- 无标题文档
查看论文信息

论文中文题名:

 煤气化细渣制备聚合氯化铝和多孔陶瓷研究    

姓名:

 刘娟娟    

学号:

 20213226061    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 资源与环境    

研究方向:

 煤气化渣的分质利用    

第一导师姓名:

 熊善新    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Preparation of polyaluminum chloride and porous ceramics from coal gasification fine slag    

论文中文关键词:

 煤气化细渣 ; 水热法 ; 聚合氯化铝 ; 多孔陶瓷 ; 孔隙率    

论文外文关键词:

 Coal Gasification Fine Slag ; Hydrothermal Progress ; Polyaluminum Choride ; Porous Ceramics ; Porosity    

论文中文摘要:

煤气化是将煤转化为合成气的过程,是实现煤炭清洁利用的核心技术之一。随着煤气化技术的推广应用,大量的固体废弃物煤气化细渣随之产生,因其具有高碳含量、高烧失率的特点,不能直接作建筑材料使用。煤气化灰渣中含有丰富的铝、硅和碳资源,如果能够对煤气化细渣中的这些资源进行分质利用,将不仅解决废弃物对环境产生的危害,还可以获得更多的能量,及满足社会对铝硅资源的需求。总之,实现煤气化细渣的高附加值利用对于环保、经济和社会等方面都将产生积极的作用。本文以神华神木化学有限公司的煤气化细渣为原料,针对其碳含量高、活性低特性,首先按照粒径不同对煤气化细渣进行分级,将其中的无机组分进行富集。然后通过具有高温和强化传质传热的水热过程提取煤气化细渣中的铝元素,富铝离子的酸浸液用于制备高铝含量的聚合氯化铝。剩余的酸浸渣以硅元素为主,通过补加造孔剂、粘结剂压制成型后烧制多孔陶瓷。主要研究内容及结果如下:

(1)对不同粒径的煤气化细渣进行分级获得本文的原料。煤气化细渣的粒径不同,其所含的碳组分与无机组分的含量有较大差异。本文通过对不同粒径煤气化细渣进行分析发现,粒径在0.075-0.125 mm范围内的煤气化细渣其无机组分含量最高,达到70.8%,而粒径小于0.045 mm范围内的煤气化细渣含碳量最高,因此选用0.075-0.125 mm粒径范围的煤气化细渣为提硅提铝的原料。

(2)以富无机组分的煤气化细渣为原料,通过强化传质传热的水热过程提取煤气化细渣中的铝元素。实验结果表明,过高的酸浓度会形成硅酸盐沉淀抑制铝元素提取,最优的盐酸浓度为20%,最优的反应温度和时间为120℃和150 min。SEM、XRD和FTIR表征表明,煤气化细渣在酸浸后,其在铝、铁和钙等元素被溶解在酸液中,煤气化细渣表面由光滑变得粗糙多孔,内部孔隙结构也明显增多。

(3)以富铝元素的酸浸液为原料,在油浴锅恒温条件下加入铝酸钙粉聚合制备聚合氯化铝,铝酸钙加入量、聚合温度和时间均对产物具有一定影响。加入铝酸钙后,其所含的铝会溶解到液相中参与反应,增加产物的盐基度,但盐基度过高会降低产品的稳定性,因此不能过量。XRD和FTIR证明产物中没有检测到氯化铝的衍射峰,溶液中的铝离子聚合形成非晶态聚合氯化铝。

(4)以提铝后的酸浸残渣为原料,通过补加粘结剂、造孔剂压制成型后烧制多孔陶瓷。经探讨发现,糊精、聚乙烯醇、羧甲基纤维素三种粘结剂对多孔陶瓷的物相没有太大影响,但糊精作为粘结剂,其孔隙率和抗压强度较好;淀粉作为造孔剂所制多孔陶瓷其内部孔隙分布均匀,孔洞数量较多,而碳酸钙和石墨作造孔剂孔隙相对杂乱,且孔径大小不均匀;加入适量淀粉可以增大陶瓷孔径和增大孔隙数量,过多会显著降低抗压强度,不利于实际应用。XRD与SEM结合证明产物中含有莫来石、方石英和堇青石,均为多孔陶瓷的主要矿相。

总之,本文通过粉碎筛分获得富无机组分,再通过水热提铝得到富铝酸浸液,再采用中和和聚合反应得到聚合氯化铝,最后将酸浸后的富硅残渣应用于多孔陶瓷制备,基本上实现了煤气化细渣富无机组分的全部利用。对制备过程中的结构变化,影响机制和工艺优化进行了深入探讨,为煤气化细渣的高附加值利用奠定了理论和实验基础。

关 键 词:煤气化细渣;水热法;聚合氯化铝;多孔陶瓷;孔隙率

研究类型:应用基础研究

论文外文摘要:

Coal gasification is a process of converting coal into syngas, which is one of the core technologies to realize clean utilization of coal. With the popularization and application of coal gasification technology, a large number of solid waste coal gasification fine slag is produced. Because of its characteristics of high carbon content and high fever loss rate, it can not be directly used as building materials. Coal gasification ash contains rich aluminum, silicon and carbon resources. If these resources in coal gasification fine slag can be used in a qualitative way, it will not only solve the harm caused by waste to the environment, but also obtain more energy and meet the social demand for aluminum and silicon resources. In conclusion, the realization of high value-added utilization of coal gasification fine slag will have a positive effect on environmental protection, economy and society. In this paper, the fine slag of coal gasification from Shenhua Shenmu Chemical Co., Ltd. is used as raw material. In view of its characteristics of high carbon content and low activity, the fine slag of coal gasification is firstly graded according to different particle sizes, and the inorganic components in it are enriched. Then, aluminum was extracted from coal gasification fine slag by hydrothermal process with high temperature and enhanced mass and heat transfer. The acid leaching solution rich in aluminum ions was used to prepare polyaluminum chloride with high aluminum content. The remaining acid leaching slag is mainly silicon element, and the porous ceramics are fired after being pressed by adding pore-making agent and binder. The main research contents and results are as follows:

(1) The raw materials of this paper are obtained by classifying fine coal gasification slag of different particle sizes. The content of carbon and inorganic components in coal gasification fine slag varies greatly with different particle size. In this paper, through the analysis of coal gasification fine slag with different particle sizes, it is found that the inorganic component content of coal gasification fine slag with particle size between 0.075 and 0.125 mm is the highest, reaching 70.8%, while the carbon content of coal gasification fine slag with particle size less than 0.045 mm is the highest. Therefore, coal gasification fine slag with particle size range of 0.075-0.125 mm was selected as the raw material for silicon and aluminum extraction.

(2) Aluminum was extracted from coal gasification fine slag rich in inorganic components by hydrothermal process which enhanced mass and heat transfer. Experimental results show that excessive acid concentration can form silicate precipitation and inhibit aluminum extraction. The optimal concentration of hydrochloric acid is 20%, and the optimal reaction temperature and time are 120℃ and 150 min. SEM, XRD and FTIR characterization show that after acid leaching, the elements such as aluminum, iron and calcium are dissolved in the acid solution. The surface of the fine coal gasification slag changes from smooth to rough and porous, and the internal pore structure also increases significantly.

(3) Polyaluminum chloride was prepared from aluminum-rich acid leaching solution by adding calcium aluminate powder under constant temperature in oil bath. The amount of calcium aluminate, polymerization temperature and time all had certain effects on the product. After adding calcium aluminate, the aluminum contained in it will dissolve into the liquid phase to participate in the reaction, increasing the basicity of the product, but too high basicity will reduce the stability of the product, so it can not be excessive. XRD and FTIR proved that no diffraction peak of aluminum chloride was detected in the product, and the aluminum ions in the solution were polymerized to form amorphous polyaluminum chloride.

(4) Taking the acid leaching residue after aluminum extraction as raw material, the porous ceramics were fired by adding binder and pore-forming agent. It was found through experiment that dextrin, polyvinyl alcohol and carboxymethyl cellulose had no significant effect on the phase of porous ceramics, but dextrin as a binder had better porosity and compressive strength. The porous ceramics made of starch as pore-making agent have uniform pore distribution and a large number of pores, while the pores of calcium carbonate and graphite as pore-making agents are relatively disorderly and the pore size is not uniform. Adding proper amount of starch can increase pore size and pore number of ceramic, too much starch will significantly reduce the compressive strength, which is not conducive to practical application. XRD and SEM show that the products contain mullite, quadrite and cordierite, which are the main mineral phases of porous ceramics.

In short, in this paper, the inorganic rich components were obtained by grinding and sieving, then aluminum-rich acid leaching solution was obtained by hydrothermal extraction of aluminum, and then poly aluminum chloride was obtained by neutralization and polymerization reaction. Finally, the silicon-rich residue after acid leaching was applied to the preparation of porous ceramics, which basically realized the full utilization of inorganic rich components of coal gasification fine slag. The structural changes, influencing mechanism and process optimization in the preparation process are discussed, which lays a theoretical and experimental foundation for the high value-added utilization of fine slag of coal gasification.

Key words:

Coal Gasification Fine Slag; Hydrothermal Process; Polyaluminum Chloride; Porous Ceramics; Porosity

Thesis    :

Applied basic research

参考文献:

[1] 肖微. 2022年我国煤炭市场分析及2023年展望[J]. 冶金管理, 2023, (04): 41-44.

[2] 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(01): 1-33.

[3] Yuan N, Tan K, Zhang X, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303(1): 134839-134839.

[4] 李宇,王建敏,张弦,等. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, (23): 1-21.

[5] He J, Gao S, Zhang Y, et al. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 104: 98-108.

[6] He J, Gao S, Zhang Y, et al. Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity[J]. Journal of Alloys and Compounds, 2021, 874(5): 159878-159878.

[7] 赵利杰,张彤,黄伟. 煤气化粗渣-矿渣基地质聚合物的制备与性能[J]. 硅酸盐通报, 2022, 41(10): 3542-3547.

[8] 李广民. 晋华炉煤气化技术的创新发展及产业化应用思考[J]. 中国化工装备, 2022, 24(06): 3-6.

[9] 汪寿建. 现代煤气化技术发展趋势及应用综述[J]. 化工进展, 2016, 35(03): 653-664.

[10] 王殿生. 大型煤气化技术的研究与发展[J]. 化工设计通讯, 2018, 44(02): 1-11.

[11] 杨益. 典型煤气化技术介绍及选择要点分析[J]. 山西化工, 2022, 42(05): 21-22.

[12] 蔡昂. 当前主要气流床煤气化工艺技术分析[J]. 化工管理, 2017, 33: 95-95.

[13] Yuan N, Zhao A, Hu Z, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review[J]. Chemosphere, 2022, 287(P 2): 132227-132227.

[14] Han F, Gao Y, Huo Q, et al. Characteristics of Vanadium-Based Coal Gasification Slag and the NH3-Selective Catalytic Reduction of NO[J]. Catalysts, 2018, 8(8):327-327.

[15] 吴阳,赵世永,李博. 宁东煤气流床气化残渣特性研究 [J]. 煤炭工程, 2017, 49(03): 115-118.

[16] Wu S, Huang S, Wu Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. Journal of the Energy Institute, 2015, 88(1): 93-103.

[17] 周安宁,高影,李振,张宁宁,张洲朋. 煤气化灰渣组成结构及分选加工研究进展[J]. 西安科技大学学报, 2021, 41(04): 575-584.

[18] Pan C, Liang Q, Guo X, et al. Characteristics of Different Sized Slag Particles from Entrained-Flow Coal Gasification[J]. Energy & Fuels, 2016, 30(2): 1487-1495.

[19] Yu W, Wang X, Liu L, et al. Experimental study on pore structure and mechanical dehydration of coal gasification fine slag[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 3629-3640.

[20] Luo F, Jiang Y, Wei C. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials, 2021, 269(1): 121259.1-121259.9.

[21] 冯银平,尹洪峰,袁蝴蝶,等. 利用气化炉渣制备轻质隔热墙体材料的研究[J]. 硅酸盐通报, 2014, 33(03): 497-501+510.

[22] 盛燕萍,冀欣,徐刚,等. 煤气化渣水泥稳定碎石基层材料性能研究[J]. 应用化工, 2020, 49(06): 1407-1412.

[23] Zhu D, Miao S, Xue B, et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water, Air, & Soil Pollution, 2019, 230(7): 1-11.

[24] 赵炜,赵举,魏占民,等. 气化渣改良风沙土对土壤水分物理性质的影响[J]. 水土保持研究, 2022, 29(02): 64-69.

[25] Zhu D, Xue B, Jiang Y, et al. Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer[J]. Environ Sci Pollut Res Int, 2019, 26(6): 5925-5933.

[26] Gu Y-y, Qiao X-c. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous and Mesoporous Materials, 2019, 276: 303-307.

[27] Wu Y-H, Ma Y-L, Sun Y-g, et al. Graded synthesis of highly ordered MCM-41 and carbon/zeolite composite from coal gasification fine residue for crystal violet removal[J]. Journal of Cleaner Production, 2020, 277(20): 123186- 123186.

[28] Zhang J, Zuo J, Ai W, et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science, 2021, 537(30): 147938- 147938.

[29] 顾彧彦,乔秀臣. 煤气化细渣制备碳硅复合材料吸附去除水中Pb2+[M]. 化工环保, 2019: 87-93.

[30] Xiong S, Yang N, Wang X, et al. Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(18): 14722-14734.

[31] Qu J, Zhang J, Li H, et al. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Sci Total Environ, 2021, 801: 149761-149761.

[32] 何玟玟. 改性壳聚糖/煤气化渣复合材料的制备及其吸附性能研究[D].西安:西安科技大学学报,2022.

[33] 黄盛鹏. 硫酸亚铁和聚合氯化铝在处理渣油气化含氰废水中的应用[J]. 大氮肥, 2020, 43(04): 280-283.

[34] Liang Y, Wang G, Wu Z, et al. “Inorganic Polymer Flocculation Catalyst”—Polyaluminum chloride as highly efficient and green catalyst for the Friedel-crafts alkylation of bis(indolyl)methanes[J]. Catalysis Communications, 2020, 147: 106136-106136.

[35] Shirafkan A, Nowee S M, Ramezanian N, et al. Hybrid coagulation/ozonation treatment of pharmaceutical wastewater using ferric chloride, polyaluminum chloride and ozone[J]. International Journal of Environmental Science and Technology, 2016, 13(6): 1443-1452.

[36] Ha J-H, Lee S, Choi J R, et al. Development of a carbon-coated reticulated porous alumina material with tailored structural properties for potential radar-absorption applications[J]. Ceramics International, 2017, 43(18): 16924-16930.

[37] 刘羽飞. 多孔陶瓷材料制备工艺技术探索[J]. 陶瓷研究, 2022, 37(03): 92-94.

[38] 李佳佳,薛龙飞,张富强,等. 多孔陶瓷的制备与应用[J]. 中国陶瓷工业, 2022, 29(03): 35-43.

[39] 方明山,贾木欣,肖仪武. 溶胶—凝胶法制备多孔无机陶瓷膜进展[J]. 矿冶, 2007, (02): 43-46.

[40] Devesa S, Graça M P, Costa L C. Structural, morphological and dielectric properties of BiNbO4 ceramics prepared by the sol-gel method[J]. Materials Research Bulletin, 2016, 78: 128-133.

[41] 李强,姜勇刚,冯军宗,等. 水热-热静压工艺制备陶瓷材料的研究进展[J]. 材料导报, 2020, 34(S2): 1123-1127.

[42] Wang F, Yin J, Xia Y. Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties[J]. Journal of Alloys and Compounds, 2017, (727): 163-167.

[43] 赵菁. 多孔陶瓷的制备方法与研究进展[J]. 造纸装备及材料, 2022, 51(12): 81-83.

[44] Hanna S B, Awaad M, Ajiba N A, et al. Characterization of Porous Alumino-Silicate Bonded SiC-Ceramics Prepared by Hand-Pressing and Extrusion Methods[J]. Silicon, 2018, 10(5): 1961-1972.

[45] 刘岗,严岩. 冷冻干燥法制备多孔陶瓷研究进展[J]. 无机材料学报, 2014, 29(06): 571-583.

[46] Xiaohui, M, Xiaoxia, H, Haiyan D. An unoriented three dimension framework (network) of fibrous[J]. Journal of the European Ceramic Society, 2015, 36(3): 797-803.

[47] 常仕博. 基于硅藻土多孔微珠的多孔陶瓷制备及过滤性能研究[J]. 功能材料, 2019, 50(10): 10195-10201.

[48] Miao Z, Chen L, Chen K, et al. Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification[J]. Advanced Powder Technology, 2020, 31(9): 3781-3789.

[49] Du M, Huang J, Liu Z, et al. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel, 2018, 224: 178-185.

[50] 胡文豪,张建波,李少鹏,等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术, 2019, 25(01): 154-159.

[51] 吴海滨,薛芳斌,郭彦霞,等. 煤矸石制备聚合氯化铝工艺[J]. 洁净煤技术, 2018, 24(04): 141-145.

[52] Zhao Y, Zheng Y, He H, et al. Effective aluminum extraction using pressure leaching of bauxite reaction residue from coagulant industry and leaching kinetics study[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104770-104770.

[53] Valeev D, Kunilova I, Shoppert A, et al. High-pressure HCl leaching of coal ash to extract Al into a chloride solution with further use as a coagulant for water treatment[J]. Journal of Cleaner Production, 2020, 276: 123206-123206.

[54] 潘晓林, 刘吉龙, 耿学哲, 等. 高铝粉煤灰酸浸废液制备聚合氯化铝铁及其应用[J]. 中南大学学报:自然科学版, 2021, 52(11): 3792-3799.

[55] Li C-c, Qiao X-c, Yu J-g. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249.

[56] Dai G, Zheng S, Wang X, et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. J Environ Manage, 2020, 271: 111009-111009.

[57] Li F, Fan H, Fang Y. Exploration of slagging behaviors during Multistage conversion Fluidized-Bed (MFB) gasification of low-rank coals[J]. Energy & Fuels, 2015, 29(12): 7816-7824.

[58] Niu M, Fu Y, Liu S. Mineralogical characterization of gasification ash with different particle sizes from Lurgi gasifier in the coal-to-synthetic natural gas plant[J]. ACS Omega, 2022, 7(10): 8526-8535.

[59] Guo Y, Ma C, Zhang Y, et al. Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions[J]. Fuel, 2022, 311(1): 122493- 122493.

[60] Zhu D, Zuo J, Jiang Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. The Science of the Total Environment, 2020, 707: 136102.136101-136102.136110.

[61] Lin O H, Md Akil H, Ishak Z A M. Characterization and properties of activated nanosilica/polypropylene composites with coupling agents[J]. Polymer Composites, 2009, 30(11): 1693-1700.

[62] Huo W, Zhang X, Chen Y, et al. Mechanical strength of highly porous ceramic foams with thin and lamellate cell wall from particle-stabilized foams[J]. Ceramics International, 2017, 44(5): 5780-5784.

[63] Barrios M S, González L, Rodríguez M, et al. Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties[J]. Applied Clay Science, 1995, 10(3): 247-258.

[64] Zhang K, Zeng F. Preparation of poly-ferric aluminium silica sulfate coagulant from industrial wastes[J]. Journal of Chemical Industry & Engineering, 2008, 59(9): 2361-2365.

[65] Zhen W, Xian Z, Zhou C, et al. A comparative study on the characteristics and coagulation mechanism of PAC-Al13 and PAC-Al30[J]. RSC Advances, 2016, 6(110): 108369-108374.

[66] 章兴华, 周丽芸, 汤敏. 聚合氯化铝铁的红外光谱研究[J]. 光谱学与光谱分析, 2002, (01): 39-42.

[67] Wei L, Qiu H, Jie Z, et al. Characteristic of a novel composite inorganic polymer coagulant–PFAC prepared by hydrochloric pickle liquor[J]. Journal of Hazardous Materials, 2009, 162(1): 174-179.

[68] Liu J, Pan X, Geng X, Yu H. Preparation and application of polymeric aluminum ferric chloride from acidic-leaching waste liquor of high-aluminum fly ash[J]. Central South University (Science and Technology), 2021, 52(11): 3792-3799.

[69] 张会,王星雨,赵钰明,等. 高掺量煤矸石制备堇青石多孔陶瓷的性能研究[J]. 当代化工, 2022, 51(10): 2344-2347.

[70] 袁绮,谭划,杨廷旺,等. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(08): 2687-2701.

[71] Vakifahmetoglu C, Zeydanli D, Colombo P. Porous polymer derived ceramics[J]. Materials Science and Engineering: R: Reports, 2016, 106: 1-30.

[72] Hua K, Xi X, Xu L, et al. Effects of AlF3 and MoO3 on properties of Mullite whisker reinforced porous ceramics fabricated from construction waste[J]. Ceramics International, 2016, 42(15): 17179-17184.

[73] 冯鑫,李文凤,郭会师,等. 隔热用多孔陶瓷材料制备方法的研究进展[J]. 陶瓷学报, 2022, 43(02): 186-195.

[74] 赵永彬,吴海骏,张学斌,等. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术, 2016, 22(05): 7-11.

[75] Yin Y, Ma B, Hu C, et al. Preparation and properties of porous SiC-Al2O3ceramics using coal ash[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 23-31.

[76] Wang X-D, Xu H-Y, Zhang F-J, et al. Preparation of porous cordierite ceramic with acid-leached coal gangue[J]. Journal of the Korean Ceramic Society, 2020, 57(4): 447-453.

[77] 尹洪峰,汤云,任耘,等. 气化炉渣合成Ca_Sialon_SiC复相陶瓷[J]. 硅酸盐学报, 2011, 39(02): 233-238.

[78] 陶艳平,何方,李颖锐,等. 造孔剂种类及含量对高孔隙率多孔陶瓷性能的影响[J]. 佛山陶瓷, 2015, 25(08): 13-16.

[79] 盛兆琪,夏伟根,焦春艳,等. 煤矸石-粉煤灰-废石膏烧结陶粒[J]. 环境科学, 1995, (03): 28-31.

中图分类号:

 X784    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式