- 无标题文档
查看论文信息

论文中文题名:

 结构瞬变激励下覆岩能量场的动态演化特征    

姓名:

 高佳波    

学号:

 22201106047    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0801    

学科名称:

 工学 - 力学(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 力学    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 罗生虎    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-23    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Dynamic evolution characteristics of overlying rock energy field under structural transient excitation    

论文中文关键词:

 结构瞬变 ; 能量场 ; 聚集与释放 ; 煤岩动力灾害    

论文外文关键词:

 structural transients ; energy field ; aggregation and release ; coal-rock dynamic disaster    

论文中文摘要:

随着矿井开采强度与深度的增大,冲击地压、煤与瓦斯突出等煤岩动力灾害频发,严重制约着深部矿井的安全高效生产。采场煤岩动力灾害的发生与覆岩能量场的聚集与释放规律密切相关,揭示覆岩能量场的演变机理对防治煤岩动力灾害与实现矿井安全高效开采具有重要的理论意义。本文综合采用物理模拟实验、数值计算和理论分析相结合的研究方法,对下位坚硬岩层瞬时破断诱发的覆岩空间结构瞬变特征,及其作用下采场煤岩能量场的演变机理进行研究。结果表明:

(1) 采场煤岩的动、静力学响应特征与覆岩空间结构的瞬变特征密切相关。下位坚硬岩层瞬时破断后,不仅会造成覆岩空间结构几何属性和内边界约束的瞬变,亦会对采场空间不同区域煤岩形成不同的瞬时加、卸载,导致采场煤岩动态力学响应的发生与静态力学响应的阶变。初次来压时,覆岩空间结构的瞬变特征具有对称性,造成其诱发的煤岩动、静力学响应亦具有对称性。周期来压时,覆岩空间结构的瞬变特征具有非对称性,造成其诱发的煤岩动、静力学响应亦具有非对称性。

(2) 结构瞬变影响下,采场煤岩应力、位移和速度等力学响应的演化具有区域性。初次来压后,临近采空区侧下位坚硬岩层应力骤增,形成应力正阶变区,结构瞬变区域上方岩层应力骤减,形成应力负阶变区,对应位置处围岩位移的演化规律与之相同。周期来压后,由于结构瞬变区域主要集中于工作面侧,导致围岩应力与位移的变化区域亦集中在工作面侧,且其演化规律与初次来压相似。与此同时,不同来压期间采场煤岩速度与加速度峰值与结构瞬变程度呈正相关,且距离结构瞬变区域越远,速度与加速度峰值逐渐减小。

(3) 受此影响,采场空间不同区域煤岩能量场的聚集与释放规律存在显著差异。初次来压后,结构瞬变区域上方覆岩的应变能与重力势能处于释放状态,而采空区两侧深部煤岩的应变能经历了由聚集-释放-聚集的演化过程,对应位置的重力势能随回弹范围减小呈释放-聚集-释放的演化趋势。周期来压后,瞬变区域上方覆岩能量场的演化规律与初次来压相似,而采空区两侧深部煤岩的应变能呈释放-聚集的演化特征,相同位置的重力势能演化规律与之相反。且在此动态演化过程中,除了有不同形式的能量相互转换外,亦伴随有煤岩的破裂、阻尼等因素影响下的能量耗散。

(4) 结构瞬变激励下,采场煤岩能量场的演化是应变能、重力势能和动能相互转化、聚集和释放的复杂动力学过程,且煤岩能量的耗散包含应变能与重力势能两部分。下位坚硬岩层破断后,破裂面内力的瞬时卸载和覆岩载荷传递路径瞬变形成的瞬时加载,使其临近采空区侧下位坚硬岩层发生回弹,而深部区域以及上位坚硬岩层发生变形下沉。受此影响,临空侧下位坚硬岩层重力势能聚集并伴随有应变能释放,上位坚硬岩层重力势能释放并伴随有应变能聚集。整体而言,覆岩应变能的释放范围较小,主要集中于瞬时卸载区;覆岩重力势能整体处于释放状态,仅在下位坚硬岩层回弹区域略有增大。

论文外文摘要:

With the increase of mining intensity and depth, coal and rock dynamic disasters such as rock burst, coal and gas outburst occur frequently, which seriously restricts the safe and efficient production of deep mines. The occurrence of coal-rock dynamic disasters in stope is closely related to the accumulation and release law of overburden energy field. It is of great theoretical significance to reveal the evolution mechanism of overburden energy field for the prevention and control of coal-rock dynamic disasters and the realization of safe and efficient mining. In this paper, the physical simulation experiment, numerical calculation and theoretical analysis are combined to study the transient characteristics of the overlying strata spatial structure induced by the instantaneous fracture of the lower hard rock strata, and the evolution mechanism of the coal rock energy field under the action of the overlying strata. The results show :

(1) The dynamic and static response characteristics of coal and rock in the stope are closely related to the transient characteristics of the spatial structure of overlying strata. After the instantaneous fracture of the lower hard rock layer, it will not only cause the transient change of the geometric properties and internal boundary constraints of the spatial structure of the overlying rock, but also form different instantaneous loading and unloading of coal and rock in different areas of the stope space, causing the occurrence of dynamic mechanical response of coal and rock in the stope and the step change of static mechanical response. During the first weighting, the transient characteristics of the spatial structure of the overlying strata are symmetrical, resulting in the symmetry of the dynamic and static responses of the coal and rock induced by it. During the periodic weighting, the transient characteristics of the spatial structure of the overlying strata are asymmetric, resulting in the asymmetry of the dynamic and static responses of the coal and rock induced by it.

(2) Under the influence of structural transient, the evolution of stress, displacement and velocity of coal rock in stope is regional. After the initial weighting, the stress of the lower hard rock strata near the goaf side increases sharply, forming a positive-order stress change zone. The stress of the rock strata above the structural transient zone decreases sharply, forming a negative-order stress change zone. The evolution law of the overlying rock displacement at the corresponding position is the same as that. After periodic weighting, because the structural transient area is mainly concentrated on the working face side, the change area of surrounding rock stress and displacement is also concentrated on the working face side, and its evolution law is similar to that of the first weighting. At the same time, the peak values of velocity and acceleration of coal and rock in the stope during different weighting periods are positively correlated with the degree of structural transient, and the farther the distance from the structural transient area is, the smaller the peak values of velocity and acceleration are.

(3) Affected by this, there are significant differences in the accumulation and release rules of coal and rock energy fields in different areas of the stope space. After the initial weighting, the strain energy and gravitational potential energy of the overlying rock above the structural transient region are in a state of release, while the strain energy of the deep coal rock on both sides of the goaf has undergone an evolution process of aggregation-release-aggregation, and the gravitational potential energy at the corresponding position shows an evolution trend of release-aggregation-release with the decrease of the rebound range. After the periodic weighting, the evolution law of the energy field of the overlying strata above the transient region is similar to that of the initial weighting, while the strain energy of the deep coal rock on both sides of the goaf shows the evolution characteristics of release-aggregation, and the evolution law of the gravitational potential energy at the same position is opposite. In this dynamic evolution process, in addition to different forms of energy conversion, it is also accompanied by energy dissipation under the influence of coal rock fracture, damping and other factors.

(4) Under the transient excitation of the structure, the evolution of the energy field of coal and rock in the stope is a complex dynamic process of mutual transformation, accumulation and release of strain energy, gravitational potential energy and kinetic energy, and the dissipation of coal and rock energy includes strain energy and gravitational potential energy. After the lower hard rock stratum is broken, the instantaneous unloading of the internal force of the fracture surface and the instantaneous loading formed by the transient transmission path of the overburden load make the lower hard rock stratum near the goaf side rebound, while the deep area and the upper hard rock stratum deform and sink. Affected by this, the gravitational potential energy of the lower hard rock layer on the free side is accumulated and accompanied by the release of strain energy, and the gravitational potential energy of the upper hard rock layer is released and accompanied by the accumulation of strain energy. On the whole, the release range of overburden strain energy is small, mainly concentrated in the instantaneous unloading zone ; the gravitational potential energy of the overlying rock is in a state of release as a whole, and only increases slightly in the rebound area of the lower hard rock layer.

参考文献:

[1] Ying C., Zikai Z., Chen C., et al. Research on the causal mechanism of a rock burst accident in a longwall roadway and its prevention measures[J]. Scientific Reports, 2023, 13(1):120-132.

[2] 谭云亮, 郭伟耀, 赵同彬, 等. 深部煤巷帮部失稳诱冲机理及“卸-固”协同控制研究[J]. 煤炭学报, 2020, 45(01):66-81.

[3] 潘一山, 宋义敏, 刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报, 2023, 42(09):2081-2095.

[4] 潘一山, 肖永惠, 罗浩, 等. 冲击地压矿井安全性研究[J]. 煤炭学报, 2023, 48(05):1846-1860.

[5] 谷雪斌, 张呈国, 郭伟耀, 等. 冲击地压矿井典型微震信号特征及其判识研究[J]. 煤炭学报, 2024, 49(S2):694-713.

[6] 姜耀东, 潘一山, 姜福兴, 等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报, 2014, 39(02):205-213.

[7] 谭云亮, 郭伟耀, 辛恒奇, 等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报, 2019, 44(01):160-172.

[8] 姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报, 2006, (01):30-33.

[9] Gao F, Kang H, Li J. Numerical simulation of fault-slip rock bursts using the distinct element method[J]. Tunnelling and Underground Space Technology, 2021, 110: 103805.

[10] 罗生虎, 高佳波, 闫壮壮, 等. 结构瞬变激励下覆岩应变能场和重力势能场的演变机理[J]. 煤炭学报, 2025, 50(2):768-780.

[11] 伍永平, 罗生虎, 闫壮壮, 等. 煤岩结构瞬变诱冲机理[J]. 煤炭学报, 2025, 50(1):193-208.

[12] 罗生虎, 王同, 伍永平, 等. 结构瞬变激励下采场煤岩的力学响应[J]. 煤炭学报, 2023, 48(12):4406-4416.

[13] 罗生虎, 韩昊强, 伍永平, 等. 结构瞬变影响下采场煤岩静态力学响应的阶变规律[J]. 煤炭工程, 2024, 56(07):110-119.

[14] 谭云亮, 张修峰, 肖自义, 等. 冲击地压主控因素及孕灾机制[J].煤炭学报, 2024, 49(01):367-379.

[15] 齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(09):1-40.

[16] Tian B., Liu S., Zhang Y., et al. Analysis of fractal characteristic of fragments from rock burst tests under different loading rates[J]. Tehnički vjesnik-Technical Gazette, 2016, 23(2):123-130.

[17] Chen C L , Zhang T , Zhao Y , et al. A study on the energy sources and the role of the surrounding rock mass in strain burst[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 154.

[18] Chen M., Liu S., Gaoang W., et al. Post-peak Stress-Strain curves of brittle hard rocks under axial-strain-controlled loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147.

[19] Hou Y. P , Cai , et al. Post-peak Stress-Strain Curves of Brittle Rocks Under Axial- and Lateral-Strain-Controlled Loadings[J]. Rock Mechanics and Rock Engineering, 2021, 55(2):1-30.

[20] Zepeng H , Linming D , Siyuan G , et al. Mechanism of rock burst in deep gob-side entry based on dynamic and static stress: a case study[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1):557-570.

[21] Peng K , Changxiang W , Luyi X , et al. Study on the fault slip rule and the rockburst mechanism induced by mining the panel through fault[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1):363-379.

[22] Salamon M. D. G. Elastic analysis of displacement and stress induced by the mining of seam or reef deposits -Part Ⅰ [J]. Journal of South African Institute of Mining & Metallurgy, 1964: 197-218.

[23] Salamon M. D. G. Elastic analysis of displacement and stress induced by the mining of seam or reef deposits -Part Ⅱ [J]. Journal of South African Institute of Mining & Metallurgy, 1964: 129-149.

[24] Salamon M. D. G. Elastic analysis of displacement and stress induced by the mining of seam or reef deposits -Part Ⅲ [J]. Journal of South African Institute of Mining & Metallurgy, 1964: 468-500.

[25] 庞绪峰. 坚硬顶板孤岛工作面冲击地压机理及防治技术研究[D]. 北京: 中国矿业大学(北京), 2013.

[26] 鞠文君, 卢志国, 高富强, 等. 煤岩冲击倾向性研究进展及综合定量评价指标探讨[J]. 岩石力学与工程学报, 2021, 40(09):1839-1856.

[27] 高明仕, 徐东, 王海川, 等. 特厚煤层巷道冲击破坏机理及全锚索支护技术[J]. 煤炭学报, 2023, 48(05):1943-1956.

[28] 刘少虹, 潘俊锋, 席国军, 等. 采动影响下强冲击煤层大巷致冲机理及防控研究[J]. 煤炭学报, 2023, 48(S2):464-472.

[29] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报, 1985(03):42-48.

[30] Detcharat S , Khanwara S . Winning customer satisfaction toward omnichannel logistics service quality based on an integrated importance-performance analysis and three-factor theory: Insight from Thailand[J]. Asia Pacific Management Review, 2023, 28(4):531-543.

[31] Sitao Z , Gaoang W , Kuiming L , et al. Determination of Width of Sectional Coal Pillars in the Working Face of Burst-prone Inclined Thick Coal Seams[J]. Shock and Vibration, 2022, 32(2):431-443.

[32] 窦林名, 陆菜平, 牟宗龙, 等. 冲击矿压的强度弱化减冲理论及其应用[J]. 煤炭学报, 2005(06):690-694.

[33] Chang-Qing L , Xiao-Ping Z . Visualization of stick-slip shear failure process of granite by 3D reconstruction technique and DEM[J]. Tribology International, 2022, 176: 253-561.

[34] 潘俊锋. 煤矿冲击地压启动理论及其成套技术体系研究[J]. 煤炭学报, 2019, 44(01):173-182.

[35] Li X , Li H , Zhang X , et al. Damage evolution of coal with a strong bursting liability and 3D measurement method for elastic deformation energy distribution[J]. Theoretical and Applied Fracture Mechanics, 2024, 133(PA): 104534-104539.

[36] 李海涛, 齐庆新, 赵善坤, 等. 煤矿动力灾害广义“三因素”机理探讨[J]. 煤炭科学技术, 2021, 49(06):42-52.

[37] 潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(03):586-596.

[38] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(08):2091-2098.

[39] 郭文彬. 矿山压力理论的研究现状及发展前景[J]. 内蒙古煤炭经济, 2017, (17):40+46.

[40] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(03):2-7.

[41] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(6):557-563.

[42] 卢国志, 汤建泉, 宋振骐. 传递岩梁周期裂断步距与周期来压步距差异分析[J]. 岩土工程学报, 2010, 32(04):538-541.

[43] 黄庆享, 董博, 陈苏社. 浅埋特大采高工作面矿压规律及支护阻力确定[J]. 采矿与安全工程学报, 2016, 33(05):840-844.

[44] 伍永平, 解盘石, 王红伟, 等. 大倾角煤层开采覆岩空间倾斜砌体结构[J]. 煤炭学报, 2010, 35(08):1252-1256.

[45] 于斌, 高瑞, 孟祥斌, 等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报, 2018, 37(5):1134-1145.

[46] 于斌, 杨敬轩, 刘长友, 等. 大空间采场覆岩空间结构特征及其矿压作用机理[J]. 煤炭学报, 2019, 44(11):3295-3307.

[47] 窦林名, 贺虎. 煤矿覆岩空间结构OX-F-T演化规律研究[J]. 岩石力学与工程学报, 2012, 31(03):453-460.

[48] 杨胜利, 李杨, 王兆会, 等. 充填体支撑作用下坚硬顶板运动模式与控制方法[J]. 采矿与安全工程学报, 2023, 40(05):1057-1066.

[49] 荣海, 于世棋, 王雅迪, 等. 坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J]. 采矿与岩层控制工程学报, 2022, 4(06):16-26.

[50] 蒋金泉, 代进, 王普, 等. 上覆硬厚岩层破断运动及断顶控制[J]. 岩土力学, 2014, 35(S1):264-270.

[51] 陈学华. 构造应力型冲击地压发生条件研究[D]. 阜新: 辽宁工程技术大学, 2004.

[52] 曹安业, 窦林名. 采场顶板破断型震源机制及其分析[J]. 岩石力学与工程学报, 2008(S2):3833-3839.

[53] 朱志洁, 王洪凯, 张宏伟, 等. 多层坚硬顶板综放开采矿压规律及控制技术研究[J]. 煤炭科学技术, 2017, 45(07):1-6.

[54] 于洋. 特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D]. 北京: 中国矿业大学, 2015.

[55] Hamdi P., Stead D., Elmo D. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 07(06):609-625.

[56] Cao W., Li X., Tao M., et al. Vibrations induced by high initial stress release during underground excavations [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2016, 53: 78-95.

[57] 谭云亮, 张明, 徐强, 等. 坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术, 2019, 47(01):166-172.

[58] 陈星, 冯美华, 尚楠, 等. 厚硬顶板宽煤柱临空巷道冲击地压防治技术研究[J]. 煤炭工程, 2022, 54(01):84-88.

[59] 高明仕, 徐东, 贺永亮, 等. 厚硬顶板覆岩冲击矿震影响的远近场效应研究[J]. 采矿与安全工程学报, 2022, 39(02):215-226.

[60] 李文龙, 屠世浩, 郝定溢, 等. 推采速度和充实率对深井充填面厚硬顶板聚能与释能的影响[J]. 中国矿业大学学报, 2021, 50(03):498-506.

[61] 张龙. 深部高瓦斯煤层发生冲击地压灾害的能量机理研究[D]. 重庆: 重庆大学, 2019.

[62] 秦忠诚, 陈光波, 李谭, 等. 冲击地压“能量关键层”确定实验研究[J]. 山东科技大学学报(自然科学版), 2018, 37(06):1-10.

[63] 张广超, 尹茂胜, 周广磊, 等. 厚硬岩层下板结构破断应力-能量场积聚演化规律[J]. 中国矿业大学学报, 2024, 53(04):647-663.

[64] 李夕兵, 古德生. 岩石在不同加载波条件下能量耗散的理论探讨[J]. 爆炸与冲击, 1994, (02):129-139.

[65] 郭连军, 马昊阳, 徐景龙, 等. 循环冲击作用下岩石能量耗散特征及损伤研究[J]. 矿业研究与开发, 2023, 43(05):106-112.

[66] 李兵磊, 远彦威, 曹洋兵, 等. 冲击载荷下灰岩的动力学特性及能量耗散规律[J]. 金属矿山, 2021, (08):61-66.

[67] 卜庆为. 大空间采场厚层顶板采动荷载传递-能量聚散演化机理研究[D]. 安徽: 安徽理工大学, 2022.

[68] 刘新雨, 迟明杰, 陈学良. 不同土体动力参数曲线分布特征及其对地震动的影响[J]. 岩土工程学报, 2023, 45(S2):229-234.

[69] 龙驭球. 弹性基地梁的计算[M]. 北京: 人民教育出版社, 1981.

[70] 张涛然, 晁晓洁, 郭丽红, 等. 材料力学[M]. 重庆大学出版社: 2018. 06. 231.

中图分类号:

 TD324    

开放日期:

 2025-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式