- 无标题文档
查看论文信息

论文中文题名:

 冻结斜井井筒解冻后双裂隙类砂岩蠕变损伤破坏机理试验研究    

姓名:

 云梦晨    

学号:

 18204058031    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081405    

学科名称:

 工学 - 土木工程 - 防灾减灾工程及防护工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 防灾减灾工程及防护工程    

研究方向:

 冻融岩石蠕变力学特性研究    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Study on creep damage mechanism of double fractured sandstone after thawing in frozen inclined shaft    

论文中文关键词:

 人工冻结斜井 ; 富水洛河组砂岩 ; 双裂隙类砂岩 ; 解冻 ; 三轴压缩 ; 核磁共振 ; 蠕变 ; 损伤 ; 宏细观机理 ; 本构模型    

论文外文关键词:

 Artificial freezing inclined shaft ; Luohe formation sandstone ; Double-fractured sandstone ; After thawing ; Triaxial compression creep ; NMR test ; Creep ; Damage ; Macroscopic and Mesoscopic mechanism Constitutive model    

论文中文摘要:

榆神矿区是我国重要的煤炭生产基地之一,许多千万吨级的现代化煤矿急需建设,人工冻结法是富水洛河组地层煤矿斜井施工的重要方法之一,开展西部冻结斜井井筒解冻后双裂隙类砂岩蠕变损伤破坏机理试验与理论研究对人工冻结斜井井筒解冻后的长期稳定性评价及煤矿安全生产具有重要意义。本文以榆神矿区四期某煤矿冻结斜井工程为依托,将洛河组砂岩作为原岩,利用相似材料制备的双裂隙类砂岩作为研究对象,采用室内试验与理论分析相结合的方法对双裂隙类砂岩解冻后三轴压缩试验下变形与破坏特征、解冻后双裂隙类砂岩蠕变力学特性进行研究,主要工作和结论是:

(1)基于研究得到合理的相似配比,使用相似材料制作含有不同预制裂隙倾角的双裂隙类砂岩,完成了双裂隙类砂岩在不同冻结温度下的冻结-解冻试验。随着裂隙倾角的增大解冻后冻胀力对试件造成的局部化损伤效应逐渐减弱;随着冻结温度的降低,类砂岩岩样的损伤程度增大,在岩样预制裂隙边缘及端部区域剥落量逐渐增加,并且在预制裂隙尖端由初始损伤萌生的次生裂纹数量及贯通程度均有不同程度的增加。

(2)完成了不同冻结温度时双裂隙类砂岩解冻后三轴压缩试验。随着围压增加,双裂隙类砂岩的力学性能不断提高,破坏模式由劈裂破坏逐渐向沿着预制裂隙进行扩展的剪切滑移破坏过渡,双裂隙类砂岩次生主裂纹周围颗粒破碎情况有所减少,说明随着围压的逐渐增加,双裂隙类砂岩塑性增加。随着裂隙倾角的增加,双裂隙类砂岩的力学性能先降低后增大,变化趋势整体呈“U”型,在裂隙倾角为30°时力学性能最弱。随着冻结温度的降低,不同裂隙倾角类裂隙砂岩解冻后力学性能随之降低,破坏后沿预制裂隙边缘处的次生裂纹数量增加。

(3)完成了不同冻结温度下不同裂隙倾角双裂隙类砂岩解冻后分级加载三轴压缩蠕变试验。随着裂隙倾角的逐渐增加总蠕变量先增大后减小,裂隙倾角为30°时蠕变速率变化最快。随着冻结温度的降低,造成岩样初始损伤增加,导致各级蠕变应力水平下轴向蠕变量及蠕变速率相应增加。随着荷载等级的不断提高,砂岩进入稳定蠕变阶段所经历的时间越长,粘滞性越明显。双裂隙类砂岩岩样的蠕变破坏模式与三轴压缩条件下的破坏模式基本相同。随着冻结温度的降低,不同裂隙倾角类裂隙砂岩次生裂纹越来越多,损伤破坏程度越来越大。

(4)通过对原状双裂隙类砂岩、解冻后类裂隙砂岩及解冻后类裂隙砂岩三轴压缩蠕变破坏后三种状态核磁共振试验,分析了三种状态下类裂隙砂岩孔隙结构随裂隙倾角及冻结温度等因素的变化规律。结果表明,含有不同裂隙倾角的双裂隙类砂岩在冻结-解冻试验后,T2谱的分布均出现一定程度的向右移动,信号幅度均有所增强,冻结前后类砂岩的孔隙半径主要集中在之间,占总比例的98%以上,其余孔径孔隙的占比不到2%。蠕变破坏后的双裂隙类砂岩T2谱向右移动的明显,第一峰的占比有所降低,第二、三峰的占比升高,并且出现了新的第四峰。裂隙倾角为30°时类砂岩在长期荷载作用下宏观蠕变力学性能的总蠕变量及加速阶段蠕变速率最大,对应破坏后谱面积也最大。

(5)基于岩石蠕变损伤力学理论,通过引入非线性粘塑性体及时效劣化因子来改进Burgers蠕变模型,构成考虑原生节理影响的非线性蠕变模型。根据三轴分级加载蠕变试验数据对蠕变模型进行拟合验证,拟合结果与试验数据基本吻合。

论文外文摘要:

Yushen mining area is one of the important coal production bases in China. Many modern coal mines are in urgent need of construction. Artificial freezing method is one of the important methods for inclined shaft construction in Luohe formation. It is of great significance to carry out the experimental and theoretical research on the creep damage mechanism of double fractured sandstone after thawing in the West frozen inclined shaft for the long-term stability evaluation and coal mine safety production after thawing in the artificial frozen inclined shaft. Based on the frozen inclined shaft project of a coal mine in Yushen mining area, this paper takes the sandstone of Luohe formation as the original rock, and uses the double fracture sandstone made of similar materials as the research object. The research methods of indoor test and theoretical analysis are used to analyze the deformation and failure characteristics of double fracture sandstone under triaxial compression test after thawing, and the creep mechanical properties of double fracture sandstone after thawing The main work and conclusions are as follows:

Based on the reasonable similar ratio, similar materials are used to make double fractured sandstone with different prefabricated fracture dip angles, and the freezing thawing tests of double fractured sandstone under different freezing temperatures are completed. With the increase of crack dip angle, the local damage effect of frost heaving force on the specimen decreases gradually. With the decrease of freezing temperature, the damage degree of sandstone like rock sample increases, and the amount of spalling at the edge and end of prefabricated crack increases gradually. The number and penetration degree of secondary cracks initiated by initial damage at the tip of prefabricated crack increase in varying degrees.

(2) The triaxial compression tests of double fractured sandstone after thawing at different freezing temperatures are completed. With the increase of confining pressure, the mechanical properties of fissured rock are improved. The failure mode changes from splitting failure to shear sliding failure. The particle breakage around the secondary main crack of fissured rock decreases. It shows that the plasticity of fissured rock increases with the increase of confining pressure. With the increase of fracture dip angle, the mechanical properties of double fracture sandstone first decrease and then increase, and the overall change trend presents a "U" shape. When the fracture dip angle is 30°, the mechanical properties are the weakest. With the decrease of freezing temperature, the mechanical properties of rock with different dip angles decrease after thawing, and the number of secondary cracks along the edge of prefabricated cracks increases after failure.

(3) The triaxial compression creep tests of the sandstone with different fracture angles and different freezing temperatures were completed. With the increase of fracture dip angle, the total creep first increases and then decreases, and the creep rate changes fastest when the fracture dip angle is 30° degrees. With the decrease of freezing temperature, the initial damage of rock sample increases, resulting in the increase of axial creep and creep rate at different creep stress levels. With the continuous improvement of load level, the longer the rock enters the stable creep stage, the more obvious the viscosity is. The creep failure mode of double fracture sandstone is basically the same as that of triaxial compression. With the decrease of freezing temperature, there are more and more secondary cracks in rocks with different dip angles, and the failure phenomenon is more and more obvious. 

(4) Through the nuclear magnetic resonance (NMR) tests of the undisturbed fractured rock, the unfrozen fractured rock and the unfrozen fractured rock after triaxial compression creep failure.The variation of pore structure of fractured rock with fracture dip angle and freezing temperature under three conditions is analyzed. The results show that the T2 spectrum of the sandstone with different fracture angles moves to the right to a certain extent after the freeze thaw test. The signal amplitude is enhanced. The pore radius of the sandstone before and after freezing is mainly concentrated between , accounting for more than 98% of the total proportion, and the proportion of the remaining pore radius greater than the above is less than 2%. T2 spectrum of the sandstone with double fracture type moves to the right after creep failure, the proportion of the first peak decreases, the proportion of the second and third peaks increases, and a new fourth peak appears. The creep rate of the sandstone with a fracture angle of 30° is the largest, and the corresponding spectrum area is the largest.

(5) Based on the damage mechanics and creep theory of rock, the burgers creep model is improved by introducing nonlinear viscoplastic body and aging deterioration factor. A nonlinear creep model considering the effect of primary joints is constructed. According to the creep test data of triaxial graded loading, the creep model is fitted and verified, and the fitting results are basically consistent with the test data.

参考文献:

[1] 张嗣超,王立杰,宋梅. 煤炭产业发展政策研究的必要性分析[J]. 中国矿业, 2007(04): 1-3.

[2] 姜国静,李昆,王建平,等. 西部软岩冻结井筒砌筑外壁对冻结壁温度场影响研究[J]. 煤炭工程, 2015,47(08): 41-43.

[3] 于波,张忠义,刘显阳,等. 鄂尔多斯盆地白垩系洛河组至环河华池组砂体展布规律研究[J]. 地层学杂志, 2008(03): 285-289.

[4] 魏斌,张忠义,杨友运. 鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J]. 地层学杂志, 2006(04): 367-372.

[5] 孙杰龙,任建喜,陈兴周,等. 富水砂层斜井冻结壁温度场分布规律研究[J]. 煤炭工程, 2020,52(11): 126-131.

[6] 孙杰龙. 穿越富水砂层冻结斜井冻结壁变形规律研究[D]. 西安科技大学, 2015.

[7] 王衍森,黄家会,杨维好,等. 特厚冲积层中冻结井外壁温度实测研究[J]. 中国矿业大学学报, 2006(04): 468-472.

[8] 刘波,李岩,戴华东,等. 斜井冻结壁温度场分布规律研究[J]. 煤炭科学技术, 2012,40(12): 4-7.

[9] 任建喜,孙杰龙,张琨,等. 富水砂层冻结斜井内外壁受力特性实测[J]. 西安科技大学学报, 2017,37(06): 784-789.

[10] 任建喜,孙杰龙,张琨,等. 富水砂层斜井冻结壁力学特性及温度场研究[J]. 岩土力学, 2017,38(05): 1405-1412.

[11] 孟庆彬,韩立军,石荣剑,等. 煤矿斜井井筒过流砂层施工技术研究及应用[J]. 岩土工程学报, 2015,37(05): 900-910.

[12] KAWAMOTO T, ICHIKAWA Y, KYOYA. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory: Kawamoto, T; Ichikawa, Y; Kyoya, T Int J Num Anal Meth Geomech V12, N1, Jan–Feb 1988, P1–30[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988,25(4): A178.

[13] EBERHARDT E, STEAD D, STIMPSON B, et al. The effect of neighbouring cracks on elliptical crack initiation and propagation in uniaxial and triaxial stress fields[J]. Engineering Fracture Mechanics, 1998,59(2): 103-115.

[14] GONG B, TANG C, WANG S, et al. Simulation of the nonlinear mechanical behaviors of jointed rock masses based on the improved discontinuous deformation and displacement method[J]. International Journal of Rock Mechanics and Mining Sciences, 2019,122: 104076.

[15] 张伟,周国庆,张海波,等. 倾角对裂隙岩体力学特性影响试验模拟研究[J]. 中国矿业大学学报, 2009,38(01): 30-33.

[16] 刘学伟,刘泉声,刘滨,等. 考虑损伤效应的岩体裂隙扩展数值模拟研究[J]. 岩石力学与工程学报, 2018,37(S2): 3861-3869.

[17] 柴红保,曹平,赵延林,等. 裂隙岩体损伤演化本构模型的实现及应用[J]. 岩土工程学报, 2010,32(07): 1047-1053.

[18] FENG P, DAI F, LIU Y, et al. Coupled effects of static-dynamic strain rates on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures[J]. Engineering Fracture Mechanics, 2019,207: 237-253.

[19] CHANGXIANG W, YAO L, GUO H, et al. Simulated Test on Compression Deformation Characteristics and Mechanism of Fractured Rock in Mined Out Area[J]. Geotechnical and Geological Engineering, 2018,36(5).

[20] HAO Y, RENLIANG S, JINXUN Z, et al. Mechanical properties of frozen rock mass with two diagonal intersected fractures[J]. International Journal of Mining Science and Technology, 2018,28(4).

[21] 袁小清,刘红岩,刘京平. 基于宏细观损伤耦合的非贯通裂隙岩体本构模型[J]. 岩土力学, 2015,36(10): 2804-2814.

[22] 王国艳,于广明,高丽燕,等. 初始裂隙倾角对岩石损伤断裂特征的影响研究[J]. 煤炭科学技术, 2017,45(06): 100-104.

[23] 王国艳,于广明,袁长丰. 相交双裂隙岩石损伤断裂特征[J]. 中国矿业, 2021,30(02): 214-218.

[24] 任建喜, 王晓琳, 陈旭. 洛河组砂岩解冻后物理力学性质及破坏特征研究[J]. 煤炭工程, 2021,53(2): 153-158.

[25] 王同旭,马秋峰,曲孔典, 等. 裂隙岩体蠕变断裂损伤本构模型的开发与应用[J]. 煤矿安全, 2016,47(10): 40-43.

[26] LI X, ZHOU T, LI D. Dynamic Strength and Fracturing Behavior of Single-Flawed Prismatic Marble Specimens Under Impact Loading with a Split-Hopkinson Pressure Bar[J]. Rock Mechanics and Rock Engineering, 2017,50(1): 29-44.

[27] 杨超,黄达,黄润秋,等. 断续双裂隙砂岩三轴卸荷蠕变特性试验及损伤蠕变模型[J]. 煤炭学报, 2016,41(09): 2203-2211.

[28] HAO C, XIAOPING Z, JIANG Z, et al. The Effects of Crack Openings on Crack Initiation, Propagation and Coalescence Behavior in Rock-Like Materials Under Uniaxial Compression[J]. Rock Mechanics and Rock Engineering, 2016,49(9).

[29] 黄诗冰,刘泉声,程爱平, 等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学, 2018,39(01): 78-84.

[30] 吴钰,任旭华,张继勋,等. 含裂隙岩石单轴压缩数值试验研究[J]. 三峡大学学报(自然科学版), 2021: 1-7.

[31] 徐拴海,李宁,王晓东,等. 露天煤矿冻岩边坡饱和砂岩冻融损伤试验与劣化模型研究[J]. 岩石力学与工程学报, 2016,35(12): 2561-2571.

[32] PENGPENG N, SHUHONG W, CUNGEN W, et al. Estimation of REV Size for Fractured Rock Mass Based on Damage Coefficient[J]. Rock Mechanics and Rock Engineering, 2017,50(3).

[33] 黄诗冰,刘泉声,程爱平,等. 低温裂隙岩体水-热耦合模型研究及数值分析[J]. 岩土力学, 2018,39(02): 735-744.

[34] 赵建军,解明礼,余建乐,等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 2019,27(6): 1199-1207.

[35] 杨昊, 张晋勋, 单仁亮, 等. 冻结饱水单裂隙岩体力学特性试验研究[J]. 岩土力学, 2018,39(04): 1245-1255.

[36] 李绍红. 含预制裂隙岩石损伤本构模型研究[D]. 成都理工大学, 2019.

[37] 谢璨,李树忱,平洋,等. 峰后裂隙岩石非线性损伤特性与数值模拟研究[J]. 岩土力学, 2017,38(7): 2128-2136.

[38] 余明坤,许国伟,唐国栋,等. 预制裂隙类岩石材料的分步卸载试验研究[J]. 地下空间与工程学报, 2020,16(6): 1672-1681.

[39] YONGSHENG L, CAICHU X. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2000,37(3).

[40] 张俊文,霍英昊. 深部砂岩分级增量加卸载蠕变特性研究[J]. 煤炭学报, 2021: 1-10.

[41] KAI Z, HONGLING M, CHUNHE Y, et al. Damage Evolution and Deformation of Rock Salt Under Creep-Fatigue Loading[J]. Rock Mechanics and Rock Engineering, 2021(prepublish).

[42] Y F, T K, Y I, et al. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999,36(3).

[43] BRIJES M, PRIYESH V. Uniaxial and triaxial single and multistage creep tests on coal-measure shale rocks[J]. International Journal of Coal Geology, 2015,137.

[44] SUN C, LI G, GOMAH M E, et al. Creep characteristics of coal and rock investigated by nanoindentation[J]. International Journal of Mining Science and Technology, 2020,30(6): 769-776.

[45] FENG Y, YANG X, LIU J, et al. A new fractional Nishihara-type model with creep damage considering thermal effect[J]. Engineering Fracture Mechanics, 2021,242: 107451.

[46] 陈宗基,康文法,黄杰藩. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报, 1991(04): 299-312.

[47] 任建喜,葛修润,杨更社. 单轴压缩岩石损伤扩展细观机理CT实时试验[J]. 岩土力学, 2001(02): 130-133.

[48] 刘新喜,李盛南,周炎明,等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报, 2020,39(1): 138-146.

[49] 白瑶. 含冰裂隙红砂岩力学特性及蠕变本构模型试验研究[D]. 中国矿业大学(北京), 2019.

[50] 张磊涛. 冻融环境下砂岩蠕变特性及其模型研究[D]. 西安科技大学, 2020.

[51] 魏尧,杨更社,申艳军,等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020,41(8): 2636-2646.

[52] 张亮亮,王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报, 2020,42(6): 1085-1092.

[53] 严仁俊,裴小彬,罗鑫,等. 四川三叠系盐岩蠕变规律实验研究[J]. 西部探矿工程, 2005(04): 93-94.

[54] 李德建,刘校麟,韩超. 基于等效黏弹性的变阶分数阶岩石损伤蠕变模型[J]. 岩土力学, 2020,41(12): 3831-3839.

[55] 宋勇军,张磊涛,任建喜, 等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报, 2020: 1-10.

[56] 王其虎,叶义成, 刘艳章, 等. 考虑初始损伤和蠕变损伤的岩石蠕变全过程本构模型[J]. 岩土力学, 2016,37(S1): 57-62.

[57] 王来贵,赵娜,何峰,等. 岩石蠕变损伤模型及其稳定性分析[J]. 煤炭学报, 2009,34(01): 64-68.

[58] 刘文博,张树光,陈雷. 基于非定常分数阶的岩石时效性蠕变模型[J]. 采矿与安全工程学报, 2020: 1-10.

[59] 刘文博,张树光,孙博一. 蠕变参数劣化的时效性及变参数蠕变模型[J]. 工程科学与技术, 2021,53(01): 104-112.

[60] 周宏伟,王春萍,段志强,等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学力学天文学, 2012,42(03): 310-318.

[61] 单仁亮,宋立伟,李东阳,等. 冻结红砂岩非线性蠕变模型的研究[J]. 岩土力学, 2014,35(06): 1541-1546.

[62] BERNHARD B, KAWARPAL S. Desktop NMR and Its Applications From Materials Science To Organic Chemistry[J]. Angewandte Chemie International Edition, 2018,57(24).

[63] 陈国庆,简大华,陈宇航,等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021,43(04): 661-669.

[64] 金爱兵,王树亮,魏余栋,等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020,41(11): 3531-3539.

[65] 程桦,陈汉青,曹广勇,等. 多孔岩石冻融水分迁移损伤机制及试验验证[J]. 岩石力学与工程学报, 2020,39(09): 1739-1749.

[66] YANBIN Y, DAMENG L. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012,95.

[67] 钟祖良,罗玮坤,刘新荣,等. 基于核磁共振技术的酸性环境下灰岩力学特性劣化试验[J]. 煤炭学报, 2017,42(07): 1740-1747.

[68] 毛思羽,曹平,李建雄,等. 基于核磁共振T_2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020,28(03): 430-441.

[69] 吴志军,卢槐,翁磊,等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究[J]. 岩石力学与工程学报, 2021,40(02): 263-275.

[70] 潘博,汪旭光,徐振洋,等. 节理角度对岩石材料的动态响应影响研究[J]. 岩石力学与工程学报, 2021,40(03): 566-575.

[71] 宋勇军,张磊涛,任建喜,等. 基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究[J]. 岩石力学与工程学报, 2019,38(04): 825-831.

[72] 李兵磊,王武功,曹洋兵.循环动载下大理岩的力学响应及裂隙扩展规律[J]. 福州大学学报(自然科学版), 2021,49(01): 108-114.

[73] 李杰林,周科平,柯波. 冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J]. 煤炭学报, 2015,40(08): 1783-1789.

[74] 周科平,李杰林,许玉娟,等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012,31(04): 731-737.

中图分类号:

 TU452    

开放日期:

 2023-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式