感监测技术分析[J].地理学与国土研究, 2004.

[40] 李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报:信息科学版, 2004, 29(8):5.

[41] 刘国林,张连蓬,成枢,等.合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J].测绘通报, 2005(11):4.

[42] 胡乐银,张景发,商晓青.SBAS-InSAR技术原理及其在地壳形变监测中的应用[J].地壳 构造与地壳应力文集, 2010(00):82-89.

[43] 朱建军,杨泽发,李志伟,等.一种利用单个InSAR干涉对获取矿区地表三维形变场的方法:CN201210440875.4[P].CN102927934A[2024-03-22].

[44] 康日斐,吴泉源,王菲,等.基于D-InSAR技术的龙口矿区地表沉降遥感监测研究[J].土壤通报, 2016, 47(005):1049-1055.

[45] 虎小强,杨树文,闫恒,等.基于时序InSAR的新疆阿希矿区地表形变监测与分析[J].自然资源遥感, 2023, 35(1):171-179.

[46] 谢波.基于时间序列支持向量回归模型的变形监测研究[J].城市勘测, 2009(5):4.

[47] 张蓬郁,王煜,江旻宇,等.基于K-D树和机器学习的时空数据检索-预测系统[J].软件, 2018, 39(8):4.

[48] 李金超.基于InSAR和Sentinel-1A的淮南矿区形变灾害监测研究[D].合肥工业大学,2021.

[49] 陈炳乾.面向矿区沉降监测的InSAR技术及应用研究[D].中国矿业大学,2015.

[50] 郭增长,王金庄,戴华阳.极不充分开采地表移动与变形预计方法[J].矿山测量, 2000(3):35-36.

[51] 马飞,隋立春,姚顽强,等.基于InSAR技术和GS-SVR算法的矿区地表开采沉陷预计[J].测绘工程, 2018, 027(007):10-14.

[52] 惠甜甜,刘长星,王圣杰,等.基于SBAS-InSAR技术和LSTM-GS模型的矿区开采沉陷预测[J].地理空间信息, 2022,20(08):13-17.

[53] 肖海平,夏益强,刘小生等.融合SBAS-InSAR技术与TSO-LSTM模型的矿区地表沉降预测方法[J].金属矿山,2023,(01):126-133.

[54] 徐子兴,季民,张过,等.基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J].国土资源遥感, 2022(002):034.

[55] 张予东,马春艳.基于InSAR技术和SA-SVR算法的矿区沉降预测模型[J].金属矿山, 2020(11):197-202.

[56] 师芸,李杰,吕杰,等.结合SBAS-InSAR与支持向量回归的开采沉陷监测与预测[J].遥感信息, 2021,36(02):6-12.

[57] 孟海东,张建红,薛瑞雄.矿区建筑沉降监测与灰色系统预测[J].煤炭技术, 2015(11):4.

[58] 卢克东,徐良骥,牛亚超.基于GA-PSO融合算法的开采沉陷Richards预计模型参数优化[J].金属矿山, 2021.No.536(02):155-160.

[59] 张香凝,贺黎明,刘翠芝,等.基于SBAS-InSAR技术的煤矿开采沉陷监测与分析[J].遥感技术与应用, 2022, 37(4):1021-1028.

[60] 吴伟强,王卫红,訾应昆,等.基于贝叶斯估计法的矿区地表沉降预测组合模型[J].化工矿物与加工, 2022,51(05):13-17

[61] 石晓宇,魏祥平,杨可明,等.基于D-InSAR技术和改进GM(1,1)模型的矿区沉降监测与预计[J].金属矿山, 2020(09):173-178.

[62] Guo W , Jiang B , Li B .Research on 3D GIS simulation system of mining surface subsidence[J].International Conference on Remote Sensing.IEEE, 2011.

[63] Jirankova E , Petros V , Sancer J .Assessment of stress around mine workings at the time of rockburst occurrence[J].Geomechanics and geoengineering: An international journal, 2012.95-98.

[64] 秦世界,张和生,李国栋.基于FLAC^3D的煤矿开采沉陷预计及与概率积分法的对比分析[J].煤炭工程, 2014.46(6):96-98,102.

[65] 刘天泉."三下一上"采煤技术的现状及展望[J].煤炭科学技术, 1995, 23(1):5-7.

[66] 代巨鹏.西北厚松散层矿区开采沉陷预计与可视化研究[D].西安科技大学,2011.

[67] 孟凡迪.巨厚松散层下地表移动规律研究[D].河南理工大学,2012.

[68] 谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报, 1999, 18(4):397-397.

[69] 李开鑫,柳昌涛,王昊楠.巨厚松散层下综采工作面地表沉陷规律及其采厚效应[J].矿山测量, 2021, 49(5):22-26.

[70] 李涛.基于DDA方法的8101工作面开采沉陷数值模拟分析[J].煤, 2020, 29(09):44-45+58.

[71] 张缓缓,叶永芳.浅埋多煤层开采方式对地表沉陷运移影响的数值模拟研究[J].中国煤炭地质, 2019, 31(11):5.

[72] 陈杰,王沉,薛博,等.山区地貌下浅埋煤层工作面开采覆岩运动及地表沉陷规律研究[J].中国矿业, 30(10):181

[73] 汤伏全,赵军仪.相邻工作面开采地表动态沉陷规律[J].西安科技大学.2020.

[74] 郭惟嘉,孙熙震,穆玉娥,et al.重复采动地表非连续变形规律与机理研究[J].煤炭科学技术, 2013, 41(2):1-4.

[75] 蒯洋,刘辉,朱晓峻,et al.厚松散层下多煤层重复开采地表移动规律[J].煤田地质与勘探, 2018, 46(2):130-136.

[76] 黄庆享,曹健,杜君武,等.浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J].煤炭学报, 2019, 44(3):681-689.

[77] 杜荣军,高东方,孙学阳,等.垂向重复采动对煤矿区地表沉陷的影响及其预计[J].露天采矿技术, 2008(3):14-16.

[78] 李丽慧,谭玉芳.矿山地下开采诱发地表沉陷的数值模拟[J].煤矿安全, 2018, 49(7):188-192.

[79] 孙祺钰,吕英华,陈明浩,于永宁,陶亚飞,高森.大柳塔煤矿地表沉陷移动变形规律研究[J].煤矿安全, 2021, 52(11):205-210.

[80] 邓鹏江.条带开采下地表沉陷变形影响因素数值模拟分析研究[J].佳木斯大学学报:自然科学版, 2020, 38(5):5.

[81] 胡青峰,刘文锴,崔希民,等.煤柱群下重复开采覆岩与地表沉陷数值模拟实验[J].煤矿安全, 2019, 50(11):5.

[82] 叶帅飞,王辉,杨修歌.不同土岩比地表沉陷特征数值模拟分析[J].汕头大学学报:自然科学版, 2019, 34(3):10.

中图分类号:

 P237    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式