- 无标题文档
查看论文信息

论文中文题名:

 基于GNSS ZTD/PWV的AOD预测方法研究    

姓名:

 苏静    

学号:

 20210061024    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 GNSS气象学    

第一导师姓名:

 赵庆志    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research on AOD prediction method based on GNSS ZTD/PWV    

论文中文关键词:

 全球导航卫星系统 ; 对流层延迟 ; 大气可降水量 ; 气溶胶光学厚度 ; 自适应方法    

论文外文关键词:

 Aerosol Optical Depth ; Global Navigation Satellite System ; Zenith Tropospheric Delay ; Precipitable Water Vapor ; Adaptive method    

论文中文摘要:

近年来,我国大气污染问题日益严重,尤其是气溶胶污染对空气质量的突出影响引起了社会的广泛关注。气溶胶光学厚度(Aerosol Optical Depth, AOD)是表征大气浑浊程度的关键物理量,也是确定气溶胶气候效应的重要因素。因此,对AOD进行准确监测和估计对于研究气候变化至关重要。目前常用的气溶胶光学厚度获取方法包括站点观测、卫星遥感探测、再分析资料获取以及模型模拟等,上述方法各具优势,但整体上存在精度低、分辨率低以及时空分布不完整等缺点。自全球导航卫星系统(Global Navigation Satellite System, GNSS)气象学提出以来,基于GNSS技术反演的对流层延迟(Zenith Tropospheric Delay, ZTD)和大气可降水量(Precipitable Water Vapor, PWV)已经广泛应用于大气污染研究中,目前已有学者研究发现GNSS技术反演的ZTD/PWV与AOD之间存在着密切关系,但尚未有研究直接将GNSS ZTD/PWV应用于气溶胶光学厚度的预测研究中。因此,本文结合GNSS技术高精度、高时间分辨率和时序完整等优势,提出了顾及高程因素的GNSS解算及ZTD/PWV获取方法,并分析了GNSS ZTD/PWV与AOD之间的关系,进一步发展了基于GNSS ZTD/PWV的AOD预测理论与方法。本文主要研究内容如下:
(1)针对现有ZTD经验模型无法映射局部气象问题,且在高程较大区域精度较低的缺陷,提出了一种顾及高程因素的GNSS解算及ZTD/PWV估计方法,实现了中国区域高精度ZTD/PWV反演。首先,通过分析小时分辨率ZTD残差数据的周期特征,以及周期残差与高程之间的关系建立高程与周期残差间的线性模型;其次,将全球气温气压(Global Pressure and Temperature 3, GPT 3)模型计算的ZTD作为模型初值,构建中国区域高精度ZTD估计模型(High-precision ZTD Model for China, CHZ)并将CHZ模型提供的ZTD应用到精密单点定位中;再次,使用中国区域164个GNSS站点和87个RS站点上2012至2018年的ZTD数据对CHZ模型进行验证,结果表明CHZ模型具有较好的精度,采用CHZ模型收敛后的定位精度和收敛时间均有改进;最后,将模型应用于GNSS ZTD/PWV的反演中,发现基于CHZ-PPP反演的ZTD/PWV均具有较好的精度。
(2)基于现有研究缺乏直接利用GNSS PWV进行AOD预测研究,本文基于CHZ模型反演的GNSS PWV数据提出了两种AOD预测模型,两种模型均可以较好的实现高精度AOD预测。首先,通过分析GNSS PWV与AOD 550及五种类型AOD之间的相关性,发现PWV对不同类型AOD具有不同的敏感性且相邻历元AOD间也具有较强的自相关性。基于这一结论,本文构建了两种基于GNSS PWV的加权AOD预测模型,分别为TAF(Total AOD Forecast)和FATF(Five Type-based AOD Forecast)模型。实验表明,TAF和FTAF模型预测的AOD与真值之间具有较好的一致性,其均方根和偏差均较小,表明两个模型均具有较好的性能且FTAF模型略优于TAF模型。
(3)由于构建TAF和FTAF模型时所需PWV参数计算时存在气象参数误差和转换参数误差的影响,提出了一种基于GNSS ZTD的AOD自适应预测方法,更好地实现了高精度、高时间分辨率的AOD预测。首先,使用气溶胶机器人网络获取的AOD对基于网格的第二次现代回顾性研究与应用分析和哥白尼气溶胶监测服务提供的AOD进行对比验证,选出最优的AOD数据集进行后续的研究;其次,通过分析GNSS ZTD与AOD之间的关系,发现利用GNSS ZTD数据进行AOD预测研究具有一定的合理性;最后,在此基础上构建了基于GNSS ZTD的AOD自适应预测方法(Adaptive AOD Forecast, AAF),该方法仅将ZTD和上一历元的AOD作为输入参数,模型系数按月自适应更新。实验表明,AAF模型预测的AOD的内外符合精度均较小,且优于TAF和FTAF模型。
近年来,我国大气污染问题日益严重,尤其是气溶胶污染对空气质量的突出影响引起了社会的广泛关注。气溶胶光学厚度(Aerosol Optical Depth, AOD)是表征大气浑浊程度的关键物理量,也是确定气溶胶气候效应的重要因素。因此,对AOD进行准确监测和估计对于研究气候变化至关重要。目前常用的气溶胶光学厚度获取方法包括站点观测、卫星遥感探测、再分析资料获取以及模型模拟等,上述方法各具优势,但整体上存在精度低、分辨率低以及时空分布不完整等缺点。自全球导航卫星系统(Global Navigation Satellite System, GNSS)气象学提出以来,基于GNSS技术反演的对流层延迟(Zenith Tropospheric Delay, ZTD)和大气可降水量(Precipitable Water Vapor, PWV)已经广泛应用于大气污染研究中,目前已有学者研究发现GNSS技术反演的ZTD/PWV与AOD之间存在着密切关系,但尚未有研究直接将GNSS ZTD/PWV应用于气溶胶光学厚度的预测研究中。因此,本文结合GNSS技术高精度、高时间分辨率和时序完整等优势,提出了顾及高程因素的GNSS解算及ZTD/PWV获取方法,并分析了GNSS ZTD/PWV与AOD之间的关系,进一步发展了基于GNSS ZTD/PWV的AOD预测理论与方法。本文主要研究内容如下:
(1)针对现有ZTD经验模型无法映射局部气象问题,且在高程较大区域精度较低的缺陷,提出了一种顾及高程因素的GNSS解算及ZTD/PWV估计方法,实现了中国区域高精度ZTD/PWV反演。首先,通过分析小时分辨率ZTD残差数据的周期特征,以及周期残差与高程之间的关系建立高程与周期残差间的线性模型;其次,将全球气温气压(Global Pressure and Temperature 3, GPT 3)模型计算的ZTD作为模型初值,构建中国区域高精度ZTD估计模型(High-precision ZTD Model for China, CHZ)并将CHZ模型提供的ZTD应用到精密单点定位中;再次,使用中国区域164个GNSS站点和87个RS站点上2012至2018年的ZTD数据对CHZ模型进行验证,结果表明CHZ模型具有较好的精度,采用CHZ模型收敛后的定位精度和收敛时间均有改进;最后,将模型应用于GNSS ZTD/PWV的反演中,发现基于CHZ-PPP反演的ZTD/PWV均具有较好的精度。
(2)基于现有研究缺乏直接利用GNSS PWV进行AOD预测研究,本文基于CHZ模型反演的GNSS PWV数据提出了两种AOD预测模型,两种模型均可以较好的实现高精度AOD预测。首先,通过分析GNSS PWV与AOD 550及五种类型AOD之间的相关性,发现PWV对不同类型AOD具有不同的敏感性且相邻历元AOD间也具有较强的自相关性。基于这一结论,本文构建了两种基于GNSS PWV的加权AOD预测模型,分别为TAF(Total AOD Forecast)和FATF(Five Type-based AOD Forecast)模型。实验表明,TAF和FTAF模型预测的AOD与真值之间具有较好的一致性,其均方根和偏差均较小,表明两个模型均具有较好的性能且FTAF模型略优于TAF模型。
(3)由于构建TAF和FTAF模型时所需PWV参数计算时存在气象参数误差和转换参数误差的影响,提出了一种基于GNSS ZTD的AOD自适应预测方法,更好地实现了高精度、高时间分辨率的AOD预测。首先,使用气溶胶机器人网络获取的AOD对基于网格的第二次现代回顾性研究与应用分析和哥白尼气溶胶监测服务提供的AOD进行对比验证,选出最优的AOD数据集进行后续的研究;其次,通过分析GNSS ZTD与AOD之间的关系,发现利用GNSS ZTD数据进行AOD预测研究具有一定的合理性;最后,在此基础上构建了基于GNSS ZTD的AOD自适应预测方法(Adaptive AOD Forecast, AAF),该方法仅将ZTD和上一历元的AOD作为输入参数,模型系数按月自适应更新。实验表明,AAF模型预测的AOD的内外符合精度均较小,且优于TAF和FTAF模型。
 

论文外文摘要:

In recent years, air pollution in China has become an increasingly serious problem, and the prominent impact of aerosol pollution on air quality in particular has attracted widespread attention from society. Aerosol Optical Depth (AOD) is a key physical quantity that characterises the degree of atmospheric turbidity and is an important factor in determining the climatic effects of aerosols. Accurate monitoring and estimation of AOD is therefore essential for the study of climate change. Currently, the commonly used methods to obtain the optical thickness of aerosols include station observation, satellite remote sensing, reanalysis data acquisition and model simulation, each of which has its own advantages, but the overall disadvantages include low accuracy, low resolution and incomplete spatial and temporal distribution. Since the introduction of the Global Navigation Satellite System (GNSS) meteorology, GNSS-based inversions of Zenith Tropospheric Delay (ZTD) and Precipitable Water Vapor (PWV) have been widely used for climate change studies, and some scholars have found a close relationship between ZTD/PWV and AOD in GNSS inversions, but no study has directly applied GNSS ZTD/PWV to the prediction of aerosol optical thickness. Therefore, this paper combines the advantages of GNSS technology such as high accuracy, high temporal resolution and time series integrity, proposes a GNSS solution and ZTD/PWV acquisition method that takes into account the elevation factor, and analyses the relationship between the acquired ZTD/PWV and AOD to further explore its innovative application in AOD monitoring and prediction studies. The main research elements of this paper are as follows:
(1) To address the shortcomings that the existing empirical ZTD model cannot map local meteorological problems and has low accuracy in areas with large elevation, a GNSS solution and ZTD/PWV estimation method that takes into account the elevation factor is proposed to achieve a high-precision ZTD/PWV inversion for the Chinese region. Firstly, a linear model between elevation and period residuals is established by analysing the period characteristics of hourly-resolution ZTD residual data and the relationship between the period residuals and elevation; secondly, the ZTD calculated by the GPT3 model is used as the initial value of the model to construct a high-precision ZTD estimation model for China. CHZ) and apply the ZTD provided by the CHZ model to the PPP; again, the CHZ model is validated using ZTD data from 2012 to 2018 on 164 GNSS stations and 87 RS stations in the Chinese region, and the results show that the CHZ model has good accuracy, and the positioning accuracy and convergence time after convergence using the CHZ model are improved. Finally, the model was applied to the inversion of GNSS ZTD/PWV, and it was found that both ZTD/PWV based on CHZ-PPP inversion had better accuracy.
(2) Based on the lack of existing research on AOD monitoring using GNSS PWV directly, this paper proposes two AOD prediction models based on the GNSS PWV data inferred from the above CHZ model, both of which can achieve high accuracy in AOD prediction. First, by analyzing the correlation between GNSS PWV and AOD 550 and other five types of AOD, it is found that PWV has different sensitivities to different types of AOD and strong autocorrelation between adjacent ephemeral AOD. Based on this conclusion, two weighted AOD forecast models Total AOD Forecast (TAF) and Five Type-based AOD Forecast (FATF) based on GNSS PWV were constructed in this paper. The experiments show that the TAF and FTAF models have good agreement between the predicted AOD and the true value, and their RMS, Bias and MAE are smaller, indicating that both models have better performance and the FTAF model is better than the TAF model.
(3) Due to the drawbacks of meteorological parameter errors and transformation parameter errors in the PWV calculation in the above-mentioned TAF and FTAF models, an adaptive AOD prediction method based on GNSS ZTD is proposed based on the above-mentioned research basis, which can better achieve high accuracy and high time resolution AOD prediction. Firstly, the AOD provided by Modern-Era Retrospective Analysis for Research and Applications Version 2 and Copernicus Aerosol Monitoring Service are compared and validated using Aerosol Robotic Network AOD, and the optimal AOD dataset is selected for subsequent studies. Secondly, by analysing the relationship between GNSS ZTD and AOD, it is found that it is reasonable to use GNSS ZTD data for AOD prediction studies. Based on this, an Adaptive AOD Forecast (AAF) method based on GNSS ZTD was constructed, which only takes the ZTD and the AOD of the previous calendar year as input parameters, and the model coefficients are adaptively updated on a monthly basis. Experiments show that the AAF model predicts the AOD with a smaller accuracy of both internal and external conformity and outperforms the TAF and FTAF models.
 

参考文献:

[1] 武可强. 基于精密单点定位的区域地基GNSS水汽反演[D]. 东华理工大学, 2020.

[2] Böhm J, Heinkelmann R, Schuh H. Short note: a global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81: 679-683.

[3] Lagler K, Schindelegger M, Böhm J, et al. GPT2: Empirical slant delay model for radio space geodetic techniques[J]. Geophysical research letters, 2013, 40(6): 1069-1073.

[4] 姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013(7): 84-93.

[5] Landskron D, Böhm J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92: 349-360.

[6] 姚宜斌, 胡羽丰, 张豹. 利用多源数据构建全球天顶对流层延迟模型[J]. 科学通报, 2016, 61(24): 2730-2741.

[7] Zhang H, Yuan Y, Li W, et al. A grid-based tropospheric product for China using a GNSS network[J]. Journal of Geodesy, 2017, 92: 765-777.

[8] 庞舒婷. 基于MERRA-2再分析和AERONET地基遥感的中国地区气溶胶光学特性[D]. 兰州大学, 2020.

[9] Fan R, Ma Y, Jin S, et al. Validation, analysis, and comparison of MISR V23 aerosol optical depth products with MODIS and AERONET observations[J]. Science of The Total Environment, 2023, 856: 159117.

[10] 赵庆志, 苏静, 杨鹏飞, 等. 利用GNSS PWV的AOD自适应预测方法[J]. 测绘学报, 2021, 50(10): 1279-1289.

[11] 张婕. 卫星气溶胶产品评估与融合改进及其在区域PM_(2.5)浓度估算中的应用[D]. 兰州大学, 2018.

[12] Chen A, Yang J, He Y, et al. High spatiotemporal resolution estimation of AOD from Himawari-8 using an ensemble machine learning gap-filling method[J]. Science of The Total Environment, 2023, 857: 159673.

[13] Karimian H, Li Y, Chen Y, et al. Evaluation of different machine learning approaches and aerosol optical depth in PM2.5 prediction[J]. Environmental Research, 2023, 216: 114465.

[14] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.

[15] 郭洁, 李国平, 黄文诗. GPS可降水量与大天气关系的初步分析[J].自然灾害学报, 2011, 20 (4) :142-146.

[16] 李燕敏, 高雅萍, 魏瑶, 等. GNSS反演数据与PM2.5质量浓度相关性研究[J]. 测绘地理信息, 2019, 44(04): 65-67.

[17] Wei P, Xie S, Huang L, et al. Ingestion of GNSS-Derived ZTD and PWV for Spatial Interpolation of PM2. 5 Concentration in Central and Southern China[J]. International Journal of Environmental Research and Public Health, 2021, 18(15): 7931.

[18] Lau L, He J. Investigation into the effect of atmospheric particulate matter (PM2.5 and PM10) concentrations on GPS signals[J]. Sensors, 2017, 17(3): 508.

[19] Bijjahalli S, Sabatini R, Gardi A. GNSS performance modelling and augmentation for urban air mobility[J]. Sensors, 2019, 19(19): 4209.

[20] Aliyu Y A, Botai J O. Appraising the effects of atmospheric aerosols and ground particulates concentrations on GPS-derived PWV estimates[J]. Atmospheric Environment, 2018, 193: 24-32.

[21] Guo M, Zhang H, Xia P. A method for predicting short‐time changes in fine particulate matter (PM2.5) mass concentration based on the global navigation satellite system zenith tropospheric delay[J]. Meteorological Applications, 2020, 27(1): e1866.

[22] 郭敏, 张捍卫, 张红利. GNSS产品预测小时尺度上PM2.5浓度的不同模型分析研究[J]. 地球物理学进展, 2020, 35(6): 2068-2074.

[23] 梁春丽. 联合地基 GNSS 与 MODIS 的雾霾预测[D]. 桂林理工大学, 2018.

[24] Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The use of artificial satellites for geodesy, 1972, 15: 247-251.

[25] Hopfield H S. Tropospheric effect on electromagnetically measured range: Prediction from surface weather data[J]. Radio science, 1971, 6(3): 357-367.

[26] Black H D. An easily implemented algorithm for the tropospheric range correction[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B4): 1825-1828.

[27] Hopfield H S. Two‐quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical research, 1969, 74(18): 4487-4499.

[28] 曲伟菁, 朱文耀, 宋淑丽, 等. 三种对流层延迟改正模型精度评估[J]. 天文学报, 2008, 49(1): 113-122.

[29] Collins J P. Assessment and development of a tropospheric delay model for aircraft users of the global positioning system/by John Paul Collins[M]. National Library of Canada= Bibliothèque nationale du Canada, Ottawa, 2001.

[30] Collins P and Langley R B. Nominal and extreme error performance of the UNB3 tropospheric delay mode1[M]. Department of Geodesy and Geomatics Engineering, University of New Brunswick, 1999.

[31] Collins P, Langley R B. Tropospheric delay- Prediction for the WAAS user[J] GPS world, 1999, 10(7): 52-58.

[32] Penna N, Dodson A, Chen W. Assessment of EGNOS tropospheric correction model. The Journal of Navigation, 2001, 54(1): 37-55.

[33] Krueger E, Schueler T, Arbesser-Rastburg B. The standard tropospheric correction model for the European satellite navigation system Galileo[J]. Proc. General Assembly URSI, 2005, 123(10): 9202-9222.

[34] Li W, Yuan Y B, Ou J K, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chinese science bulletin, 2012, 57(17): 2132-2139.

[35] Böhm J, Möller G, Schindelegger M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w) [J]. GPS solutions, 2015, 19(3): 433-441.

[36] Yang Y F, Chen X P, Yao M H, et al. Research on Zenith Tropospheric Delay Modeling of Regional CORS Network[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 42: 1197-1200.

[37] Li W, Yuan Y, Ou J, et al. IGGtrop_SH and IGGtrop_rH: Two improved empirical tropospheric delay models based on vertical reduction functions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5276-5288.

[38] Zhang H, Yao Y, Xu C, et al. Transformer-Based Global Zenith Tropospheric Delay Forecasting Model[J]. Remote Sensing, 2022, 14(14): 3335.

[39] Yao Y, Hu Y, Yu C, et al. An improved global zenith tropospheric delay model GZTD2 considering diurnal variations[J]. Nonlinear processes in geophysics, 2016, 23(3): 127-136.

[40] 王雪. 基于区域对流层延迟模型的精密单点定位方法[D]. 哈尔滨工程大学, 2018.

[41] 陈俊平, 王君刚, 王解先, 等. SHAtrop:基于陆态网GNSS数据的中国大陆区域ZTD模型[J]. 武汉大学学报(信息科学版), 2019, 44(11): 1588-1595.

[42] Chen J, Wang J, Wang A, et al. SHAtropE—a regional gridded ZTD model for China and the surrounding areas[J]. Remote Sensing, 2020, 12(1): 165.

[43] 马永超. 高精度对流层延迟建模与应用研究[D]. 西安科技大学, 2020.

[44] 黄东桂. 广西地区对流层延迟模型精化建模及其应用[D].桂林理工大学, 2022.

[45] 雷雨, 赵丹宁, 徐劲松, 等. 多模型融合的对流层天顶延迟估计方法[J]. 天文研究与技术, 2023, 20(02):111-122.

[46] 延昊, 矫梅燕, 毕宝贵, 等. 国内外气溶胶观测网络发展进展及相关科学计划[J]. 气象科学, 2006(01): 110-117.

[47] Holben B N, Eck T F, Slutsker I, et al. AERONET—A federated instrument network and data archive for aerosol characterization[J]. Remote sensing of environment, 1998, 66(1): 1-16.

[48] Holben B N, Tanré D, Smirnov A, et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D11): 12067-12097.

[49] Merdji A B, Xu X, Lu C, et al. Accuracy assessment and climatology of MODIS aerosol optical properties over North Africa[J]. Environmental Science and Pollution Research, 2023, 30(5): 13449-13468.

[50] 郭霖. 基于多源遥感数据的华北平原气溶胶光学厚度时空分布特征分析[D]. 山东建筑大学, 2022.

[51] Quaglia I, Timmreck C, Niemeier U, et al. Interactive stratospheric aerosol models' response to different amounts and altitudes of SO 2 injection during the 1991 Pinatubo eruption[J]. Atmospheric Chemistry and Physics, 2023, 23(2): 921-948.

[52] Deuzé J, Herman M, Goloub P, et al. Characterization of aerosols over ocean from POLDER/ADEOS‐1. Geophysical Research Letters: 1999, 26: 1421-1424.

[53] Witek M L, Garay M J, Diner D J, et al. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water[J]. Atmospheric Measurement Techniques, 2018, 11(11): 1-21

[54] 张天浩. 高时空分辨气溶胶遥感反演及其在大气污染排放和传输中的应用研究[D]. 武汉大学, 2020.

[55] 任通, 高玲, 李成才, 等. 利用风云2C静止卫星可见光资料反演气溶胶光学厚度[J]. 北京大学学报(自然科学版), 2011, 47(04): 636-646.

[56] 杨何群, 周红妹, 尹球, 等. FY-3A/MERSI数据在典型大城市热环境监测预报中的应用——以上海市为例[J]. 测绘通报, 2013(11): 25-28+32.

[57] 唐维尧, 鲍艳松, 马骁, 等. FY-3A/MERSI气溶胶光学厚度资料在北京及其周围地区的精度评价[J]. 大气与环境光学学报, 2017, 12(06): 435-445.

[58] 祝善友, 李佳敏, 向嘉敏, 等. 基于FY4A AGRI数据的气溶胶光学厚度反演研究[J]. 地理与地理信息科学, 2020, 36(04): 26-32.

[59] Wei X, Chang N B, Bai K, et al. Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(16): 1640-1725.

[60] 苏逸. 基于多源遥感观测的华东地区气溶胶光学厚度反演[D]. 南京信息工程大学, 2022.

[61] Li G, Chen W, Li R, et al. Prediction of AOD data by geographical and temporal weighted regression with nonlinear principal component analysis[J]. Arabian Journal of Geosciences, 2020, 13(17): 876.

[62] 唐燕, 许睿, 孟繁玥. 中国东部典型城市群AOD时空演变及预测[J]. 大气与环境光学学报, 2021, 16(04): 320-330.

[63] Zhao Q, Yang P, Yao W, et al. Adaptive AOD forecast model based on GNSS-derived PWV and meteorological parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-10.

[64] Kouba J. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1) [J]. Journal of Geodesy, 2008, 82(4): 193-205.

[65] 温波. 极地环境下多模GNSS精密单点定位精度分析[D]. 西安科技大学, 2021.

[66] Xiang Y, Gao Y, Shi J, et al. Carrier phase-based ionospheric observables using PPP models[J]. Geodesy and Geodynamics, 2017, 8(1): 17-23.

[67] 张且且, 赵龙, 周建华. 基于无电离层组合/非差非组合混合观测模型的精密单点定位[C]// 第十一届中国卫星导航年会论文集——S05 空间基准与精密定位, 2020: 65-71.

[68] Tregoning P, Brunner F K, Bock Y, et al. First geodetic measurement of convergence across the Java Trench[J]. Geophysical Research Letters, 2013, 21(19): 2135-2138.

[69] 叶世榕, 张双成, 刘经南. 精密单点定位方法估计对流层延迟精度分析[J]. 武汉大学学报(信息科学版), 2008(08): 788-791.

[70] 陈振国, 唐龙江. BDS/GPS组合天顶对流层延迟的精度分析[J]. 测绘工程, 2017, 26(09): 5-9.

[71] 朱爽, 姚宜斌, 张瑞.天顶对流层延迟计算方法研究[J]. 大地测量与地球动力学, 2011, 31(03): 120-123.

[72] 朱爽, 姚宜斌, 张瑞, 等. 两种地基GPS水汽含量计算方法的对比研究[J]. 信息工程大学学报, 2012, 13(02): 247-251+256.

[73] 杨晓春, 张鹏飞, 王建鹏, 等. 基于精密单点定位的GPS水汽解算及应用[J]. 陕西气象, 2013(03): 28-30.

[74] 陈阳. 对流层天顶延迟改正模型研究及应用[D]. 东南大学, 2019.

[75] 李建国, 毛节泰, 李成才, 等.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J]. 气象学报, 1999(03): 28-37.

[76] 王勇, 柳林涛, 郝晓光, 等.武汉地区GPS气象网应用研究[J]. 测绘学报, 2007(02): 141-145.

[77] Yao Y, Zhang B, Xu C, et al. Analysis of the global T m–T s correlation and establishment of the latitude-related linear model[J]. Chinese science bulletin, 2014, 59(19): 2340-2347.

[78] Yao Y, Zhang B, Xu C, et al. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology[J]. Journal of Geodesy, 2014, 88(3): 273-282.

[79] Yao Y B, Zhang B, Yue S Q, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87(5): 439-448.

[80] Yao Y B, Zhu S, Yue S Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere[J]. Journal of Geodesy, 2012, 86(12): 1125-1135.

[81] Yao Y, Xu C, Zhang B, et al. GTm-III: a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1): 202-212.

[82] 张豹. 地基GNSS水汽反演技术及其在复杂天气条件下的应用研究[D]. 武汉大学, 2016.

[83] 姚宜斌, 孙章宇, 许超钤, 等. 顾及非线性高程归算的全球加权平均温度模型[J]. 武汉大学学报(信息科学版), 2019, 44(01): 106-111.

[84] Huang L, Liu L, Chen H, et al. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China[J]. GPS solutions, 2019, 23(2): 1-16.

[85] 何琦敏. 地基GNSS水汽反演及其在极端天气中的应用研究[D]. 中国矿业大学, 2021.

[86] Durre I, Vose R S, Wuertz D B. Overview of the integrated global radiosonde archive[J]. Journal of Climate, 2006, 19(1): 53-68.

[87] 王朝阳. 中国沿海GPS/GLONASS组合水汽反演关键技术与变化特征研究[D]. 山东科技大学, 2018.

[88] 邬熙娟, 高俊强, 黄燕. 小区域GPS网GAMIT解算结果与IGS站选取的关系[J]. 南京工业大学学报(自然科学版), 2010, 32(4): 96-99.

[89] Li W, He Y. Determination of tropospheric parameters from ERA surface data for space geodetic techniques[J]. Remote Sensing, 2021, 13(19): 3813.

[90] 杨凯钧, 袁鹏, 秦昌威. 顾及偏态的IQR法则在GPS时间序列异常值探测中的应用[J]. 大地测量与地球动力学, 2015, 35 (05): 793-796.

[91] 吴浩, 卢楠, 邹进贵, 等. GNSS变形监测时间序列的改进型3σ粗差探测方法[J]. 武汉大学学报(信息科学版), 2019, 44 (09): 1282-1288.

[92] 刘洁. 基于双线性插值的鱼眼镜头校正算法研究与实现[D]. 长春理工大学, 2017.

[93] 彭海. 皮尔逊相关系数应用于医学信号相关度测量[J]. 电子世界, 2017, 07: 163.

[94] Scargle J D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal, 1982, 263: 835-853.

[95] 杨艳. 中国地理位置及其特点[J]. 中国多媒体与网络教学学报, 2019(03): 32-33.

[96] Huang L, Wang X, Xiong S, et al. High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China[J]. Atmospheric Research, 2022: 106247.

[97] 李莹, 叶殿秀, 高歌, 等. 2022年夏季中国气候特征及主要天气气候事件[J]. 大气科学学报, 2023, 46(01): 110-118.

[98] Zhang H, Yuan Y, Li W. An analysis of multisource tropospheric hydrostatic delays and their implications for GPS/GLONASS PPP-based zenith tropospheric delay and height estimations[J]. Journal of Geodesy, 2021, 95(7): 1-19.

[99] Yang Z, Song S, Jiao W, et al. Ionospheric tomography based on GNSS observations of the CMONOC: performance in the topside ionosphere[J]. GPS solutions, 2017, 21: 363-375.

[100] Zhao Q, Yao Y, Yao W, et al. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 85-92.

[101] Zhao Q, Yang P, Yao W, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2019, 20(1): 231.

[102] Sun Z, Zhang B, Yao Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017[J]. Remote Sensing, 2019, 11(16): 1893.

[103] Du Z, Zhao Q, Yao W, et al. Improved GPT2w (IGPT2w) model for site specific zenith tropospheric delay estimation in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 198: 105202.

[104] Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2): 123-135.

[105] 高琦, 郭新成, 孟妮娜, 等. 京津冀气溶胶时空变化特征及潜在来源分析[J]. 科学技术与工程, 2021, 21(30): 13185-13195.

[106] 李建呈, 王洛忠. 区域大气污染联防联控的政策效果评估——基于京津冀及周边地区“2+26”城市的准自然实验[J]. 中国行政管理, 2023(01): 75-83.

[107] Ukhov A, Suleiman M, Arlindo da Silva, et al. Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations[J]. Atmospheric Chemistry and Physics, 2020, 20(15): 9281-9310.

[108] Ning T, Wang J, Elgered G, et al. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations[J]. Atmospheric Measurement Techniques, 2016, 9(1): 79-92.

[109] Xie Y, Wang Y, Zhang K, et al. Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD[J]. Environmental science & technology, 2015, 49(20): 12280-12288.

[110] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D8): 9791-9806.

[111] Mitchell R M, Forgan B W, Campbell S K. The climatology of Australian aerosol[J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5131-5154.

[112] Almansa A F, Cuevas E, Barreto Á, et al. Column integrated water vapor and aerosol load characterization with the new ZEN-R52 radiometer[J]. Remote Sensing, 2020, 12(9): 1424.

[113] Sun E, Che H, Xu X, et al. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016[J]. Theoretical and Applied Climatology, 2019, 136: 363-375.

中图分类号:

 P228.4    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式