- 无标题文档
查看论文信息

论文中文题名:

 纳米过渡金属氧化物对硅橡胶泡沫抑烟减毒特性研究    

姓名:

 胡鹏    

学号:

 20220226129    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Study on the smoke and toxicity reduction properties of silicone rubber foam by nano transition metal oxides    

论文中文关键词:

 硅橡胶泡沫 ; 纳米过渡金属氧化物 ; 抑烟剂 ; 抑烟减毒 ; 抑烟机理    

论文外文关键词:

 Silicone rubber foam ; Nano transition metal oxide ; Smoke suppressants ; Smoke suppression and toxicity reduction ; Smoke suppression mechanism    

论文中文摘要:

        硅橡胶泡沫(SiFs)是聚硅氧烷发泡而成的具有网状结构特性的高分子材料,兼具了硅橡胶和泡沫材料的结构与特性,被广泛应用于航空航天、军事、生物医学以及电子器件的包装等领域。但在高温(火焰)下SiFs会产生有毒烟气,严重威胁火场中人员安全,增加消防救援难度,所以必须对其进行抑烟减毒处理。纳米过渡金属氧化物(TMO)通过表面或“壁效应”在火焰区产生辐射耗散,或通过还原偶联机理来实现有毒气体的抑制等方式提高材料的抑烟减毒性能,被广泛应用于聚氯乙烯、聚氨酯泡沫等高分子材料,但目前在SiFs中应用较少。为此,本文以抑制SiFs烟气产生、降低其烟气毒性为目标,将不同的纳米TMO添加在SiFs中形成SiFs复合材料,系统地研究纳米TMO对SiFs抑烟减毒的影响,揭示纳米TMO对SiFs抑烟减毒中的主要机理。主要的研究成果如下:

     (1)本文将单一和复配的纳米TMO添加到SiFs中,对SiFs复合材料的抑烟减毒性能进行了研究。一方面,纳米ZnO、TiO2、NiO和ZrO2四种抑烟剂使得SiFs复合材料的阻燃等级从V-1上升至V-0,其中20wt%纳米NiO/SiFs复合材料的极限氧指数提升至28.4%,其火灾危险性降至最低。通过锥形量热实验发现,20wt%纳米NiO/SiFs复合材料的点燃时间、火灾性能和蔓延指数均得到显著降低,其pk2HRR和THR分别降低了40.0%和29.6%;利用建材烟密度仪实验发现,其最大烟密度和烟密度等级分别下降了58.40%和52.20%;在材料烟气毒性测试实验中,其产生烟气的麻醉性达到毒性等级中最安全的AQ1级。

    (2)基于20wt%纳米NiO/SiFs复合材料具有良好的抑烟减毒效果,研究了其抑烟减毒机理。热重结果表明,20wt%的纳米NiO能增强SiFs复合材料的热稳定性,残炭量提升了21.9%。氮气气氛下分析其在管式炉中热解的气体产物发现,20wt%的纳米NiO在SiFs复合材料中抑烟减毒作用主要发生在345.29~434.91 °C。由于纳米NiO比表面积大,吸附能力强,在该阶段下促进凝聚相炭层生成,隔绝热量向基体内部传递。同时Ni2+与空气中的氧气反应,使SiFs复合材料侧链断裂的有机基团在Ni2+催化成炭作用下转化为炭层和CH4,减少了CO等有毒烟气的生成,实现了隔热、隔氧和抑制烟气生成和逸出。

论文外文摘要:

        Silicone rubber foam (SiFs) is a polymer material with reticular structure made from polysiloxane foaming, which combines the structure and characteristics of silicone rubber and foam materials, so it has been widely used in aerospace, military, biomedical and electronic device packaging fields. However, SiFs can produce toxic fumes at high temperature (flame), which seriously threatens the safety of personnel, so it is necessary to conduct smoke suppression and toxicity reduction treatment. Nano transition metal oxide (TMO) can improve the smoke suppression and toxicity reduction performance of materials by generating radiation dissipation in the flame zone through the surface or "wall effect", or inhibiting toxic gases through the reduction coupling mechanism. At present, it is widely used in PVC, polyurethane foam, resin and other polymer materials. However, it is rarely used for SiFs materials. Therefore, with the goal of inhibiting the flue gas production and reducing the toxicity of SiFs, different nano-TMOs are added to SiFs to form SiFs composites, and the effects of nano-TMOs on SiFs smoke suppression and detoxification are systematically studied, and the main mechanisms of nano-TMOs on SiFs smoke suppression and attenuation are revealed. The research results are as follows:

        (1) In this paper, single or compound nano-TMOs are added to SiFs to study the smoke suppression and toxicity attenuation properties of SiFs composites. On the one hand, the four smoke suppressants of nano ZnO, TiO2, NiO and ZrO2 increased the flame retardant grade of SiFs composites from V-1 to V-0, of which the limiting oxygen index of 20wt% nano NiO/SiFs composites increased to 28.4%, and their fire hazard was minimized. The test of cone calorimeter showed that the ignition time, fire performance and spread index of 20wt% nano-NiO/SiFs composites were significantly reduced, and their pk2HRR and THR were reduced by 40.0% and 29.6%, respectively. The maximum smoke density and smoke density grade decreased by 58.40% and 52.20%, respectively. In the material smoke toxicity test, the narcotic nature of the smoke produced reaches the safest AQ1 toxicity class.

        (2) Based on the good smoke suppression and detoxification effect of 20wt% nano-NiO/SiFs composite, the mechanism of smoke suppression and detoxification was studied. The thermogravimetric results showed that 20wt% nano-NiO could enhance the thermal stability of SiFs composites, and the residual carbon content increased by 21.9%. Analysis of the gas products pyrolyzed in tubular furnace under nitrogen atmosphere showed that the smoke suppression and attenuation effect of 20wt% nano-NiO in SiFs composites mainly occurred at 345.29~434.91 °C. The nano-NiO has a large specific surface area and strong adsorption capacity, which promotes the formation of a condensed phase carbon layer at this stage and isolates the heat transfer to the matrix. At the same time, Ni2+ reacts with oxygen in the air, so that the organic group of SiFs composite side chain fracture is converted into carbon layer and CH4 under the action of Ni2+ catalytic carbonization, which reduces the formation of toxic smoke such as CO, and realizes heat insulation, oxygen insulation and inhibition of flue gas generation and escape.

参考文献:

[1]刘文军. 导热阻燃硅橡胶复合材料的制备、结构与性能调控研究[D].杭州师范大学,2021.

[2]王鹏欢. 基于二维纳米材料原位自组装的硅橡胶泡沫复合材料制备、结构与性能调控研究[D].杭州师范大学,2020.

[3]Yang D, Wei Q, Li B, et al. High thermal conductive silicone rubber composites constructed by strawberry-structured Al2O3-PCPA-Ag hybrids[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106260.

[4]Azizi S, Momen G, Ouellet-Plamondon C, et al. Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives[J]. Polymer Testing, 2020, 84: 106281.

[5]Liu J, Yao Y, Chen S, et al. A new nanoparticle-reinforced silicone rubber composite integrating high strength and strong adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2021, 151: 106645.

[6]汪传生,王禄银,边慧光,等.有机硅乳液在天然胶乳高耐磨材料中的应用[J].弹性体,2021,31(05):51-56.

[7]孔祥荣,马国儒,管旭东,等.傅里叶变换红外光谱法在火灾烟气分析测试中的应用[J].新材料产业,2016,No.266(01):50-53.

[8]李梅杰,崔辉,纪荷怡.基于火灾烟气累积伤害的人员疏散研究[J].安全,2022,43(09):37-42.

[9]闫钰. 含MCA微胶囊硅橡胶泡沫的阻燃性能研究[D].西安科技大学,2020.

[10]张增慧,岳文振,刘正勤.洛阳东都商厦“12·25”特大火灾燃烧过程及人员中毒死亡原因分析[J].河南消防,2001(12):11-12.

[11]李书平.挪威NBL对1978~1992年期间重大建筑火灾事故分析[J].消防技术与产品信息,2002(06):59-60.

[12]周勇.国内外无卤阻燃剂的研究进展[J].江苏科技信息,2012,No.384(03):22-25.

[13]孙艺,姜润韬,金晶等.高分子材料阻燃与抑烟的分立设计思想[J].化工学报,2022,73(01):18-31.

[14]马尧龙. 硅橡胶补强机理与应用性能的研究[D].南昌航空大学,2019.

[15]秦旻,王亚茹,赵毅.层状双金属氢氧化物阻燃高分子材料的制备及研究进展[J].化工新型材料,2022,50(10):5-9.

[16]邓军,闫钰,康付如等.含改性硅微粉硅橡胶阻燃抑烟研究[J].高分子通报,2020,No.249(01):64-71.

[17]Zhang N, Zhang J, Yan H, et al. A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene[J]. Journal of hazardous materials, 2019, 373: 856-865.

[18]Wang X, Pang H, Chen W, et al. Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7223-7235.

[19]杨志华,李斌.纳米阻燃抑烟PVC的研究进展[J].化学与黏合,2006(04):257-260.

[20]Zhou K, Zhou Q, Gong K, et al. Waste-to-resource strategy to fabricate environmentally benign flame retardants from waste phosphorus tailings[J]. Composites Communications, 2020, 19: 173-176.

[21]Xu Z, Duan L, Hou Y, et al. The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites[J]. Composites Part A: applied science and manufacturing, 2020, 131: 105815.

[22]Yao K, Gong J, Tian N, et al. Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles[J]. Rsc Advances, 2015, 5(40): 31910-31919.

[23]Wang X, Pang H, Chen W, et al. Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7223-7235.

[24]易亮,杨倩,颜龙,等.纳米TiO2在膨胀型透明防火涂料中的协效作用[J].中国安全科学学报,2022,32(07):63-69.

[25]李为义,赵丽娟,张求慧.纳米有机蒙脱土在膨胀型阻燃剂中的协效和抑烟性[J].材料导报,2016,30(S1):90-94.

[26]廖莉玲,刘吉平,徐大业.纳米氧化物的制备及其抑烟特性研究[J].胶体与聚合物,2003(02):22-24.

[27]阎春绵,杨光,张忠厚等.纳米LDHs/ZnO复合抑烟阻燃体系对PVC-U性能的影响[J].工程塑料应用,2008,No.224(06):22-25.

[28]Mo S, Li S, Ren Q, et al. Vertically-aligned Co3O4 arrays on Ni foam as monolithic structured catalysts for CO oxidation: effects of morphological transformation[J]. Nanoscale, 2018, 10(16): 7746-7758.

[29]Zhang P, Yu L, Lou X W. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation[J]. Angewandte Chemie, 2018, 130(46): 15296-15300.

[30]Zhang R, Fang Y, Chen T, et al. Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods array by S doping[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7502-7506.

[31]周石杰,任祯,杨宇森,等.不同形貌金属氧化物的制备及其在工业催化反应中的应用[J].化工学报,2021,72(06):2972-3001.

[32]高洪泽.消防阻燃中的化学知识与应用[J].大学化学,2016,31(01):33-40.

[33]You J, Xue J, Jiang Z, et al. Simultaneously Improving Thermal Insulation, Flame Retardancy, and Smoke Suppression for Rigid Cross‐Linked Polyvinyl Chloride Foam through Combined Copper/Molybdenum Trioxide[J]. Advanced Engineering Materials, 2022, 24(3): 2100858.

[34]Dang L, Lv Z, Du X, et al. Flame retardancy and smoke suppression of molybdenum trioxide doped magnesium hydrate in flexible polyvinyl chloride[J]. Polymers for Advanced Technologies, 2020, 31(9): 2108-2121.

[35]Yuan Y, Yu B, Shi Y, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 142-154.

[36]胡博渊,陈兴刚,桑晓明.氧化亚铜/三氧化钼对RPUF阻燃抑烟性能的影响[J].塑料,2018,47(05):54-58.

[37]卢林刚,赵瑾,苏祺,等.膨胀型阻燃剂/纳米CuO协同阻燃环氧树脂[J].高分子材料科学与工程,2020,36(10):63-70+78.

[38]李斌,王建祺,张爱英.用锥形量热仪研究Cu2O和MoO3对PVC阻燃抑烟的作用[J].科学通报,1998(08):836-840.

[39]陈娟.基于氧化锌材料的水性聚氨酯胶粘剂阻燃性能分析[J].粘接,2021,47(08):89-93.

[40]施永乾,马苏宁,杨晔,等.碳化钛-二氧化锰/热塑性聚氨酯纳米复合材料的制备及阻燃性能[J].复合材料学报,2022,39(10):4561-4571.

[41]邹碧海.安全学原理[M].西南交通大学出版社.2019.

[42]欧凯.建筑材料燃烧烟雾毒性测试及综合伤害评价研究[D].华南理工大学,2015.

[43]Wang B, Sheng H, Shi Y, et al. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites[J]. Journal of hazardous materials, 2016, 314: 260-269.

[44]Sheng H, Zhang Y, Ma C, et al. Influence of zinc stannate and graphene hybrids on reducing the toxic gases and fire hazards during epoxy resin combustion[J]. Polymers for Advanced Technologies, 2019, 30(3): 666-674.

[45]李赛,张漪帆,陈悦.聚苯乙烯装饰材料燃烧烟热特性研究[J].中国安全生产科学技术,2019,15(S1):150-155.

[46]刘军军,李风,张智强,等.火灾烟气毒性评价和预测技术研究[J].中国安全科学学报,2006(01):76-82+0-1.

[47]Sheng H, Chao Y, Ling M, et al. Influence of zinc stannate and graphene hybrids on reducing the toxic gases and fire hazards during epoxy resin combustion[J]. Polymers for Advanced Technologies, 2019, 30(3).

[48]GB/T 20285-2006,材料产烟毒性危险分级[S].

[49]丁勇,张阳,代培刚,等.基于动物染毒试验的不同聚合物材料烟气毒性研究[J].广州化工,2015,43(08):101-103.

[50]严家荣,郑玉连,吴贤生,等.阻燃绝缘聚氯乙烯电线槽产烟对小鼠的毒性试验[J].动物医学进展,2019,40(06):140-144.

[51]葛欣国,何瑾,刘微,等.有机保温材料燃烧烟气毒性及热性能分析[J].新型建筑材料,2018,45(04):1-4.

[52]Lattimer B Y. Carbon monoxide levels in structure fires: Effects of wood in the upper layer of a post-flashover compartment fire.Fire Technology, 1998, 34(4):325.

[53]王霁,杨永斌.典型阻燃材料火灾毒性烟气释放规律研究进展[J].科学技术与工程,2022,22(32):14100-14109.

[54]Babrauskas V, Gann R G, Levin B C, et al. A methodology for obtaining and using toxic potency data for fire hazard analysis [J].Fire Safety Journal, 1998,31:345-358

[55]Wang X, Kalali E N, Wan J T, et al. Carbon-family materials for flame retardant polymeric materials[J]. Progress in Polymer Science, 2017, 69: 22-46.

[56]刘克胜. 包覆型抑烟剂微球/含磷环氧树脂复合材料制备及其协同抑烟机理研究[D].北京化工大学,2021.

[57]邓军,成晨阳,康付如.含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J].中国安全生产科学技术,2021,17(12):5-10.

[58]康付如,邓军,庞青涛,等.含微胶囊化氢氧化铝有机硅泡沫阻燃抑烟特性[J].高分子材料科学与工程,2021,37(08):58-66.

[59]马砺,刘西西,刘志超,等.改性水滑石的制备及在硅橡胶泡沫阻燃抑烟中的应用[J].高分子材料科学与工程,2020,36(10):55-62.

[60]Hong L, Hu X. Mechanical and flame retardant properties and microstructure of expandable graphite/silicone rubber composites[J]. Journal of Macromolecular Science, Part B, 2016, 55(2): 175-187.

[61]Huang X, Tian Z, Zhang D, et al. The synergetic effect of antimony (Sb2O3) and melamine cyanurate (MCA) on the flame-retardant behavior of silicon rubber[J]. Polymer Bulletin, 2021, 78(1): 185-202.

[62]Zhang Y, Zeng X, Li H, et al. Zirconium phosphate functionalized by hindered amine: a new strategy for effectively enhancing the flame retardancy of addition-cure liquid silicone rubber[J]. Materials Letters, 2016, 174: 230-233.

[63]鲍庆煌,李俊,袁英杰,等.PUF、PP和PS阻燃复合塑料研究现状和发展趋势[J/OL].材料导报,2023(S1):1-16[2023-03-16].

[64]谢华理. 具有火灾预警功能仿珍珠贝结构阻燃纳米涂层的制备与性能[D].华南理工大学,2020.

[65]Hermouet F, Guillaume É, Rogaume T, et al. Experimental determination of the evolution of the incident heat flux received by a combustible during a cone calorimeter test: Influence of the flame irradiance[J]. Journal of Fire Sciences, 2021, 39(2): 119-141.

[66]宋翠翠. 过渡金属氧化物对粘胶纤维热稳定性与燃烧性能的影响[D].青岛大学,2014.

[67]于宝刚.用锥形量热仪研究聚氨酯泡沫的阻燃性能[J].中国塑料,2010,24(03):55-59.

[68]鲁杰. 液体硅橡胶阻燃泡沫材料制备工艺及性能研究[D].西安科技大学,2018.

[69]雷曼云,高群,谢云婷,等.改性纳米氧化锆对甲基苯基硅橡胶性能的影响[J].合成橡胶工业,2020,43(06):497-501.

[70]胡荣祖.热分析动力学[M].第二版.化学化工出版社,2008.

[71]S. Nazare, B. Kandola, A. R. Horrocks. Use of cone calorimetry to quantify the burning hazard of apparel fabrics [J]. Fire and materials, 2002, 26 (4-5):191-199.

[72]李洋,葛涛.基于XPS对不同密度级炼焦煤表面碳氧结构的分析[J].安徽理工大学学报(自然科学版),2019,39(06):56-60.

[73]范浩熙,郑燕娥,赵林洲,等.CeO2-NiO氧载体用于甲烷化学链重整反应的研究[J].高校化学工程学报,2022,36(03):407-418.

[74]温俊峰,周乐,刘侠,等.纳米NiO/生物活性炭的制备及其去除废水中苯酚的研究[J].人工晶体学报,2019,48(02):352-358.

[75]邱晓燕,李建.C(膜)/Si(SiO2)(纳米微粒)/C(膜)的XPS及Raman谱测试分析[J].西南师范大学学报(自然科学版),2003(02):230-233.

中图分类号:

 TQ333.93    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式