- 无标题文档
查看论文信息

论文中文题名:

 近零能耗建筑自冷式除湿冷却新风系统的性能研究    

姓名:

 封媛    

学号:

 21203053013    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0814    

学科名称:

 工学 - 土木工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 土木工程    

研究方向:

 制冷、空调系统的节能技术    

第一导师姓名:

 陈柳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-25    

论文答辩日期:

 2024-06-07    

论文外文题名:

 Performance study on a self-cooling dedicated outdoor air desiccant cooling system in nearly zero energy buildings    

论文中文关键词:

 近零能耗建筑 ; 转轮除湿机 ; 蒸发冷却 ; 光伏/光热系统 ; 性能优化    

论文外文关键词:

 Nearly zero energy buildings ; Desiccant wheel ; Evaporative cooling ; Photovoltaic/thermal system ; Performance optimization    

论文中文摘要:

高温高湿地区近零能耗建筑具有显热负荷低和潜热负荷高的负荷特性,传统的新风系统基于冷凝除湿原理,除湿能力受冷凝温度的限制,难以满足高温高湿地区近零能耗建筑夏季降温除湿的要求。因此,有必要研究适用高温高湿地区近零能耗建筑的新风系统。除湿冷却技术可以利用太阳能等低品位能源作为驱动热源进行潜热处理,降低新风系统的能耗,是近零能耗建筑新风系统一种有效途径。提出了固体吸附式的转轮除湿机承担潜热负荷,低碳绿色的直接蒸发冷却器承担显热负荷,并且将蒸发冷却器产生的冷水进行循环利用的自冷式除湿冷却新风系统。具体研究内容及结论如下:

提出了前空气冷却器模式、后空气冷却器模式和双级空气冷却器模式的三种模式自冷式除湿冷却新风系统,通过热力学理论分析,对三种模式的状态点及㶲损失和㶲效率进行了计算。分析结果表明:三种模式转轮除湿机和加热器的㶲损失分别占总㶲损失的67.75%,63.43%和65.82%。三种模式的收益㶲分别为3.1278 kW,3.5339 kW,4.1404 kW;㶲损失分别为1.2092 kW,1.2915 kW,1.2446 kW;㶲效率分别为72.12%,73.24%和76.89%。

搭建了自冷式除湿冷却新风系统三种模式的实验台,研究了气水比、处理侧入口空气温度、处理侧入口空气相对湿度及再生温度对系统性能的影响。实验结果表明:双级空气冷却器的模式具有更好的制冷性能。当直接蒸发冷却器的气水比为1.2时系统整体性能最佳。再生温度从50 ℃增大到120 ℃时,系统制冷量从5.02 kW增加到6.90 kW,COPth 从1.67减小到0.89。再生温度的增加导致COPth 显著降低。因此,在满足除湿前提下应适当降低再生温度,减小再生能耗。

将太阳能光伏/光热技术与双级空气冷却器模式的自冷式除湿冷却新风系统耦合,将其应用于夏热冬暖地区近零能耗建筑中。利用TRNBuild软件建立广州地区的近零能耗办公建筑,利用TRNSYS软件建立太阳能光伏/光热驱动自冷式除湿冷却新风系统,研究了建筑负荷特性、室内动态参数、系统性能及能耗特性。仿真模拟结果表明:建筑最大冷负荷为18.96 kW。系统稳定运行后可将室温维持在26 ℃左右,相对湿度在40%~60%范围内。供冷季系统月平均热力性能系数COPth 和电力性能系数COPelec 最大分别为2.19和4.36,系统月平均太阳能热保证率SFth 和太阳能电保证率SFelec 最大分别为0.75和0.69。逐月产热量对于耗热量平均占比为89.14%,产电量对于耗电量平均占比为121.96%。

利用TRNSYS与Genopt优化软件联合,优化目标选取为生命周期成本,应用Hooke-Jeeves算法对主要设计参数进行优化计算。优化结果表明:优化后系统的生命周期成本从65.32万元降低到了63.27万元,比优化前降低3.14%,此时,PV/T集热器面积为154.4 m2,PV/T集热器安装倾角为34°,蓄热水箱容积为7.35 m3,辅助电加热器功率为16.25 kW。优化后系统逐月电力性能系数COPelec ,太阳能热保证率SFth 和太阳能电保证率SFelec 的平均增长率分别为2.54%,2.93%和3.48%。对新风系统的优化能够提高系统性能及对太阳能的利用程度。

论文外文摘要:

One of the remarkable characteristics of the nearly zero energy buildings (nZEBs) in high-temperature and high-humidity areas is low sensible heat load and high latent heat load. The traditional outdoor air system is based on the principle of condensation dehumidification, and the dehumidification capacity is limited by the condensation temperature. It is difficult to meet the requirements of summer cooling and dehumidification of nZEBs in high-temperature and high-humidity areas. Therefore, it is necessary to study the dedicated outdoor air system suitable for nZEBs in high-temperature and high-humidity areas. Dehumidification cooling technology can use low-grade energy such as solar energy as a driving heat source for latent heat treatment. This is an effective method to decrease the energy consumption of the outdoor air system in nZEBs. A self-cooling dedicated outdoor air desiccant cooling system is proposed, in which the desiccant wheel (DW) bears the latent heat load, the low-carbon direct evaporative cooler (DEC) bears the sensible heat load, and the generated cold water produced by the DEC is recycled. The specific research contents and conclusions are as follows:

The self-cooling dedicated outdoor air desiccant cooling system with three modes of front-air cooler mode, rear-air cooler mode and double-air cooler mode was proposed. Through thermodynamic analysis, the state points, exergy loss and exergy efficiency were calculated. The results show that the three modes exergy losses of the DW and the air heater account for 67.75%, 63.43% and 65.82% of the total exergy loss, respectively. The production exergy rate of the three modes were 3.1278 kW, 3.5339 kW and 4.1404 kW, respectively. The destruction exergy were 1.2092 kW, 1.2915 kW and 1.2446 kW, respectively. The exergy efficiencies were 72.12 %, 73.24 % and 76.89 %, respectively.

The experimental platform of three modes of self-cooling dedicated outdoor air desiccant cooling system were established, and the effects of air-water ratio, process air temperature, relative humidity and regeneration temperature on system performance were studied. The experimental results show that the double-air cooler mode has better cooling performance. When the air-water ratio of the DEC was 1.2, the system overall performance was the best. When the regeneration temperature increased from 50 °C to 120 °C, the system cooling capacity (Qr ) increased from 5.02 kW to 6.90 kW, and the thermal performance coefficient (COPth ) decreased from 1.67 to 0.89. The increase of regeneration temperature leads to a significant decrease of COPth . Therefore, under the premise of dehumidification, the regeneration temperature should be appropriately reduced to reduce the regeneration energy consumption.

The solar photovoltaic/thermal (PV/T) technology was coupled with the self-cooling dedicated outdoor air desiccant cooling system of the double-air cooler mode, and it was applied to a nZEB in the hot summer and warm winter area. A nZEB in Guangzhou was established by TRNBuild plug-in. The solar PV/T driven self-cooling dedicated outdoor air desiccant cooling system was established by TRNSYS software. The building load characteristics, indoor dynamic parameters, system performance and energy consumption properties were studied. The simulation results show that the maximum cooling load of the nZEB was 18.96 kW. After the stable operation of the system, the indoor temperature can be maintained at about 26 °C, and the relative humidity can be maintained between 40% and 60%. In the cooling season, the maximum monthly average COPth  and electrical performance coefficient (COPelec ) were 2.19 and 4.36, respectively, and the maximum monthly average thermal solar fraction (SFth ) and electrical solar fraction (SFelec ) were 0.75 and 0.69, respectively. The average proportion of monthly heat production to heat consumption was 89.14%. The average proportion of electricity production to electricity consumption was 121.96%.

Through TRNSYS and Genopt optimization software, the Hooke-Jeeves algorithm was used to optimize the main design parameters with the life cycle cost (LCC) as the optimization goal. The optimization results show that the LCC of the optimized system was reduced from 653,200 yuan to 632,700 yuan, which was 3.14% lower than that before optimization. At this time, the area of PV/T collector was 154.4 m2, the inclination angle of PV/T collector was 34°, the volume of heat storage tank was 7.35 m3, and the power of auxiliary electric heater was 16.25 kW. After optimization, the average monthly growth rates of COPelec , SFth  and SFelec  were 2.54%, 2.93% and 3.48%, respectively. The optimization of the self-cooling dedicated outdoor air desiccant cooling system can improve the system operational performance and the solar energy utilization.

参考文献:

[1]中国建筑节能协会, 重庆大学城乡建设与发展研究院, 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑, 2024(02): 46-59.

[2]Wilberforce T, Olabi A G, Sayed E T, et al. A review on zero energy buildings–Pros and cons[J]. Energy and Built Environment, 2023, 4(1): 25-38.

[3]Jaysawal R K, Chakraborty S, Elangovan D, et al. Concept of net zero energy buildings (NZEB)-A literature review[J]. Cleaner Engineering and Technology, 2022: 100582.

[4]张时聪, 傅伊珺, 吕燕捷, 等. 超低能耗建筑既有政策研究与推广建议[J]. 建设科技, 2019(24): 28-31.

[5]徐伟, 杨芯岩, 张时聪. 中国近零能耗建筑发展关键问题及解决路径[J]. 建筑科学, 2018, 34(12): 165-173.

[6]Zhang S C, Yang X Y, Xu W, et al. Contribution of nearly-zero energy buildings standards enforcement to achieve carbon neutral in urban area by 2060[J]. Advances in Climate Change Research, 2021, 12(5): 734-743.

[7]徐伟, 杨芯岩, 张时聪. 中国近零能耗建筑发展关键问题及解决路径[J]. 建筑科学, 2018, 34(12): 165-173.

[8]陈富平, 丁晓欣, 陶进, 等. 多能互补型超低能耗建筑能源供应及对比分析[J]. 建筑科学, 2021, 37(12): 144-151.

[9]Chen L, Chu Y, Deng W. Experimental investigation of dedicated desiccant wheel outdoor air cooling systems for nearly zero energy buildings[J]. International Journal of Refrigeration, 2022, 134: 265-277.

[10]Gado M G, Ookawara S, Nada S, et al. Hybrid sorption-vapor compression cooling systems: A comprehensive overview[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110912.

[11]Li T, Wang J, Jin F, et al. Techno-economic and environmental performance of a novel poly-generation system under different energy-supply scenarios and temperature and humidity independent control[J]. Case Studies in Thermal Engineering, 2023, 50: 103447.

[12]Goetzler W, Zogg R, Young J, Johnson C. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies[R]. Navigant Consulting, Burlington, MA (United States), 2014.

[13]Yong L, Sumathy K, Dai Y J, et al. Experimental study on a hybrid desiccant dehumidification and air conditioning system[J]. Journal of Solar Energy Engineering, 2006, 128(1): 77-82.

[14]Dhar P L, Singh S K. Studies on solid desiccant based hybrid air-conditioning systems[J]. Applied Thermal Engineering, 2001, 21(2): 119-134.

[15]Sheridan J, Mitchell J. A hybrid solar desiccant cooling system[J]. Solar Energy 1985, 34: 187-193.

[16]Shuailing L, Guoyuan M, Xiaoya J, et al. Performance of a mechanically-driven loop heat pipe heat recovery system[J]. Applied Thermal Engineering, 2022, 207: 118066.

[17]Abdelgaied M, Saber M A, Bassuoni M M, et al. Comparative analysis of a new desiccant dehumidifier design with a traditional rotary desiccant wheel for air conditioning purpose[J]. Applied Thermal Engineering, 2023, 222: 119945.

[18]Ali M, Habib M F, Sheikh N A, et al. Experimental investigation of an integrated absorption-solid desiccant air conditioning system[J]. Applied Thermal Engineering, 2022, 203: 117912.

[19]Shamim J A, Hsu W L, Paul S, et al. A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110456.

[20]Hussain T. Optimization and comparative performance analysis of conventional and desiccant air conditioning systems regenerated by two different modes for hot and humid climates: experimental investigation[J]. Energy and Built Environment, 2023, 4(3): 281-296.

[21]Abd-Elhady M M, Salem M S, Hamed A M, et al. Solid desiccant-based dehumidification systems: A critical review on configurations, techniques, and current trends[J]. International Journal of Refrigeration, 2022, 133: 337-352.

[22]Tsai H Y, Wu C T. Optimization of a rotary desiccant wheel for enthalpy recovery of air-conditioning in a humid hospitality environment[J]. Heliyon, 2022, 8(10).

[23]Chen L, Chen S H, Liu L, et al. Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment[J]. International Journal of Refrigeration, 2018, 95: 83-92.

[24]Chen L, Tan Y. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable Energy, 2020, 146: 2142-2157.

[25]Chen L, Yu Z. Research of a rotary desiccant wheel based hybrid air conditioning system with natural cold source[J]. Procedia Engineering, 2017, 205: 492-496.

[26]Gao D C, Sun Y J, Ma Z, et al. A review on integration and design of desiccant air-conditioning systems for overall performance improvements[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110809.

[27]崔少云, 宋媛, 李志勇. 除湿技术研究综述与展望[J]. 机械管理开发, 2021, 36(10): 288-291.

[28]腊栋. 开式冷水型转轮除湿空调理论与实验研究[D]. 上海交通大学, 2013.

[29]葛天舒. 转轮式两级除湿空调理论与实验研究[D]. 上海交通大学, 2011.

[30]祁冬, 葛天舒. 转轮除湿系统除湿效率及空气净化效率实验研究[J]. 暖通空调, 2018, 48(12): 77-82.

[31]刘异, 陈柳. 高温热泵转轮除湿及辐射供冷空调系统性能研究[J]. 建筑科学, 2020, 36(08): 92-98.

[32]李江波, 陈柳. 双级热管转轮除湿空调系统性能研究[J]. 低温与超导, 2019, 47(10): 62-67+76.

[33]雷燕子. 新型吸附材料除湿转轮传递过程性能研究[D]. 西安科技大学, 2021.

[34]范红, 石全成, 褚于颉, 等. 转轮除湿空调系统再生排风热湿回收性能试验研究[J]. 流体机械, 2022, 50(03): 11-18.

[35]Liu J, Zhang X, Lin Z. Exergy and energy analysis of a novel dual-chilling-source refrigerating system applied to temperature and humidity independent control[J]. Energy Conversion and Management, 2019, 197: 111875.

[36]Chen T, Yin Y, Zhang X. Applicability and energy efficiency of temperature and humidity independent control systems based on dual cooling sources[J]. Energy and buildings, 2016, 121: 22-31.

[37]Qureshi B A, Zubair S M. The effect of refrigerant combinations on performance of a vapor compression refrigeration system with dedicated mechanical sub-cooling[J]. International journal of refrigeration, 2012, 35(1): 47-57.

[38]Zeyghami M, Goswami D Y, Stefanakos E. A review of solar thermo-mechanical refrigeration and cooling methods[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1428-1445.

[39]Jani D B, Mishra M, Sahoo P K. Solid desiccant air conditioning–A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1451-1469.

[40]Abdelgaied M, Saber M A, Bassuoni M M, et al. Solid desiccant air conditioning system using desiccant dehumidifiers with cooling technique and thermal recovery unit: Experimental investigation and performance analysis[J]. Journal of Cleaner Production, 2023, 421: 138387.

[41]Yan M, He S, Gao M, et al. Comparative study on the cooling performance of evaporative cooling systems using seawater and freshwater[J]. International Journal of Refrigeration, 2021, 121: 23-32.

[42]Yang Y, Ren C, Yang C, et al. Energy and exergy performance comparison of conventional, dew point and new external-cooling indirect evaporative coolers[J]. Energy Conversion and Management, 2021, 230: 113824.

[43]Cui X, Yan W, Chen X, et al. Parametric study of a membrane-based semi-direct evaporative cooling system[J]. Energy and Buildings, 2020, 228: 110439.

[44]Wan Y, Lin J, Chua K J, et al. A new method for prediction and analysis of heat and mass transfer in the counter-flow dew point evaporative cooler under diverse climatic, operating and geometric conditions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1147-1160.

[45]Yang Y, Cui G, Lan C Q. Developments in evaporative cooling and enhanced evaporative cooling-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109230.

[46]Abdullah S, Zubir M N B M, Muhamad M R B, et al. Technological development of evaporative cooling systems and its integration with air dehumidification processes: A review[J]. Energy and Buildings, 2023: 112805.

[47]Rafique M M, Gandhidasan P, Rehman S, et al. A review on desiccant based evaporative cooling systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 145-159.

[48]Martínez P J, Martínez P, Soto V M, et al. Comparison of the performance of two different DOAS configurations involving conventional and renewable energies[J]. Solar Energy, 2018, 169: 284-296.

[49]Delfani S, Karami M. Transient simulation of solar desiccant/M-Cycle cooling systems in three different climatic conditions[J]. Journal of Building Engineering, 2020, 29: 101152.

[50]Heidari A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates[J]. Energy Conversion and Management, 2019, 185: 396-409.

[51]Alahmer A. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning[J]. Applied Thermal Engineering, 2016, 98: 1273-1285.

[52]Lai L, Wang X, Kefayati G, et al. Analysis of a novel solid desiccant evaporative cooling system integrated with a humidification-dehumidification desalination unit[J]. Desalination, 2023, 550: 116394.

[53]Khosravi N, Aydin D, Nejhad M K, et al. Comparative performance analysis of direct and desiccant assisted evaporative cooling systems using novel candidate materials[J]. Energy Conversion and Management, 2020, 221: 113167.

[54]Bleibel N, Ismail N, Ghaddar N, et al. Solar-assisted desiccant dehumidification system to improve performance of evaporatively cooled window in hot and-humid climates[J]. Applied Thermal Engineering, 2020, 179: 115726.

[55]邓文杰, 陈柳, 褚于颉. 太阳能驱动除湿转轮与蒸发冷却复合空调系统性能研究[J]. 流体机械, 2022, 50(09): 43-50+57.

[56]Rambhad K S, Walke P V, Tidke D J. Solid desiccant dehumidification and regeneration methods—A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 73-83.

[57]于国鑫. 基于PVT和GHP再生的转轮除湿空调系统的仿真研究[D]. 沈阳: 沈阳建筑大学, 2017.

[58]葛凤华, 王剑, 郭兴龙, 等. 热泵废热再生转轮除湿空调系统的性能研究[J]. 太阳能学报, 2016, 37(9): 2326-2331.

[59]Jia Y, Alva G, Fang G. Development and applications of photovoltaic–thermal systems: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 249-265.

[60]Emmanuel B, Yuan Y, Gaudence N, et al. A review on the influence of the components on the performance of PVT modules[J]. Solar Energy, 2021, 226: 365-388.

[61]Feng W, Zhang Q, Ji H, et al. A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109303.

[62]张时聪, 吕燕捷, 徐伟. 64栋超低能耗建筑最佳案例控制指标和技术路径研究[J]. 建筑科学, 2020, 36(06): 7-13+135.

[63]Ahmed-Dahmane M, Malek A, Zitoun T. Design and analysis of a BIPV/T system with two applications controlled by an air handling unit[J]. Energy Conversion and Management, 2018, 175: 49-66.

[64]Dhimish M. Thermal impact on the performance ratio of photovoltaic systems: A case study of 8000 photovoltaic installations[J]. Case Studies in Thermal Engineering, 2020, 21: 100693.

[65]Cen J, du Feu R, Diveky M E, et al. Experimental study on a direct water heating PV-T technology[J]. Solar Energy, 2018, 176: 604-614.

[66]Wang N, Wang D, Dong J, et al. Performance assessment of PCM-based solar energy assisted desiccant air conditioning system combined with a humidification-dehumidification desalination unit[J]. Desalination, 2020, 496: 114705.

[67]Tian S, Su X, Li H, et al. Using a coupled heat pump desiccant wheel system to improve indoor humidity environment of nZEB in Shanghai: Analysis and optimization[J]. Building and Environment, 2021, 206: 108391.

[68]Braun R, Haag M, Stave J, et al. System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates[J]. Solar energy, 2020, 196: 39-48.

[69]Kumar A, Baredar P, Qureshi U. Historical and recent development of photovoltaic thermal (PVT) technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1428-1436.

[70]Guo J, Lin S, Bilbao J I, et al. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification[J]. Renewable and sustainable energy reviews, 2017, 67: 1-14.

[71]Finocchiaro P, Beccali M, Nocke B. Advanced solar assisted desiccant and evaporative cooling system equipped with wet heat exchangers[J]. Solar Energy, 2012, 86(1): 608-618.

[72]Saghafifar M, Gadalla M. Performance assessment of integrated PV/T and solid desiccant air-conditioning systems for cooling buildings using Maisotsenko cooling cycle[J]. Solar Energy, 2016, 127: 79-95.

[73]Chaudhary G Q, Ali M, Sheikh N A, et al. Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling[J]. Applied Thermal Engineering, 2018, 140: 696-706.

[74]Seung D, Min S, Caliskan H, et al. Investigation and assessment of the optimum conditions of solar heat source hybrid desiccant cooling system under different modes[J]. Solar Energy, 2023, 265: 112133.

[75]Maghrabie H M, Elsaid K, Sayed E T, et al. Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges[J]. Sustainable energy technologies and assessments, 2021, 45: 101151.

[76]丁云飞, 丁静, 杨晓西. 基于太阳能再生的转轮除湿独立新风系统[J]. 流体机械, 2006, (8): 63-66+70.

[77]彭佳杰, 潘权稳, 葛天舒, 等. 太阳能热驱动的吸附式冷热联供系统性能测试[J]. 上海交通大学学报, 2020, 54(7): 661-667.

[78]腊栋, 代彦军, 李慧, 等. 单转轮两级太阳能除湿空调运行特性研究[J]. 工程热物理学报, 2010, (11): 1817-1820.

[79]Biccali M, Butera F, Guanella R, et al. Simplified models for the performance evaluation of desiccant wheel dehumidification[J]. International Journal of Energy Research, 2003, 27 (1): 17-29.

[80]陈思豪. 基于低温低湿驱动转轮除湿的蒸发冷却冷水系统研究[D]. 西安科技大学, 2019.

[81]连之伟, 热质交换原理与设备(第四版)[M]. 北京:中国建筑工业出版社, 2018.

[82]邓文杰, 转轮除湿蒸发冷却空调系统性能研究[D]. 西安科技大学, 2022.

[83]李江波, 除湿转轮和热管换热器复合空调系统[D]. 西安科技大学, 2020.

[84]王厉. 基于(火用)方法的暖通空调系统热力学分析研究[D]. 湖南大学, 2012.

[85]杜江凌. 基于TRNSYS的茯砖茶烘房空气源热泵系统运行特性研究[D]. 西安建筑科技大学, 2023.

[86]I. Dincer, M.A. Rosen, P. Ahmadi, Thermodynamic fundamentals, in: I. Dincer, C. Zamfirescu (Eds.), Sustainable Energy Systems and Applications, John Wiley & Sons, New Jersey, 2017, pp. 39–40.

[87]L. Chun, G. Gong, P. Peng, Y. Wan, K.J. Chua, X. Fang, et al., Research on thermodynamic performance of a novel building cooling system integrating dew point evaporative cooling, air-carrying energy radiant air conditioning and vacuum membrane-based dehumidification (DAV-cooling system), Energy Convers. Manag. 2021, 245: 114551.

[88]Cui M, Wang B, Wei F, et al. A modified exergy analysis method for vapor compression systems: splitting refrigerant exergy destruction[J]. Applied Thermal Engineering, 2022, 201:117728.

[89]韩天鹤. 建筑围护结构与暖通空调能量系统热力学基础研究[D]. 湖南大学, 2017.

[90]Ge F, Wang C. Exergy analysis of dehumidification systems: A comparison between the condensing dehumidification and the desiccant wheel dehumidification, Energy Conversion and Management, 2020, 224: 113343.

[91]Tu R, Liu X, Jiang Y, et al. Influence of the number of stages on the heat source temperature of desiccant wheel dehumidification systems using exergy analysis[J], Energy. 2015, 85: 379-391.

[92]住房和城乡建设部发布. 民用建筑供暖通风与空气调节设计规范: GB50736-2012[M]. 中国建筑工业出版社, 2012.

[93]陈尔健, 贾腾, 姚剑, 等. 太阳能空调与热泵技术进展及应用[J]. 华电技术, 2021, 43(11):40-48.

[94]Van den Bulck E, Klein S A, Mitchell J W. Second law analysis of solid desiccant rotary dehumidifiers[J]. Solar Energy Engineering, 1988, 110:2-9.

[95]Enteria N, Yoshino H, Takaki R, et al. Effect of regeneration temperatures in the exergetic performances of the developed desiccant evaporative air conditioning system[J]. International Journal of Refrigeration, 2013, 36:2323-2342.

[96]中国建筑科学研究院有限公司, 近零能耗建筑技术标准[S]. 北京: 中国建筑工业出版社, 2019.

[97]Moffat R J. Describing the uncertainties in experimental results[J]. Experimental thermal and fluid science, 1988, 1(1): 3-17.

[98]Chen L, Deng W, Chu Y. Experimental study on desiccant evaporative combined chilled air/chilled water air conditioning systems[J]. Applied Thermal Engineering, 2021, 199: 117534.

[99]Wu J M, Huang X, Zhang H. Numerical investigation on the heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2009, 29(1): 195-201.

[100]Al-Badri A R, Al-Waaly A A Y. The influence of chilled water on the performance of direct evaporative cooling[J]. Energy and Buildings, 2017, 155: 143-150.

[101]Chen L, Chen S H, Liu L, et al. Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment[J]. International Journal of Refrigeration, 2018, 95: 83-92.

[102]中华人民共和国住房和城乡建设部, 民用建筑热工设计规范[S]. 北京: 中国建筑工业出版社, 2016.

[103]Jurinak J J. Open Cycle Solid Desiccant Cooling-Component Models and System Simulations[D]. The University of Wisconsin-Madison, 1982.

[104]Li Z, Chen H, Xu Y, et al. Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors[J]. Energy Conversion and Management, 2020, 215: 112895.

[105]Soutullo S, Giancola E, Heras M R. Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid[J]. Energy, 2018, 152: 1011-1023.

[106]Hooke R, Jeeves T.A. Direct search solution of numerical and statistical problems[J]. Journal of the ACM, 1961, 8(2): 212-229.

[107]李倩如. 基于TRNSYS的复合能源系统运行策略寻优模块的构建[D]. 天津大学, 2014.

[108]刘佩. 基于空气源热泵的多源耦合供热系统运行优化[D]. 东北电力大学, 2023.

[109]卢文倩. 太阳能与燃气壁挂炉联合供暖系统实验研究[D]. 天津大学, 2017.

[110]李琛. 太阳能与空气源热泵复合热源生活热水供应系统性能研究[D]. 天津大学, 2020.

中图分类号:

 TU831.5    

开放日期:

 2024-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式