- 无标题文档
查看论文信息

论文中文题名:

 欠约束临时支护机器人几何静力耦合模型及控制研究    

姓名:

 朱延    

学号:

 22205224106    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械    

研究方向:

 机器人技术    

第一导师姓名:

 刘鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-23    

论文答辩日期:

 2025-05-30    

论文外文题名:

 On the geometric-static coupling model and control of an under-constrained temporary support robot    

论文中文关键词:

 欠约束并联机器人 ; 临时支护机器人 ; 几何静力耦合模型 ; 轨迹跟踪控制 ; 阻抗控制    

论文外文关键词:

 Under-constrained parallel robot ; Temporary support robot ; Geometric-static coupling model ; Trajectory tracking control ; Impedance control    

论文中文摘要:

在煤矿巷道掘进过程中,传统“空间重合、时间分离”的掘进作业模式导致了“采掘失衡”问题,长期制约煤炭的高效与安全开采。鉴于此,本项目团队研发的护盾式智能掘进机器人系统通过“空间分离、时间同步”的掘锚协同作业模式,实现了掘进与支护的并行化高效作业。作为系统核心单元的临时支护环节采用欠约束并联机构,然而该机构存在正运动学求解难和运动控制难两大关键难题,因此本文开展欠约束临时支护机器人几何静力耦合模型与控制研究,旨在突破欠约束临时支护机器人的运动学求解瓶颈与复杂工况下的控制鲁棒性难题。本文的主要研究工作如下:

(1) 欠约束临时支护机器人几何静力耦合模型研究。首先,基于矢量封闭原理构建其运动学模型,并结合静力平衡方程,提出几何静力耦合模型,破解欠约束临时支护机器人正运动学求解难题。其次,为克服该耦合模型高维非线性求解问题,本文改进了蜣螂优化算法,通过引入折射反向学习、融合正余弦和自适应t分布扰动优化了算法的全局搜索能力和收敛性能,并通过六个标准测试函数对改进蜣螂优化算法的性能进行了验证。最后,运用改进的蜣螂优化算法对欠约束临时支护机器人几何静力耦合模型进行了求解,为欠约束临时支护机器人的实际应用提供了充分的理论支持。

(2) 欠约束临时支护机器人自由空间轨迹跟踪控制研究。首先,针对欠约束临时支护机器人动力学模型参数的不确定性,提出基于RBF神经网络分块逼近的终端滑模控制方法,通过构建基于自适应律的神经网络权值在线调整机制,实现末端支护平台动力学模型的动态重构,并设计鲁棒补偿项消除模型重构误差与外部扰动影响。其次,针对传统滑模控制抖振问题,引入模糊系统自适应逼近切换增益取代传统鲁棒项,从而实现控制量的平滑输出,并基于Lyapunov稳定性理论证明了闭环系统的稳定性。最后,对所提出的基于RBF神经网络分块逼近的终端滑模控制器进行仿真分析,结果表明:该控制器显著提升了欠约束临时支护机器人的轨迹跟踪精度,增强了临时支护机器人面对外界干扰时的鲁棒性,为自由空间复杂轨迹下临时支护机器人高精度控制提供了理论支撑。

(3) 欠约束临时支护机器人约束空间接触阻抗控制研究。首先,构建了欠约束临时支护机器人力外环-位置内环的双闭环控制模型,推导稳态误差方程并揭示关键参数对控制性能的影响机理。其次,针对传统阻抗控制在环境位置和刚度变化时的性能局限,提出了一种欠约束临时支护机器人的模糊自适应阻抗控制方法,利用接触力误差及其变化率动态调节阻尼与刚度系数。最后,对所提出的模糊自适应阻抗控制方法进行了多场景仿真分析(期望力调整、环境刚度变化、环境位置偏移及多自由度验证)。结果表明:相较于传统方法,所提模糊控制策略显著提升了欠约束临时支护机器人的动态响应速度,有效抑制了稳态误差,并在环境参数波动条件下表现出更强的鲁棒性与适应性,为复杂工况下临时支护机器人阻抗控制提供了理论支持。

(4) 欠约束临时支护机器人虚拟样机仿真。首先,基于SolidWorks建立了欠约束临时支护机器人三维简化模型,通过Adams搭建虚拟样机并设置仿真环境,结合点驱动仿真验证了机器人运动轨迹平滑性与广义力稳定性。其次,将Adams广义力数据导入Simulink进行交叉验证,结果表明数学模型仅存在x方向微小误差,验证了动力学模型的有效性。最后,构建Adams-Simulink联合仿真平台,开展系统级分析,结果表明:轨迹跟踪实验显示控制器在三维空间及姿态控制中具有高精度与强鲁棒性;阻抗控制实验在单自由度恒力场景实现力/位精准跟踪,但变力工况下接触力跟踪存在超调与稳态偏差。研究通过多层次仿真验证了欠约束临时支护机器人动力学模型及控制系统的可靠性,同时为复杂动态场景下的算法优化提供了实验依据。

论文外文摘要:

During the process of coal mine roadway tunneling, the traditional operation mode of “spatial coincidence and time separation” has led to the problem of “imbalance between coal mining and excavation”, which has long restricted the efficient and safe mining of coal. In response to this situation, our team has developed a shield-type intelligent tunneling robot system. Through the collaborative operation mode of “spatial separation and time synchronization”, this system can achieve parallel and efficient operations of roadway tunneling and support. As the core unit of the proposed system, the temporary support of the roadway adopts an under-constrained parallel mechanism. However, this mechanism has two key difficulties: it is difficult to solve the forward kinematics and it is difficult to control the motion of the terminal support platform. Therefore, this paper focuses on the geometric-static coupling model and control of the under-constrained temporary support robot, aiming to break through the bottleneck of the kinematics and the robustness of the control of the robot under complex working conditions. The main research work of this paper is as follows:

(1) Research on the geometric-static coupling model of under-constrained temporary support robots. First, based on the vector closure principle, its kinematic model is constructed. By combining the kinematic model with the static equilibrium equations, a geometric-static coupling model is proposed, solving the challenging forward kinematics problem of the under-constrained temporary support robot. Secondly, to address the high-dimensional nonlinear solving issues of the coupling model, this paper improves the Dung Beetle Optimizer (DBO) algorithm. By introducing refractive opposition-based learning, incorporating sine-cosine strategy, and applying adaptive t-distribution perturbation, the global search capability and convergence performance of the algorithm are optimized. The effectiveness of the improved DBO algorithm is validated through six benchmark test functions. Finally, the improved DBO is employed to solve the geometric-static coupling model of the under-constrained robot, providing substantial theoretical support for its practical application.

(2) Research on free-space trajectory tracking control of under-constrained temporary support robots. First, aiming at the parameter uncertainty of the dynamic model for under-constrained temporary support robots, a terminal sliding mode control method based on RBF neural network block approximation is proposed. By constructing an online adjustment mechanism for neural network weights based on adaptive law, dynamic reconstruction of the end support platform's dynamic model is realized. A robust compensation term is designed to eliminate the influence of model reconstruction errors and external disturbances. Second, addressing the chattering problem in traditional sliding mode control, a fuzzy system is introduced to adaptively approximate the switching gain, replacing the traditional robust term to achieve smooth output of control quantities. The stability of the closed-loop system is proven based on Lyapunov stability theory. Finally, simulation analysis is conducted on the proposed terminal sliding mode controller with RBF neural network block approximation. The results show that the controller significantly improves the trajectory tracking accuracy of under-constrained temporary support robots and enhances their robustness against external disturbances, providing theoretical support for high-precision control of temporary support robots under complex free-space trajectories.

(3) Research on contact impedance control of under-constrained temporary support robots in constrained space. First, a dual closed-loop control model of force outer loop - position inner loop for the under-constrained temporary support robot is constructed, and furthermore, the steady-state error equation is derived. Meanwhile the influence mechanism of the key parameters on the control performance is revealed. Secondly, aiming at the performance limitations of traditional impedance control when the environmental position and stiffness change, a fuzzy adaptive impedance control method for the under-constrained temporary support robot is proposed, which can use the contact force error and its rate of change to dynamically adjust the damping and stiffness coefficients. Finally, the proposed fuzzy adaptive impedance control method for the robot is simulated in multiple scenarios (expected force adjustment, environmental stiffness change, environmental position offset and multi-degree of freedom verification), and the results show that compared with traditional methods the proposed fuzzy control strategy significantly improves the dynamic response speed of the under-constrained temporary support robot and effectively suppresses the steady-state error, while it shows stronger robustness and adaptability under fluctuating environmental parameters. The obtained results provide theoretical support for impedance control of the temporary support robot under complex working conditions.

(4) Virtual prototype simulation of the under-constrained temporary support robot. First, a three-dimensional simplified model of the under-constrained temporary support robot is established based on SolidWorks. Moreover, a virtual prototype of the robot is built through Adams and the simulation environment is set up. Then, the smoothness of the robot’s motion trajectory and the stability of the generalized force are verified with simulations. Secondly, the general force data is imported into Simulink for cross-validation, and the results show that there is only a small error in the x-direction of the mathematical model. This verifies the effectiveness of the dynamic model for the robot. Finally, an Adams-Simulink joint simulation platform is constructed to carry out system-level analysis. The obtained results show that the controller has high precision and strong robustness in three-dimensional space and attitude control; the impedance control experiment achieves accurate force/position tracking in the single degree constant force scenario, but there are overshoots and steady-state deviations in the variable force working condition. The research has verified the reliability of the dynamic model and control system of the under-constrained temporary support robot through multi-level simulation, and at the same time provided an experimental basis for the optimization of the algorithm under complex dynamic scenarios.

参考文献:

[1] 张林, 王国法, 刘治国, 等. 煤矿智能化建设市场现状及发展趋势研究[J]. 煤炭科学技术, 2024, 52(11): 29-44.

[2] 王国法. 煤炭智能安全高效绿色开采发展方向与创新路径——王国法院士在煤矿智能化建设和煤炭清洁高效利用工作推进会上的发言[J]. 智能矿山, 2024, 5(10): 2-7.

[3] 葛世荣, 胡而已, 李允旺. 煤矿机器人技术新进展及新方向[J]. 煤炭学报, 2023, 48(01): 54-73.

[4] 马宏伟, 张烨, 王鹏, 等. 多机械臂煤矸石智能分拣机器人关键共性技术研究[J]. 煤炭科学技术, 2023, 51(01): 427-436.

[5] 王忠宾, 司垒, 魏东, 等. 煤矿防冲钻孔机器人全自主钻进系统关键技术[J]. 煤炭学报, 2024, 49(02): 1240-1258.

[6] 康红普, 姜鹏飞, 高富强, 等. 掘进工作面围岩稳定性分析及快速成巷技术途径[J]. 煤炭学报, 2021, 46(07): 2023-2045.

[7] 马宏伟, 王鹏, 王世斌, 等. 煤矿掘进机器人系统智能并行协同控制方法[J]. 煤炭学报, 2021, 46(07): 2057-2067.

[8] Ming A. Study on multiple degree-of-freedom positioning mechanism using wires (Part I)-Concept, design and control[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(2): 131-138.

[9] Carricato M, Merlet J P. Direct geometrico-static problem of under-constrained cable-driven parallel robots with three cables[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 3011-3017.

[10] Abbasnejad G, Carricato M. Real solutions of the direct geometrico-static problem of under-constrained cable-driven parallel robots with 3 cableation[J]. Meccanica, 2012, 47(7): 1761-1773.

[11] Carricato M, Merlet J P. Stability analysis of underconstrained cable-driven parallel robots[J]. IEEE Transactions on Robotics, 2012, 29(1): 288-296.

[12] Carricato M, Abbasnejad G, Walter D. Inverse geometrico-static analysis of under-constrained cable-driven parallel robots with four cables[C]//Latest Advances in Robot Kinematics. Springer Netherlands, 2012: 365-372.

[13] Abbasnejad G, Carricato M. Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables[J]. IEEE Transactions on Robotics, 2015, 31(2): 468-478.

[14] Berti A, Merlet J P, Carricato M. Solving the direct geometrico-static problem of underconstrained cable-driven parallel robots by interval analysis[J]. The International Journal of Robotics Research, 2016, 35(6): 723-739.

[15] 桑建, 陈志平, 张巨勇, 等. 一种欠约束丝牵引并联机构工作空间的分析方法[J]. 机电工程, 2010, 27(08): 52-55.

[16] 郑亚青, 江晓玲. 基于最小二乘支持矢量机的四绳牵引6自由度欠约束并联机器人的静刚度分析及优化[J]. 机械工程学报, 2012, 48(13): 49-55.

[17] 赵志刚, 李巍, 李有德, 等. 多机器人欠约束绳牵引系统静平衡工作空间分析[J]. 系统仿真学报, 2017, 29(04): 708-713.

[18] 王砚麟, 赵志刚, 苏程, 等. 欠约束多机协调吊运系统工作空间和运动稳定性分析[J]. 振动与冲击, 2017, 36(16): 44-50.

[19] Zhang H, Fang H, Zhang D, et al. Adaptive Fuzzy Sliding Mode Control for a 3-DOF Parallel Manipulator with Parameters Uncertainties[J]. Complexity, 2020, 2020: 1-16.

[20] Khosravi M A, Taghirad H D. Robust PID control of fully-constrained cable-driven parallel robots[J]. Mechatronics, 2014, 24(2): 87-97.

[21] Bahrami V, Kalhor A, Masouleh M T. Dynamic model estimating and designing controller for the 2-DoF planar robot in interaction with cable-driven robot based on adaptive neural network[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(1): 1261-1280.

[22] Babaghasabha R, Khosravi M A, Taghirad H D. Adaptive robust control of fully-constrained cable driven parallel robots[J]. Mechatronics, 2014, 25: 27-36.

[23] Jiang S, Wang Y, Ju F, et al. A new fuzzy time-delay control for cable-driven robot[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 167-177.

[24] 林子荣. 四自由度高速并联机器人的轨迹跟踪控制研究[D]. 大连:大连理工大学, 2021.

[25] Lafmejani A S, Masouleh M T, Kalhor A. Trajectory tracking control of a pneumatically actuated 6-DOF Gough-Stewart parallel robot using Backstep-Sliding Mode controller and geometry-based quasi forward kinematic method[J]. Robotics and Computer-Integrated Manufacturing, 2018, 54: 96-114.

[26] 孙德源, 王军义, 徐志刚, 等. 基于分数阶导纳与逆动力学鲁棒控制的并联机器人人机协作[J]. 机器人, 2024, 46(06): 725-731.

[27] Mohan S, Corves B. Inverse dynamics and trajectory tracking control of a new six degrees of freedom spatial 3-RPRS parallel manipulator[J]. Mechanical Sciences, 2017, 8(2): 235-248.

[28] Nguyen V T, Lin C Y, Su S F, et al. Adaptive chattering free neural network based sliding mode control for trajectory tracking of redundant parallel manipulators[J]. Asian Journal of Control, 2019, 21(2): 908-923.

[29] 刘昱, 彭锋, 赵国新, 等. 气动3-UPU机器人的神经网络监督控制仿真[J]. 计算机仿真, 2021, 38(10): 338-343+428.

[30] Ji H, Shang W, Cong S. Adaptive synchronization control of cable-driven parallel robots with uncertain kinematics and dynamics[J]. IEEE Transactions on Industrial Electronics, 2020, 68(9): 8444-8454.

[31] Asl H J, Janabi-Sharifi F. Adaptive neural network control of cable-driven parallel robots with input saturation[J]. Engineering Applications of Artificial Intelligence, 2017, 65: 252-260.

[32] 李云峰, 王聪, 李玉琴. 多算法融合的并联食品分拣机器人轨迹跟踪控制方法[J]. 食品与机械, 2024, 40(04): 72-77.

[33] 董慧芬, 王渗, 宋金海. Delta并联清洗机构轨迹跟踪控制方法研究[J]. 计算机仿真, 2021, 38(11): 27-32.

[34] Yamamoto M, Yanai N, Mohri A. Trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics[J]. IEEE Transactions on Robotics, 2004, 20(5): 840-850.

[35] Hwang S W, Bak J H, Yoon J, et al. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots[J]. Journal of Mechanical Science and Technology, 2016, 30: 5689-5697.

[36] 王晓光, 吴军, 林麒. 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(03): 193-201.

[37] 胡才勇. 电液并联机构自适应阻抗控制研究[D]. 秦皇岛:燕山大学, 2024.

[38] Cheng J, Zhang X, Sun T, et al. Robust Impedance Control for a Five-Bar Parallel Robot Based on Uncertainty Estimation[C]//2020 International Symposium on Autonomous Systems (ISAS). IEEE, 2020: 137-141.

[39] Li Z, Shang W, Zhang B. Hybrid impedance control of cable-driven parallel robots using adaptive friction compensation[J]. IEEE Transactions on Industrial Electronics, 2025, 72(1): 703-713.

[40] Sheng X, Zhang X. Fuzzy adaptive hybrid impedance control for mirror milling system[J]. Mechatronics, 2018, 53: 20-27.

[41] Tao H, Cong D. Adaptive impedance control of a novel automated umbilical system for propellant loading[J]. Energies, 2021, 14(16): 4900.

[42] Jamwal P K, Hussain S, Ghayesh M H, et al. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3638-3647.

[43] Bruzzone L, Fanghella P, Basso D. Application of the half-order derivative to impedance control of the 3-PUU parallel robot[J]. Actuators, 2022, 11(2): 45.

[44] 倪涛, 孙旭, 李东, 等. 基于外力估计的并联机器人柔顺控制策略研究[J]. 农业机械学报, 2022, 53(08): 443-451.

[45] 白佳骆, 李剑飞, 潘博, 等. 空间动态附着机器人自适应变阻抗柔顺控制方法研究[J]. 载人航天, 2024, 30(06): 825-833.

[46] Noppeney V, Boaventura T, Siqueira A. Task-space impedance control of a parallel Delta bot using dual quaternions and a neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(9): 440.

[47] Sadjadian H, Taghirad H D. Impedance control of the hydraulic shoulder A 3-DOF parallel manipulator[C]//2006 IEEE International Conference on Robotics and Biomimetics. IEEE, 2006: 526-531.

[48] Qu H, Zhang C, Guo S. Structural synthesis of a class of kinematically redundant parallel manipulators based on modified G–K criterion and RDOF criterion[J]. Mechanism and Machine Theory, 2018, 130: 47-70.

[49] Xue J, Shen B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.

[50] 杨翔宇, 高博. 基于折射反向学习和自适应策略的哈里斯鹰优化算法[J]. 计算机应用, 2024, 44(S2): 129-133.

[51] 李鹏涛, 王海波, 李志峰,等.融合正余弦策略的变异蝴蝶算法[J]. 吉林化工学院学报, 2024, 41(05): 35-41.

[52] 曹京年, 张育洋, 李珑. 基于T-分布扰动的自适应鲸鱼算法[J]. 工业控制计算机, 2024, 37(10): 110-112.

[53] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.

[54] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

[55] Dehghani M, Hubálovský Š, Trojovský P. Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems[J]. IEEE Access, 2021, 9: 162059-162080.

[56] Tummers M, Lebastard V, Boyer F, et al. Cosserat rod modeling of continuum robots from newtonian and lagrangian perspectives[J]. IEEE Transactions on Robotics, 2023, 39(3): 2360-2378.

[57] Hogan N. Impedance control-An approach to manipulation. I-Theory. II-Implementation. Applications[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107:1-24.

[58] 袁鹏达. 水下机械手柔顺控制方法研究[D]. 沈阳:沈阳大学, 2024.

[59] 谢博城. 基于阻抗控制的机器人与未知环境接触力控制研究[D]. 天津:河北工业大学, 2017.

[60] 王宪伦. 不确定环境下机器人柔顺控制及可视化仿真的研究[D]. 济南:山东大学, 2006.

[61] 东志超. 两自由度并联机器人主动柔顺控制研究[D]. 西安:西安电子科技大学, 2022.

[62] Heinrichs B, Sepehri N, Thornton-Trump A B. Position-based impedance control of an industrial hydraulic manipulator[J]. IEEE Control Systems Magazine, 2002, 17(1):46-52.

[63] 袁乐天. 基于主动柔顺法兰的抛光机器人自适应阻抗控制研究[D]. 哈尔滨:哈尔滨工业大学, 2018.

[64] Surdilovic D. Contact transition stability in the impedance control[C]// IEEE International Conference on Robotics & Automation. IEEE, 1997:847-852.

[65] 赵昊. 煤矿巷道履带式龙门支护机器人本体与液压系统研究[D]. 西安:西安科技大学, 2021.

[66] Hu H, Wang X, Chen L. Impedance sliding mode control with adaptive fuzzy compensation for robot-environment interacting[J]. IEEE Access, 2020, 8: 19880-19889.

[67] 陈平硕. 工业机器人力/位置阻抗控制问题研究[D]. 沈阳:沈阳建筑大学, 2015.

[68] 侯国柱, 张晓峰. 基于Pro/E和ADAMS的机器人虚拟设计与仿真[J]. 机械设计与制造, 2009, (03): 183-185.

[69] 刘泽宇, 冯雷, 黄道敏, 等. 六自由度机械臂的动力学仿真及控制[J]. 机械与电子, 2018, 36(04): 38-41+62.

[70] 王淞, 王彪, 贾诺, 等. 基于ADAMS/SIMULINK/Unity3D的视月跟瞄系统联合仿真[J]. 计算技术与自动化, 2024, 43(04): 1-9.

[71] 张强池. 基于联合仿真技术的一种仿生四足机器人控制研究[D]. 锦州:辽宁工业大学, 2021.

中图分类号:

 TP242.3    

开放日期:

 2025-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式