- 无标题文档
查看论文信息

论文中文题名:

 基于FMCW的SDK探地雷达应用研究    

姓名:

 乔帅克    

学号:

 18207205059    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 软件无线电技术    

第一导师姓名:

 李国民    

第一导师单位:

 西安科技大学    

第二导师姓名:

 韩晓冰    

论文提交日期:

 2021-06-22    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Research on Application of SDR Ground Penetrating Radar Based on FMCW    

论文中文关键词:

 软件无线电 ; 探地雷达 ; GNU Radio ; 调频连续波    

论文外文关键词:

 Software radio ; Ground penetrating radar ; GNU Radio ; FM continuous wave    

论文中文摘要:

随着探地雷达技术的发展,探地雷达也逐渐向低成本、小型化、可重构的方向改进,例如在煤矿开采过程中用于灾害隐患预先探测。但是传统的探地雷达设备通常使用纯硬件的方式实现,往往存在体积大,探测灵活性差等问题。针对上述问题,论文设计了一种通用性强及开放性高的小型化探地雷达系统。

依据软件无线电雷达的实现机制,设计了一种基于调频连续波的软件无线电探地雷达系统。论文在系统需求分析的基础上进行了系统建模并分析其功能,其次根据对调频连续波信号的分析以及软件无线电探地雷达信号调制、解调算法的研究,设计了系统的整体结构。其中,硬件部分以Spartan 6 FPGA与AD9361芯片为基础,对系统的射频前端、基带处理单元、接口电路及时钟电路进行了设计;软件部分在GNU Radio中进行设计,其设计主要包括雷达信号的产生、传输与发射以及信号的接收,发射信号则采用的是分辨率高且抗干扰能力较强的调频连续波信号。该系统具有适用性广、结构开放、功能可重构的特点。

最后,搭建了探地雷达系统的测试环境,并对该系统进行了仿真与实验。通过对系统进行多组仿真测试结果表明,基于调频连续波的软件无线电探地雷达系统设计的方案是可行的,设计出的系统体积小,软件化程度高,采用发射功耗低的锯齿波探测波形,满足探测需求,并能对多个目标进行识别。

论文外文摘要:

With the development of GPR technology, GPR has gradually improved to the direction of low cost, miniaturization and reconfigurable, such as in the process of coal mining for disaster detection in advance. However, the traditional GPR equipment is usually realized by pure hardware, which often has problems such as large volume and poor detection flexibility. Aiming at the above problems, this paper designs a small GPR system with strong versatility and high openness.

According to the implementation mechanism of software radio radar, a software radio ground penetrating radar system based on FM continuous wave is designed. Based on the analysis of the requirements of the system, the system is modeled and its functions are analyzed. Secondly, the overall structure of the system is designed according to the analysis of the FM continuous wave signal and the study of the modulation and demodulation algorithms of the software radio GPR signal. In the hardware part, based on Spartan 6 FPGA and AD9361 chip, the RF front end, baseband processing unit, interface circuit and clock circuit of the system are designed. The software part is designed in GNU Radio, which mainly includes the generation, transmission and transmission of radar signals as well as the reception of signals. The transmitted signals adopt FM continuous wave signals with high resolution and strong anti-jamming ability. The system has the characteristics of wide applicability, open structure and reconfigurable function.

Finally, the test environment of the GPR system is set up, and the simulation and experiment of the system are carried out. The results of multi-group simulation test on the system show that the software radio GPR system based on FM continuous wave is feasible, the designed system has small volume, high degree of software, and adopts the sawtooth wave detection with low transmission power consumption to meet the detection requirements, and can identify multiple targets.

参考文献:

[1]Chen G, Fu L, Chen K, et al. Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3271-3282.

[2]El Masri Y, Rakha T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections[J]. Construction and Building Materials, 2020, 265: 120542.

[3]Xiao Y, Su Y, Dai S, et al. Ground Experiments of Chang’e-5 Lunar Regolith Penetrating Radar[J]. Advances in Space Research, 2019,63(10):3404-3419.

[4]关中锋.基于软件无线电的多功能射频综合一体化设计[J].通信技术,2014,47(11):1333-1337.

[5]张建中,黄月琴.基于相移偏移和匹配追踪的探地雷达成像方法[J].电波科学学报,2012,27(04):786-790+850-852.

[6]W.W.Lin, C.Y.Song, T.Y.Yang, et al. A Unidirectional Bullet Conformal Monopole Antenna Designed for Impulse Radar System. ASEMD[C]. 2013,10:336-339

[7]韩佳明,仲鑫,景帅,刘平.探地雷达在黄土地区城市地质管线探测中的应用[J].物探与化探,2020,44(06):1476-1481.

[8]张云,崔晓伟,笪腾飞,王官龙.基于软件无线电的GNSS干扰和多径监测系统设计[J].电讯技术,2017,57(03):288-295.

[9]程昌彦,李太全.基于FPGA的探地雷达数据采集系统设计[J].无线电工程,2017,47(04):28-30.

[10]许泽善,周江涛,刘四新等. 三维步进频率探地雷达在沥青层厚度检测中的应用[J].物探与化探,2019,43(05):1145-1150.

[11]Yang Y, Zhao W. Curvelet transform‐based identification of void diseases in ballastless track by ground‐penetrating radar[J]. Structural Control and Health Monitoring, 2019, 26(4): e2322.

[12]Lorenzo H, Rial F I, Pereira M, et al. A full non-metallic trailer for GPR road surveys[J]. Journal of Applied Geophysics, 2011, 75(3):490-497.

[13]Janne Poikajärvi, Kari Peisa, Tomi Herronen, et al. GPR in road investigations equipment tests and quality assurance of new asphaltpavement[J].Nondestructive Testing & Evaluation, 2012, 27(3):293-303.

[14]Lai W W L, Derobert X, Annan P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis[J]. Ndt & E International, 2018, 96: 58-78.

[15]Sandström S E. Implementation of FMCW radar at low frequencies[J]. AEU-International Journal of Electronics and Communications, 2020, 117: 153082.

[16]El Agroudy N, El-Shennawy M, Joram N, et al. Design of a 24 GHz FMCW radar system based on sub-harmonic generation[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1052-1057.

[17]Pandey A K, Gogoi J, Pandey P. Mapping shallow subsurface to identify sinkhole formation in urban areas using ground penetration radar: a case study from Hyderabad, India[J]. CURRENT SCIENCE, 2019, 117(10): 1710.

[18]Chen G, Fu L, Chen K, et al. Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3271-3282.

[19]舒志乐,赵柳,黄柳婷,吴林龙,李亨.箱梁预应力管道内空洞探地雷达有限元正演模拟[J].科学技术与工程,2020,20(07):2870-2875.

[20]Wang Y F, Wu B, Zhang N, et al. Wideband Circularly Polarized Magneto-Electric Dipole 1×2 Antenna Array for Millimeter-Wave Applications[J]. IEEE Access, 2020, 8: 27516-27523.

[21]Song K, Lu W, Guo S, et al. Four‐way hybrid SIW/microstrip‐line power divider with improved output isolation[J]. Electronics Letters, 2019, 55(1): 36-38.

[22]傅世强,张佳琦,房少军.一种超宽阻带微带低通滤波器的设计[J].微波学报,2018,34(05):41-43+48.

[23]Hershberger J, Pratt T, Kossler R. Implementations of coherent software-defined dual-polarized radars[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1673-1681.

[24]Le G M, Cai Z Y, Wang H N, et al. Solar cycle distribution of major geomagnetic storms[J].Research in Astronomy and Astrophysics, 2013, 13(6): 739.

[25]Vivian N Fernandes,Studies of the E-region ion-neutral collision frequency using the EISCAT incoherent scatter radar[J]. Advances in Space Research, 2018, 18(3):79-82.

[26]Zhang T, Song T, Chen D, et al. Wigrus: a wifi-based gesture recognition system using software-defined radio[J]. IEEE Access, 2019, 7: 131102-131113.

[27]陆临风. 基于软件无线电技术的大气水汽探测系统研究[D].南昌大学,2020.

[28]Tian F, Li H, Yuan L. Design and implementation of AD9361-based software radio receiver[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 1-14.

[29]Liu Y X, Liang G Y, Garmatyuk D, et al. USRP based OFDM radar systems for doorway detection[C]//2014 IEEE Radar Conference. IEEE, 2014: 0875-0880.

[30]Craig Warren,Antonios Giannopoulos,Alan Gray, et al. A CUDA-based GPU engine forgprMax: Open source FDTD electromagnetic simulation software[J]. Computer Physics Communications, 2019, 237:208-218.

[31]曾昭发.探地雷达原理与应用[M].电子工业出版社,2010.

[32]王树奇,齐承霞,王振.FMCW探地雷达中的MUSIC算法研究[J].煤矿开采.2013.18(115):280-282.

[33]Piotrowsky L, Jaeschke T, Kueppers S, et al. Enabling high accuracy distance measurements with FMCW radar sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 5360-5371.

[34]王祖兵,许彦鑫.软件无线电雷达标准体系研究[J].航空标准化与质量,2019(05):19-22.

[35]Zhao Z, Yao M, Deng X, et al. A novel ionospheric sounding radar based on USRP[J]. IEEE geoscience and remote sensing letters, 2017, 14(10): 1800-1804.

[36]杨小牛,楼才义,徐建良.软件无线电技术与应用[M]. 北京:北京理工大学出版社,2010.

[37]孙增雷,罗云光.软件无线电技术特点及其应用[J].中国新通信,2019,21(15):77-78.

[38]Jajoo G, Kumar Y, Kumar A, et al. Implementation of modulation classifier over software defined radio[J]. IET Communications, 2020, 14(9): 1467-1475.

[39]Mora-Huaman D A, Quispe F P, Coaquira-Castillo R J, et al. Distance to Object Estimation Based on Software Defined Radio USRP using Python[C]//2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, 2020: 1-4.

[40]B Siva Kumar Reddy and K Subramanya Chari. Software Defined Radio: USRP N210 with GNU Radio[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2020, 9(5) : 1804-1809.

[41]Mathumo T W, Swart T G, Focke R W. Implementation of a GNU radio and python FMCW radar toolkit[C]//2017 IEEE AFRICON. IEEE, 2017: 585-590.

[42]Arya V, Jishnu P, Ray K P. Study and analysis of DSB-SC-FMCW radar in SDR platform[C]//2017 9th International Conference on Communication Systems and Networks (COMSNETS). IEEE, 2017: 387-388.

[43]Macasero J M S, Gerasta O J L. Performance Comparison of Beat Frequency Extraction Algorithm and Cross Correlation Algorithm for FMCW Radar Signal Processing Implemented on LabVIEW and USRP[C]//2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE, 1-6.

[44]Sundaresan S, Anjana C, Zacharia T, et al. Real time implementation of FMCW radar for target detection using GNU radio and USRP[C]//2015 International Conference on Communications and Signal Processing (ICCSP). IEEE, 2015: 1530-1534.

[45]唐晗呈,杨涛.基于软件无线电的调频连续波雷达实现[J].电子技术与软件工程,2020(17):97-99.

[46]El-Darymli K, Gill E W, McGuire P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE access, 2016, 4: 6014-6058.

[47]汤俊,吴洪,魏鲲鹏.“软件化雷达”技术研究[J].雷达学报,2015,4(04):481-489.

[48]Macasero J M S, Gerasta O J L, Pongcol D P, et al. Underground target objects detection simulation using FMCW radar with SDR platform[C]//2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2018: 1-7.

[49]孔维太,全大英,辛崇丰等.一种基于软件无线电技术的低成本运动目标探测雷达[J].科学技术与工程,2018,18(36):60-66.

[50]GNU Software Radio project. http://www.gnu.org/software/gnuradio/.

[51]Matt Ettus, Universal software radio peripheral. http://www.ettus.com.

[52]Yi Ren, Dongping Yao, Xianhui Zhang. The implementation of TETRA usingGNU Radio and USRP[C]. IEEE International Symposium on Microwave,Antenna, Propagation, and EMC Technologies for Wireless Communications,2011: 363-366.

[53]Xiong X, Xiang W, Zheng K, et al. An open source SDR-based NOMA system for 5G networks[J]. IEEE Wireless Communications, 2015, 22(6): 24-32.

[54]Shi T, Guo W, Yang L, et al. Remote wideband data acquiring system based on ZC706 and AD9361[C]//2015 IEEE International Wireless Symposium (IWS 2015). IEEE, 2015: 1-4.

中图分类号:

 TP957    

开放日期:

 2021-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式