- 无标题文档
查看论文信息

论文中文题名:

 聚合氯化铝负载多孔碳制备及其对Pb2+污染土壤钝化机制研究    

姓名:

 王榕    

学号:

 20211025007    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 吸附材料    

第一导师姓名:

 彭龙贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation of polyaluminum chloride-loaded porous carbon material and its immobilization mechanism to Pb2+ in polluted soil    

论文中文关键词:

 煤矸石基多孔材料 ; 铅污染 ; 吸附 ; 稳定化机理 ; 作物积累    

论文外文关键词:

 Coal gangue-based porous materials ; lead pollution ; adsorption ; stabilization mechanism ; crop accumulation.    

论文中文摘要:

       目前,潜在有毒金属污染土壤的修复是国际上非常关注的问题。在工业和农业发展中,有毒金属的使用显著增加,导致了水-土壤系统中金属污染的数量增加,在这些潜在的有毒金属中,铅由于其广泛的来源,是最具威胁的有毒金属之一。在以往的研究中,利用粉煤灰、煤矸石等多种典型固体废弃物作为吸附剂,虽然这些研究表明这些材料在对废水中有毒金属的去除是有效的,但大多数研究集中在单一的废水污染控制上,很少有研究关注对污染的水-土壤系统的处理效果。因此本文以煤矸石为原料,采用水热合成法,制备聚合氯化铝负载煤矸石基多孔碳材料,并重点研究材料的孔结构和材料亲水性对土壤中Pb2+钝化和对植物富集的影响。使用X射线衍射、扫描电子显微镜、N2-吸附脱附曲线、X射线光电子能谱、傅里叶红外光谱和接触角测试等手段对样品进行表征分析;通过聚合氯化铝负载煤矸石基多孔碳对水溶液体系中Pb2+的吸附行为研究,探明吸附效率与反应机制,考察吸附动力学、吸附热力学和吸附等温线机制;最后将该多孔碳材料施用到铅污染土壤中,种植大豆植株,研究其对土壤中Pb2+生物有效性的影响和钝化机制。主要结论如下:

      (1) 通过水热合成法所制备的聚合氯化铝负载煤矸石基多孔碳材料的微观形貌由原始煤矸石的致密的片层结构转变为蓬松的珊瑚状结构,并有孔洞出现;同时,聚合氯化铝成功负载于煤矸石基多孔碳结构上;最终制得的聚合氯化铝负载煤矸石基多孔碳材料的比表面积也从原始煤矸石的 1.8997 m2/g提升到152.7892 m2/g。

     (2) 在水溶液Pb2+吸附实验中,原始煤矸石和聚合氯化铝负载煤矸石基多孔碳对Pb2+吸附的最佳条件为:吸附剂用量为0.2 g、Pb2+的初始浓度为50 mg/L、吸附时间为120 min、反应温度为25 oC时,两者对Pb2+的吸附容量分别为 6.81 mg/g和5.98 mg/g。吸附动力学和吸附等温线结果表明,二者对Pb2+的吸附行为均更符合准二级动力学模型,主要为化学吸附;吸附等温线结果显示二者均更符合Langmuir模型,即对水体Pb2+的吸附为单分子层吸附;而吸附热力学模型拟合结果表明,原始煤矸石对Pb2+的吸附属于自发的吸热反应,而聚合氯化铝负载煤矸石基多孔碳对Pb2+的吸附属于自发的放热反应,吸附反应的机理为聚合氯化铝负载煤矸石基多孔碳通过离子交换以及表面络合形成沉淀。

      (3) 大豆的盆栽实验表明添加聚合氯化铝负载煤矸石基多孔碳的实验组产出的大豆根茎叶各器官中Pb2+含量明显低于空白对照组和添加原始煤矸石的实验组,添加3 %的聚合氯化铝负载煤矸石基多孔碳对土壤中有效态Pb2+含量即可降低82.11 %,使得大豆的生长量增加15.3 %,证明聚合氯化铝负载煤矸石基多孔碳能够有效的抑制了Pb2+向大豆苗的转移。通过改性的煤矸石吸附材料凭借丰富的孔结构和较好的亲水性更有利于在土壤不饱和水的情况下对水溶液产生迁移,从而达到对Pb2+钝化的效果。

论文外文摘要:

Currently, the remediation of potentially toxic metal-contaminated soil is a highly concerning issue internationally. The use of toxic metals has significantly increased in industrial and agricultural development, leading to an increased amount of metal pollution in water-soil systems. Among these potential toxic metals, lead is one of the most threatening due to its widespread sources. In previous studies, various typical solid wastes such as fly ash and coal gangue have been used as adsorbents. Although these studies have shown the effectiveness of these materials in removing toxic metals from wastewater, most of the research has focused on single wastewater pollution control, with little attention given to the treatment effects on the water-soil system pollution. Therefore, this study uses coal gangue as a raw material and employs a hydrothermal synthesis method to prepare polyaluminum chloride-loaded coal gangue-based porous carbon material. The study focuses on investigating the effects of the material's pore structure and hydrophilicity on the passivation of Pb2+ in soil and its accumulation in plants. Characterization analysis of the samples is conducted using techniques such as X-ray diffraction, scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and contact angle measurements. The adsorption behavior of Pb2+ in aqueous solution by polyaluminum chloride-loaded coal gangue-based porous carbon is studied to determine the adsorption efficiency and reaction mechanism, including adsorption kinetics, thermodynamics, and isotherm models. Finally, the porous carbon material is applied to lead-contaminated soil, soybean plants are grown, and the effects on the bioavailability of Pb2+ in the soil and the passivation mechanism are studied. The main conclusions are as follows:

The microstructure of the polyaluminum chloride-loaded coal gangue-based porous carbon material prepared by the hydrothermal synthesis method transformed from the dense laminar structure of the original coal gangue to a fluffy coral-like structure with the appearance of pores. Additionally, polyaluminum chloride was successfully loaded onto the coal gangue-based porous carbon structure. The specific surface area of the resulting polyaluminum chloride-loaded coal gangue-based porous carbon material increased from 1.8997 m2/g in the original coal gangue to 152.7892 m2/g.

In the Pb2+ adsorption experiments in aqueous solution, the optimum conditions for the adsorption of Pb2+ by the original coal gangue and the polyaluminum chloride-loaded coal gangue-based porous carbon were determined: adsorbent dosage of 0.2 g, initial concentration of Pb2+ of 50 mg/L, adsorption time of 120 min, and reaction temperature of 25°C. The adsorption capacities of the two materials for Pb2+ were 6.81 mg/g and 5.98 mg/g, respectively. The results of adsorption kinetics and adsorption isotherms indicated that both materials followed the pseudo-second-order kinetic model and Langmuir model, respectively, suggesting chemical adsorption and monolayer adsorption of Pb2+ from the water. The results of adsorption thermodynamics indicated that the adsorption of Pb2+ by the original coal gangue was an endothermic process, while the adsorption of Pb2+ by the polyaluminum chloride-loaded coal gangue-based porous carbon was an exothermic process. The mechanism of the adsorption reaction involved ion exchange and surface complexation leading to precipitation.

(3) The pot experiment with soybeans showed that the experimental group with the addition of polyaluminum chloride-loaded coal gangue-based porous carbon had significantly lower Pb2+ concentrations in the roots, stems, and leaves of soybean organs compared to the blank control group and the group with the addition.

参考文献:

[1] Bu N, Liu X, Song S, et al. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution[J]. Advanced Powder Technology, 2020, 31(7): 2699-2710.

[2] Gu J, Zhou H, Tang H, et al. Cadmium and arsenic accumulation during the rice growth period under in situ remediation[J]. Ecotoxicology and Environmental Safety, 2019, 171: 451-459.

[3] He, X, Li, P. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Exposure and Health, 2020, 12 (3), 385-401.

[4] 方月英. 利用植物栽培方法探讨磷基材料修复重金属复合污染土壤的效果和机理[D]. 上海交通大学, 2012.

[5] 曹勤英, 黄志宏. 污染土壤重金属形态分析及其影响因素研究进展[J]. 生态科学, 2017, 36(06): 222-232.

[6] 曹书苗. 放线菌强化植物修复土壤铅镉污染的效应及机理[D]. 长安大学, 2016.

[7] Nziguheba G, Smolders E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries [J]. Science of the Total Environment, 2008, 390 (1): 53-57.

[8] Cavazzoli S, Squartini A, Sinkkonen A, et al. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms[J]. Microbiological Research, 2023, 270: 127343.

[9] 杨雄. 电化学调控典型铁锰氧化物吸附重金属及其修复污染土壤机理[D]. 华中农业大学, 2022.

[10]周振, 黄丽, 黄国棣. 生物炭和海泡石复配对镉和锌复合污染土壤的钝化修复[J]. 华中农业大学学报, 2023, 42(02): 158-166.

[11]方艳玲, 段毅, 周书葵. 钝化材料修复土壤重金属污染研究进展[J]. 有色金属, 2023, (03): 123-131.

[12]Stolpe C, Giehren F, Krämer U, et al. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant[J]. Phytochemistry, 2017, 139: 109-117.

[13]廉雅菲. 浅析土壤受重金属污染的治理与修复[J]. 石河子科技, 2023, (01): 1-2.

[14]郭军康, 赵隽隽, 李怡凡. 矿区土壤重金属污染修复技术研究进展[J]. 农业资源与环境学报, 2023, 40(02): 249-260.

[15]王晶晶, 吝美霞, 赵琦慧,等. 冻融作用对石油烃与镉复合污染土壤修复植物生理特性的影响[J]. 应用技术学报, 2022, 22(01): 76-82.

[16]张向军. 石灰、粉煤灰处理Cd、Pb、Cr污染土壤的试验研究[D]. 重庆大学, 2009.

[17]江书慧. 黏土矿物对水合物形成和再形成影响规律研究[D]. 吉林大学, 2022.

[18]于小芳. 稀土掺杂磷酸盐/钒酸盐荧光材料的制备与性能研究[D]. 长春理工大学, 2022.

[19]董晴. 高效介孔锆氧基纤维磷酸盐吸附剂的设计、制备和机理研究[D]. 山东大学, 2022.

[20]Wang S G, Xu Y, Norbu N, et al. Remediation of biochar on heavy metal polluted soils[J]. IOP Conference Series: Earth and Environmental Science, 2018,108 (4).

[21]刘青松, 白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展[J]. 应用化工, 2022, 51(11): 3285-3291.

[22]孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析[J]. 农业资源与环境学报, 2017, 34 (06): 543–549.

[23]Medyńska Juraszek A, Ćwieląg Piasecka I, Jerzykiewicz M, et al. Wheat straw biochar as a specific sorbent of cobalt in soil[J]. Materials, 2020, 13 (11): 24-62.

[24]杨冰霜, 陈翰博, 杨兴, 等. 不同改良剂施用对污染土壤养分转化及砷和铅生物有效性的影响[J]. 水土保持学报, 2022, 36: 332-339.

[25]姜琦, 关佳佳, 姜彬慧. 微生物在重金属污染土壤修复中的作用[A]. 中国环境科学学会: 中国环境科学学会, 2022: 375-379.

[26]陈锐, 陈智坤, 瞿佳, 等. 微生物修复剂S35对氯氰菊酯污染棚室土壤修复研究[J]. 陕西农业科学, 2022, 68 (06): 45-53.

[27]Dunnington D W, Spooner I S, Mallory M L, et al. Evaluating the utility of elemental measurements obtained from factory-calibrated field-portable X-Ray fluorescence units for aquatic sediments[J]. Environmental Pollution, 2019, 249: 45-53.

[28]张颖. 竹类植物对土壤重金属污染的修复效果及评价研究[D]. 南京信息工程大学, 2022.

[29]董林林. 镉污染土壤的超积累植物筛选[D]. 陕西师范大学,2008.

[30]陈奕暄, 邓潇, 杨洋, 等. 亚麻-水稻轮作模式对镉污染土壤修复潜力研究[J]. 作物研究, 2022, 36(02): 126-131.

[31]杨丰隆. 煤矸石堆积区土壤生态健康风险与毒性效应研究[D]. 山西大学, 2020.

[32]郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65 (7): 2443-2453.

[33]Guo YX, Yan KZ, Cui L. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33-41.

[34]董玲. 煤矸石酸浸取提取Al2O3和Fe2O3技术研究[D]. 中国矿业大学 (北京), 2018.

[35]丁舒航, 周建民, 张梦瑶, 等. 煤矸石制备聚合氯化铝铁钙与应用试验研究[J]. 土木与环境工程学报, 2021, 43 (04): 185-194.

[36]Mei Z, Dou YW, Zhang YZ, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220: 386-395.

[37]Ren C Z, Wang W L, Li G L. Preparation of high-performance contentious materials from industrial solid waste [J]. Construction and Building Materials, 2017, 152: 39-47.

[38]唐升引, 蒋永吉, 陈静. 煤矸石主要物理特性及在栽培基质中应用的可行性分析[J]. 干旱地区农业研究, 2014, 32 (03): 209-213.

[39]孙海容, 赵爱东. 利用高硫煤矸石改良土壤的探讨[J]. 煤炭加工与综合利用, 1999 (3): 16-18.

[40]张伟才, 杨桂荣. 用煤矸石制西瓜、苹果专用肥料的试验研究[J]. 煤矿环境保护, 1997 (3): 24-26.

[41]Zhang Q, Liu G, Peng S, et al. Synthesis of calcium silicate hydrate from coal gangue for Cr (VI) and Cu (II) removal from aqueous solution[J]. Molecules, 2021, 26(20): 6192.

[42]左鹏飞. 煤矸石的综合利用方法[J]. 煤炭技术, 2009, 28 (01): 186-189.

[43]Qian T, Li J. Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique, Advanced Powder Technology[J]. 2015 (26) , 98-104.

[44]Wang X, Zhang Y, Synthesis and characterization of zeolite A obtained from coal gangue for the adsorption of F in wastewater, Science advanced Material[J]. 2019 (11), 277-282.

[45]Li H, Zheng F, Wang J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390: 124-513.

[46]陈敏. 矸石基磁性多孔材料的制备及其修复镉砷污染土壤机理[D]. 安徽理工大学, 2022.

[47]Zhao H, Li P, He X. Remediation of cadmium contaminated soil by modified gangue material: characterization, performance and mechanisms[J]. Chemosphere, 2022, 290: 133347.

[48]Khosropour E, Attarod P, Shirvany A, et al. Response of plateaus orientalis leaves to urban pollution by heavy metals[J]. Journal of Forestry Research, 2018 (372): 1-9.

[49]张彤. Pb2+胁迫下4种湿生植物的抗性生理及富集潜力研究[D]. 江西农业大学, 2019.

[50]Ernst W H O , Krauss G J , Verkleij J A C , et al. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view[J]. Plant Cell & Environment, 2010, 31 (1): 123-143.

[51]Romero-Puertas M C. Cadmium causes the oxidative modification of proteins in pea plants[J]. Plant Cell & Environment, 2010, 25 (5): 677-686.

[52]Ambaye T G, Vaccari M, Van Hullebusch E D, et al. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater[J]. International Journal of Environmental Science and Technology, 2021: 1-22.

[53]Rizwan M, Ali S, Qayyum M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review[J]. Environmental Science and Pollution Research, 2016, 23: 2230-2248.

[54]Li R, Wang J J, Zhou B, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment[J]. Journal of Cleaner Production, 2017, 147: 96-107.

[55]Trakal L, Veselská V, Šafařík I, et al. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 2016, 203: 318-324.

[56]Islam T, Li Y, Cheng H. Biochars and engineered biochars for water and soil remediation: A review[J]. Sustainability, 2021, 13(17): 932-936.

[57]Liang M, Lu L, He H, et al. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review[J]. Sustainability, 2021, 13(24): 140-148.

[58]吕龙. 改性磁性壳聚糖吸附材料的制备及其处理水中Pb2+ / Cu2+的研究[D]. 中国地质大学(北京), 2018.

[59]滕泽栋. 解磷菌协同铁基材料对铅污染土壤的修复作用及机制研究[D]. 北京林业大学, 2020.

[60]Pellera F M, Gidarakos E. Effect of dried olive pomace derived biochar on the mobility of cadmium and nickel in soil[J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1163-1176.

[61]姚拓. 煤矸石与废盐酸制备PAC的节能环保工艺分析[J]. 中国资源综合利用, 2022, 40(09): 77-79.

[62]王宁宁. 酸性矿山废水的危害及处理技术研究进展[J]. 环境与发展, 2017, 29(07): 99-100.

[63]范明. 不同类型煤矸石对矿井水中重金属离子吸附特性研究[D]. 辽宁工程技术大学, 2020.

[64]王爱国, 刘朋, 孙道胜, 等. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 材料导报, 2018, 32(11): 1903-1909.

[65]石家力, 黄自力, 秦庆伟, 等. 二次铝灰制备聚合氯化铝试验研究[J]. 金属矿山, 2021, (07): 206-210.

[66]李振, 雪佳, 朱张磊. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(06): 165-178.

[67]Donia A M, Atia A A, Abouzayed F I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions[J]. Chemical Engineering Journal, 2012, 191: 22-30.

[68]王芳芳. 壳聚糖/稀土复合材料的制备及对铬(VI)的吸附性能研究[D]. 江南大学, 2013.

[69]武晋雄. 基于煤炭废弃物的碳材料制备及其吸附性能研究[D]. 伊犁师范大学, 2020.

[70]梁美娜. 改性甘蔗渣生物质炭吸附剂的制备及其对砷和铅的吸附研究[D]. 广西大学, 2018.

[71]Xu Y, Lv J, Song Y, et al. Efficient removal of low-concentration organismic by Zr-based metal-organic frameworks: cooperation of defects and hydrogen bonds[J]. Environmental Science: Nano, 2019, 6(12): 3590-3600.

[72]石凯, 李巧玲. 多孔煤矸石吸附剂的制备及其吸附热力学研究[J]. 中北大学学报, 2020, 41(01): 79-84.

[73]张博文. 铁改性花生壳生物炭吸附除磷性能及机理研究[D]. 中国地质大学, 2018.

[74]祁彩菊. 改性生物吸附剂的制备及其对重金属离子吸附性能的研究[D]. 西北师范大学, 2012.

[75]李晓丽. 聚合物基新型复合吸附材料的制备及对水体中重金属污染物的吸附性能研究[D]. 兰州大学, 2013.

[76]陈素红. 玉米秸秆的改性及其对六价铬离子吸附性能的研究[D]. 山东大学, 2012.

[77]Han R, Zou W, Zhang Z, et al. Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study[J]. Journal of Hazardous Materials, 2006, 137(1): 384-395.

[78]宋玉鑫, 丁述理, 李百福. 高岭石插层工艺及对其微结构的影响[J]. 化工矿物与加工, 2019, 48(11): 48-53.

[79]王艳荣, 李平, 杨琦. 氯化锌改性煤矸石吸附剂的制备与应用[J]. 石油化工应用, 2017, 36(11): 130-132.

[80]Gordon T. H. Ooi, Kai Tang, Ravi K. Chhetri, et al. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes[J]. Bioresource Technology, 2018, 267: 677-687.

[81]包维维. 吸附材料的制备及其对重金属离子和染料吸附性能研究[D]. 吉林大学, 2013.

[82]张新. 煤矸石吸附材料结构调控与吸附行为研究[D]. 西安科技大学, 2020.

[83]Fardmousavi O, Faghihian H. Thiol functionalized hierarchical zeolite nanocomposite for adsorption of Hg2+ from aqueous solutions[J]. Comptes Rendus Chimie, 2014, 17(12): 1203-1211.

[84]李红霞. 清水河流域煤矿区重金属的表生环境特征及潜在修复途径[D]. 北京科技大学, 2020.

[85]王萍. 不同钝化剂对重金属污染土壤长期稳定化效果研究[D]. 西北农林科技大学, 2017.

[86]舒冉君. 米糠与氧化钙、过磷酸钙联用钝化重金属铅镉污染土壤[D]. 广东工业大学, 2018.

[87]Zhang J, Li H, Zhou Y, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China[J]. Environmental Pollution, 2018, 235: 710-719.

[88]Wang B, Ma Y, Lee X, et al. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer[J]. Science of the Total Environment, 2021, 758: 147-154.

[89]Wang F, Tan H, Huang L, et al. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice[J]. Ecotoxicology and Environmental Safety, 2021, 207: 191-198.

[90]Liang X, Han J, Xu Y, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235: 9-18.

[91]刘冬冬. 酸性土壤镉污染钝化剂的筛选及在白菜上的修复效果研究[D]. 桂林理工大学, 2021.

[92]付金晶, 杨静慧, 庞志蕊. 国槐与山桃化感物质对几种豆科植物的影响[J]. 天津农林科技, 2019, (01): 24-25.

[93]宋肖琴,陈国安,马嘉伟. 不同钝化剂对水稻田镉污染的修复效应[J]. 浙江农业科学, 2021, 62(3): 474-476.

[94]Austruy A, Shahid M, Xiong T, et al. Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences[J]. Journal of Soils and Sediments, 2014, 14: 666-678.

[95]Yang H, Zhang G, Fu P, et al. The evaluation of in-site remediation feasibility of Cd-contaminated soils with the addition of typical silicate wastes[J]. Environmental Pollution, 2020, 265: 115-125.

中图分类号:

 O647.3    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式