- 无标题文档
查看论文信息

论文中文题名:

 载/蓄冷功能性充填体辐射降温性能研究    

姓名:

 刘朋    

学号:

 20203226051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 地下环境热害治理    

第一导师姓名:

 王美    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research on radiation cooling performance of cold load/storage functional backfill    

论文中文关键词:

 载/蓄冷功能性充填体 ; 相变传热 ; 采场降温 ; 温度分布 ; 降温效果    

论文外文关键词:

 CLS function CPB ; phase change heat transfer ; stope cooling ; temperature distributioin ; cooling effect    

论文中文摘要:

针对深部矿产资源开采所面临的矿井热害问题,利用载/蓄冷功能性充填技术,即在充填料浆中添加冰粒代替部分水,输送至与采场毗邻的采空区,通过冰粒的融化来吸收邻近采场区的热量是一种创新的矿井降温方法。本研究为揭示载/蓄冷功能性充填体辐射降温的机理,以载/蓄冷功能性充填体和采场空间为研究对象,通过实验和数值模拟探究载/蓄冷功能性充填体的辐射降温传热规律,探讨了材料特性、充填方式、壁面条件对降温效果的影响,得到的主要结论如下:

(1)搭建了载/蓄冷功能性充填体辐射降温系统平台,以模拟井下热场条件,获得不同条件下采场区降温特征,同时为验证数值模拟结果提供依据。

(2)建立了载/蓄冷功能性充填降温系统三维数值传热模型,可以准确描述该系统的传热规律,其中充填体区采用焓法模型与多孔介质模型,并以添加内热源的方式模拟水化放热;采场区采用DTRM辐射模型和自然对流模型。

(3)研究了载/蓄冷功能性充填体材料特性对其降温性能的影响,包括冰水初始液相率、充填体料浆浓度、充填策略。结果表明,降低冰水初始液相率,可以提高降温性能;在推荐的料浆浓度范围内,料浆质量浓度影响不显著;功能性充填体与传统充填体厚度之比为7:3时为最优。

(4)定义了无量纲温度、传热系数等参数对三种充填方式的传热性能进行评价,揭示了冷辐射面与冷却空间相对位置影响采场温度变化规律,结果表明:上向充填和下向充填在垂直于冷传递方向无量纲温度满足QP模型,壁式充填满足ExpDec1模型。下向充填传热速率最快,采场温度更加均匀。

(5)为提高载/蓄冷功能性充填体的降温效果,提出了主动降温、冷辐射面隔热、增强辐射率等单一优化方案,以及对这些单一优化方案进行联合优化分析。经比较,最佳辅助降温方案为在采场和载/蓄冷功能性充填体四周均采取主动降温。

本研究通过对载/蓄冷功能性充填体辐射降温机理及方法的探索,提供了解决深部矿井热害问题的新思路,为实现深部矿产资源可持续性开采提供了理论基础研究。

论文外文摘要:

The cold load/storage (CLS) functional cemented paste backfill (CPB) technology is used for solving the problem of mine thermal damage in deep mining of mineral resources. That is, ice particles are used to replace part of the water in the backfill slurry. Then the backfill slurry is transported to the goaf adjacent to the stope. It is an innovative mine cooling method to absorb the heat in the adjacent stope area through the melting of ice particles. This study takes the CLS functional CPB region and the stope region as the research objects, and explores the radiant cooling and heat transfer characteristics through experiments and numerical simulation, and discusses the influence of material characteristics, backfill methods and wall conditions on the cooling effect, the main conclusions are as follows:

(1) A radiant cooling system platform with CLS functional CPB was built to simulate the underground thermal field conditions to obtain the cooling characteristics of the stope region under different conditions, and provide a basis for verifying the numerical simulation results.

(2) A three-dimensional numerical heat transfer model of functional backfill cooling system was established, and this model can accurately simulate the heat transfer characteristics of this system. The enthalpy model, and the porous medium model were used in the CLS functional CPB region, and the hydration heat release process was simulated by adding an internal heat source in the governing equation. DTRM radiation model and natural convection model were used in the stope region.

(3) The effects of the material characteristics of the functional backfill on its cooling performance were studied, including the initial ice-water liquid rate, slurry concentration and filling strategy. The results show that the cooling performance can be improved by reducing the initial liquid phase ratio of ice water. In the recommended slurry concentration range, the influence of slurry mass concentration is not significant. When the ratio of functional filling body to conventional filling body thickness is 7:3, it is optimal.

(4) The dimensionless temperature, heat transfer coefficient and other parameters were defined to evaluate the heat transfer performance of the three filling methods, and the relative position of the cold radiant surface and the cooling space affected the stope temperature change law. The results showed that: the dimensionless temperature perpendicular to the cold transfer direction of the upward and downward filling met the QP model, and the wall filling met the ExpDec1 model. The heat transfer rate of downfilling is the fastest, and the stope temperature is more uniform.

(5) In order to improve the cooling effect of the load/storage functional backfill, a single optimization scheme such as active cooling, heat insulation of the cold radiant surface and enhanced emissivity was proposed, and a joint optimization analysis was carried out for these single optimization schemes. By comparison, the best auxiliary cooling scheme is to take active cooling around stope and load/storage functional filling body.

By exploring the radiation cooling mechanism of the CLS functional CPB, this study broadens the idea for effectively solving the problem of thermal damage in deep mines, and provides theoretical basis for achieving sustainable mining of deep mineral resources.

参考文献:

[1] M.F. Cai, P. Li, W.H. Tan, F.H. Ren. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in china[J]. Engineering, 2021, 7(11): 1513–1517.

[2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283–1305.

[3] P. Li, M.F. Cai. Challenges and new insights for exploitation of deep underground metal mineral resources[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3478–3505.

[4] 刘志明.隧道地热发育特征分析及地温预测[J]. 铁道科学与工程学报, 2022, 19(5): 1672-7029

[5] AQ 2013.1-2008, 金属非金属地下矿山通风技术规范.通风系统[S]

[6] 汪仁建, 翟雪峰, 张永亮, 张传柱, 曹建霞, 付翠翠, 姚奇. 三维仿真技术在大柳行金矿深井热害治理中的应用[J]. 矿业研究与开发, 2021, 41(10): 95–98.

[7] 王诗祺, 王美. 我国煤矿深井热害成因及治理方法研究进展[J]. 现代矿业, 2018, 34(05): 18–23.

[8] B. Belle, M. Biffi, Cooling pathways for deep australian longwall coal mines of the future[J]. International Journal of Mining Science and Technology, 2018, 28(6): 865–875.

[9] X.T. Feng, J.P. Liu, B.R. Chen, Y.X. Xiao, G.L. Feng, F.P. Zhang. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538–545.

[10] 杨科,魏祯,赵新元,何祥,张继强,姬健帅.黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报:2021, 46(2): 1-14.

[11] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417–426.

[12] L. Liu, J. Xin, C. Huan, C.C. Qi, W.W. Zhou, K.I. Song. Pore and strength characteristics of cemented paste backfill using sulphide tailings: effect of sulphur content[J]. Construction and Building Materials, 2020, 237: 117452.

[13] 刘浪, 辛杰, 张波, 张小艳, 王美, 邱华富, 陈柳. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(07): 1811–1820.

[14] A. Sepehri, B. Nelson. Energy and emissions analysis of ice thermal energy storage in the western us[J]. Energy and Buildings, 2019, 202: 109393.

[15] 王美, 刘浪, 张波, 张小艳, 郇超, 赵玉娇, 屠冰冰. 矿山载/蓄冷功能性充填基础理论[J]. 煤炭学报, 2020, 45(04): 1336–1347.

[16] 罗威, 宋选民, 刘成. 千米深井热害防治技术[J]. 煤矿安全, 2014, 45(08): 88–91.

[17] D.Y. Wei, C.F. Du, H.Y. Xu, L.F. Zhang. Influencing factors and correlation analysis of ventilation and cooling in deep excavation roadway[J]. Case Studies in Thermal Engineering, 2019, 14: 100483.

[18] M. Wang, L. Liu, S.Q. Wang, B. Lv, B. Zhang, X.Y. Zhang, Y.J. Zhao, C. Huan. Numerical investigation of heat transfer and phase change characteristics of cold load and storage functional CPB in deep mine[J]. Frontiers in Earth Science, 2020, 8: 31.

[19] D. Valck Jeremy, W. Galina, K. Swee. Does coal mining benefit local communities in the long run? a sustainability perspective on regional queensland, australia[J]. Resources Policy, 2021, 71: 102009.

[20] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(2): 11–16.

[21] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141–150.

[22] L. Liu , C. Zhu, C.C. Qi, M. Wang, C. Huan, B. Zhang , K.I. Song. Effects of curing time and ice-to-water ratio on performance of cemented paste backfill containing ice slag[J]. Construction and Building Materials, 2019, 228: 116639.

[23] A. D'Alessandro, A. Laura Pisello, C. Fabiani, F. Ubertini, L.F. Cabeza, F. Cotana. Multifunctional smart concretes with novel phase change materials: mechanical and thermo-energy investigation[J]. Applied Energy, 2018, 212: 1448–1461.

[24] X.Y. Zhang, M.Y. Xu, L. Liu, C. Huan, Y.J. Zhao, C.C. Qi, K.I. Song. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology, 2020, 9(2): 2164–2175.

[25] M. Ren, X.D. Wen, X.J. Gao, Y.S. Liu. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material[J]. Construction and Building Materials, 2021, 273: 121714.

[26] G. Urgessa, K.K. Yun, J. Yeon, J. Heum Yeon. Thermal responses of concrete slabs containing microencapsulated low-transition temperature phase change materials exposed to realistic climate conditions[J]. Cement and Concrete Composites, 2019, 104: 103391.

[27] 王敏之. 冰混凝土[J]. 建筑工人, 1988, (10): 63.

[28] L. Liu, Z.Y.Fang, M.Wang, C.C. Qi, Y.J. Zhao, C. Huan. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry[J]. Powder Technology, 2020, 370: 206–214.

[29] Q. Shahzad, J.Y. Shen, R. Naseem, Y.G.Yao, S. Waqar, W.Q. Liu. Influence of phase change material on concrete behavior for construction 3d printing[J]. Construction and Building Materials, 2021, 309: 125121.

[30] J.H. Wang, B. Yu, H.P. Kang, G.F. Wang, D.B. Mao, Y.T. Liang, P.F. Jiang, Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams[J], International Journal of Mining Science and Technology. 2015, 2 (2): 97–161.

[31] M. Rafiqul Islam, D. Hayashi, A.B.M. Kamruzzaman, Finite element modeling of stress distributions and problems for multi-slice longwall mining in bangladesh, with special reference to the barapukuria coal mine[J], International Journal of Coal Geology. 2009, 78 (2): 91–109.

[32] M. Holm, S. Beitler, T. Arndt, A. Mozar, M. Junker, C. Bohn, Concept of shield-data-based horizon control for longwall coal mining automation[J], IFAC Proceedings Volumes. 2013, 46 (16): 98–103.

[33] 杜寿元. 有色金属矿山井下采空区充填方式研究[J]. 中华民居(下旬刊), 2013, 12: 207-208.

[34] 蒋合国, 余天成, 刘光生, 杨烺. 下向矩形进路充填体强度需求应用[J]. 有色金属(矿山部分), 2022, 74 (3): 42-49.

[35] 程海勇, 吴爱祥, 吴顺川, 朱加琦, 李红, 刘津, 牛永辉. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44 (1): 11-25.

[36] 林海, 杨仁树, 李永亮, 路彬, 徐斌, 范子儀, 李剑楠. 短壁连采连充式胶结充填采煤技术应用研究[J]. 工程科学学报, 2022, 44 (6): 981-992.

[37] Z.Q. Yang, Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep jinchuan nickel deposit[J], Engineering. 2017, 3 (4): 559–566.

[38] Z.H. Zhang, Q.B. Zou, P.Z. Wang, Experimental study on comprehensive performance of full tailings paste filling in jiaojia gold mine[J], IOP Conference Series: Earth and Environmental Science. 2017, 94: 012178.

[39] J.H. Wang, B. Yu, H.P. Kang, G.F. Wang, D.B. Mao, Y.T. Liang, P.F. Jiang, Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams[J], International Journal of Mining Science and Technology. 2015, 2 (2): 97–161.

[40] X.J. Deng, J.X. Zhang, T. Kang, X.L. Han, Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology[J], International Journal of Mining Science and Technology. 2016, 26 (4): 587–592.

[41] X.J. Deng, J.X. Zhang, N. Zhou, B.de Wit, C. T. Wang, Upward slicing longwall-roadway cemented backfilling technology for mining an extra-thick coal seam located under aquifers: a case study, Environmental Earth Sciences, 2017, 76 (23): 789.

[42] T. Belem, M. Benzaazoua, Design and application of underground mine paste backfill technology[J], Geotechnical and Geological Engineering. 2008, 26 (2): 147–174.

[43] R. Wang, J.B. Bai, S. Yan, Z.G. Chang, X.Y. Wang, An innovative approach to theoretical analysis of partitioned width & stability of strip pillar in strip mining[J], International Journal of Rock Mechanics and Mining Sciences. 2020 129: 104301.

[44] N.Z. Xu, J.Z. Tian, G. Chao, Research and application of strip mining of village coal pillar at coal field of the north of the yellow river in shandong province[J], Journal of Coal Science & Engineering. China. 2012, 18 (3): 232–237.

[45] H.S. Wang, D.S. Zhang, G.W. Fan, Structural effect of a soft–hard backfill wall in a gob-side roadway[J], Mining Science and Technology (China). 2011, 21 (3): 313–318.

[46] Z.Q. Yang, S.H. Zhai, Q. Gao, M.H. Li, Stability analysis of large-scale stope using stage subsequent filling mining method in sijiaying iron mine[J], Journal of Rock Mechanics and Geotechnical Engineering. 2015, 7 (1): 87–94.

[47] J. Oravec, O. Sikula, M. Krajˇcík, M. Arıcı, M. Mohapl. A comparative study on the applicability of six radiant floor, wall, and ceiling heating systems based on thermal performance analysis[J]. Journal of Building Engineering, 2021, 36: 102133.

[48] K. Refet. The investigation of relation between radiative and convective heat transfer coefficients at the ceiling in a cooled ceiling room[J]. Energy Conversion and Management, 2009, 50(1): 1–5.

[49] K. Michal, Š. Ondřej. The possibilities and limitations of using radiant wall cooling in new and retrofitted existing buildings[J]. Applied Thermal Engineering, 2020, 164: 114490.

[50] M. Jonn Are, H. Sture. Flow patterns and thermal comfort in a room with panel, floor and wall heating[J]. Energy and Buildings, 2008, 40(4): 524–536.

[51] 丁业凤, 冯劲梅, 蔡加熙. 基于CFD的通风辐射供暖系统特性研究[J]. 区域供热, 2021(06): 26–36.

[52] 杨博文. 对流—辐射热交换下封闭空间环境热场变化研究[D]. 哈尔滨工程大学, 2019.

[53] J. Miriel, L. Serres, A. Trombe, Radiant ceiling panel heating–cooling systems: experimental and simulated study of the performances, thermal comfort and energy consumptions[J]. Applied Thermal Engineering, 2002, 22(16): 1861–1873.

[54] 邵春廷, 李翠敏. 毛细管供热辐射板数值模拟分析[J]. 建筑热能通风空调, 2017, 36(3): 5.

[55] 周峰. 煤矿深井开采低温辐射降温技术问世[J]. 煤矿机械, 2005(10): 134.

[56] 孙希奎, 李学华, 程为民. 矿井冰水冷辐射降温技术研究[J]. 采矿与安全工程学报, 2009, 26(01): 105–109.

[57] 张会听, 袁东升, 江凌枝. 关于梁北煤矿冰冷低温辐射降温系统的设计[J]. 科技资讯, 2011(01): 32–34.

[58] J. Wojtkowiak, Ł. Amanowicz, T. Mróz. A new type of cooling ceiling panel with corrugated surface—experimental investigation[J]. International Journal of Energy Research, 2019: er.4753.

[59] D.M. Xing, N.P. Li. Reconstruction of hydronic radiant cooling panels: conceptual design and numerical simulation[J]. Thermal Science and Engineering Progress, 2022, 30: 101272.

[60] M.Z. Ye, A.A. Serageldin, A. Radwan, H. Sato, K. Nagano. Thermal performance of ceiling radiant cooling panel with a segmented and concave surface: laboratory analysis[J]. Applied Thermal Engineering, 2021, 196: 117280.

[61] Y.F. Gao, X.H. Song, P. Zhang. Comprehensive evaluation and analysis of a porous polymer coating for highly efficient passive radiative cooling[J]. Solar Energy Materials and Solar Cells, 2023, 250: 112081.

[62] S. Sivasankaran, M. Bhuvaneswari, A.A. Amer. Numerical study on buoyant convection and thermal radiation in a cavity with various thermal sources and cattaneo-christov heat flux[J]. Case Studies in Thermal Engineering, 2021, 27: 101207.

[63] X.Q. Sun, Y. Zhang, K.Xie, M.A. Medina. A parametric study on the thermal response of a building wall with a phase change material (pcm) layer for passive space cooling[J]. Journal of Energy Storage, 2022, 47: 103548.

[64] K.J. Kontoleon, S. Saboor, D. Mazzeo, J. Ahmad, E. Cuce. Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations[J]. Applied Energy, 2023, 329: 120264.

[65] C.C. Qi, Q.S. Chen, A. Fourie, X.L. Tang, Q.L. Zhang, X.J. Dong, Y. Feng, Constitutive modelling of cemented paste backfill: A data-mining approach[J], Construction and Building Materials. 2019 (197): 262-270.

[66] 中华人民共和国国家标准《煤矿井下热灾害防治设计规范》GB 504182017. 2017, 北 京, 中国.

[67] R.J. Moffat, Describing the uncertainties in experimental results[J], Experimental Thermal and Fluid Science. 1988, 1 (1): 3–17.

[68] H.M. Abbas, J.M. Jalil, S.T. Ahmed, Experimental and numerical investigation of pcm capsules as insulation materials inserted into a hollow brick wall[J], Energy and Buildings. 2021, 246: 111127.

[69] H.A. Abdul Wahhab, A. R.A. Aziz, H.H. Al-Kayiem, M.S. Nasif, Prediction of the phase distribution of diesel/CNG bubbly flow in a horizontal pipe under the influence of a magnetic field[J], Journal of Mechanical Science and Technology, 3. 2017,31 (11): 5299–5309.

[70] L. Liu, P. Yang, B. Zhang, C. Huan, L.J. Guo, Q.X. Yang, K.I. Song, Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat[J], Construction and Building Materials. 272 (2021), 121827.

[71] Y. Qi, K. Wen, L.Y. Zhu, C. Zhou, F. Wan, Y.D. Wang, Experiment on the optimization of tailings filling materials[J], Copper Ind. Eng. 2018, (03):54–57.

[72] H.F. Qiu, F.S. Zhang, L. Liu, C. Huan, D.Z. Hou, W. Kang, Experimental study on acoustic emission characteristics of cemented rock-tailings backfill[J], Construction and Building Materials. 2022, 325: 125278.

[73] R.F. Wang, F. Zeng, L.L. Stability analyses of side-exposed backfill considering mine depth and extraction of adjacent stope[J], International Journal of Rock Mechanics and Mining Sciences. 2021, 142: 104735.

[74] Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline[J], International Journal of Heat and Mass Transfer. 2002, 45 (11): 2373–2385.

[75] D.S. Loenko, A. Shenoy, M.A. Sheremet, Effect of time-dependent wall temperature on natural convection of a non-newtonian fluid in an enclosure[J], International Journal of Thermal Sciences. 2021, 166: 106973.

[76] W.Y. Cai, Z.C. Chang, D.S. Zhang, X.F. Wang, W.H. Cao, Y.Z. Zhou, Roof filling control technology and application to mine roadway damage in small pit goaf[J], International Journal of Mining Science and Technology. 2019, 29 (3): 477–482.

[77] R. Combrinck, L. Steyl, W.P. Boshoff, Interaction between settlement and shrinkage cracking in plastic concrete[J], Construction and Building Materials. 2018, 185: 1–11.

[78] J.H. Qin, J. Zheng, L. Li, An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation[J], International Journal of Mining Science and Technology. 2021, 31 (3): 463–471

[79] L. Zhang, X.H. Liu, Y. Jiang. Experimental evaluation of a suspended metal ceiling radiant panel with inclined fins, Energy and Buildings, 2013, 62: 522–529.

[80] M. Andrés-Chicote, A. Tejero-González, E. Velasco-Gómez, F.J. Rey-Martínez, Experimental study on the cooling capacity of a radiant cooled ceiling system[J], Energy and Buildings, 2012, 54: 207–214.

[81] Y.L. Yuan, X. Zhang, X. Zhou, J. Gao, An experiment-oriented simulation method for cooling capacity determination of cooling ceiling radiant panel system[J], Science and Technology for the Built Environment. 2016, 22 (6): 831–844.

[82] B.M. Olesen, E. Michel, F. Bonnefoi, M. De Carli, Heat exchange coefficient between floor surface and space and space by floor cooling-theory or a question of defintion[J], ASHRAE Transact. 2000, 106: 684-694.

[83] T. Cholewa, M. Rosinski´, Z. Spik, M.R. Dudzinska´, A. Siuta-Olcha, On the heat transfer coefficients between heated/cooled radiant floor and room[J], Energy and Buildings, 2013, 66: 599–606.

[84] 6EN1364-5, Water Based Surface Embedded Heating and Cooling System-Part 5: Heating and Cooling Surface Embedded in Floor, Ceiling and Walls-Determination of the Thermal Output, CEN, 2008.

[85] A7SHRAE, ASHRAE Handbook – HVAC Systems and Equipment, 2012.

[86] O. Acikgoz, O. Kincay, Experimental and numerical investigation of the correlation between radiative and convective heat-transfer coefficients at the cooled wall of a real-sized room[J], Energy and Buildings, 2015, 108: 257–266.

[87] A. Koca, G. Cetin, Experimental investigation on the heat transfer coefficients of radiant heating systems: wall, ceiling and wall-ceiling integration[J], Energy and Buildings. 2017, 148: 311-326.

中图分类号:

 TD853.34    

开放日期:

 2023-11-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式