论文中文题名: | 传热管用Incoloy800H渗Al涂层碳化腐蚀及防护性能研究 |
姓名: | |
学号: | 22211225024 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 高温腐蚀涂层防护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-18 |
论文答辩日期: | 2025-05-28 |
论文外文题名: | Study on carburization and protection performance of Al-infiltration coating on Incoloy800H surface used of heat transfer pipe |
论文中文关键词: | |
论文外文关键词: | high temperature gas reactor ; austenitic heat-resistance steel ; carburization ; grain boundary corrosion ; coating protection |
论文中文摘要: |
高温乙烯裂解管、超临界CO2机组等设施在服役过程中遇到含碳量较高的工作气氛,常常会出现碳化腐蚀的情况。目前能源化工领域中,尤其是超临界CO2和高温气冷堆等新型能源装备系统存在的碳化腐蚀现象还有待进一步研究,而高温金属防护涂层作为适合应对碳化腐蚀的有效措施之一,其抗碳化腐蚀的能力也需进一步深入研究。使用高温扩散法在Incoloy800H合金表面制备渗Al涂层,采用纳米石墨粉包埋样品方式,在气氛中通入氦气并加热至650 ℃以模拟长时间的服役环境来研究涂层抗碳化能力。本文在碳化腐蚀已有的相关研究基础上,进一步研究合金表面渗Al涂层后的碳化腐蚀行为,分析了渗Al涂层的微观结构以及在涂层保护下碳化腐蚀表面形貌变化、截面腐蚀层厚度变化等,同时研究了Incoloy800H合金、含涂层合金以及涂层碳化腐蚀样品的常温和高温力学性能。 (1)Incoloy800H合金表面渗Al涂层为Fe-Al、Fe(Ni, Al)、富Cr三层结构,在650 ℃碳化腐蚀5 000 h后,涂层结构消失。碳化腐蚀层厚度变化大致符合抛物线规律,5 000 h后厚度趋于稳定,厚度平均值为24.67 μm,渗铝后Incoloy800H抗碳化腐蚀能力变强。 (2)碳化腐蚀产物主要为Al2O3,无明显碳化物生成,随腐蚀的进行腐蚀产物变化不大,基体与涂层结合部出现Cr、O沉积层。表明渗Al涂层消耗并阻碍了活性C原子的扩散,阻止基体内部生成碳化物,有效减少了碳化腐蚀对合金本身的破坏。 (3)Incoloy800H合金常温抗拉强度为628.83 MPa,表面制备涂层以后由于涂层硬度较高使得合金近表面硬度提升明显,同时使得提升了合金的弹性模量,但因涂层较薄所以抗拉强度变化不大。合金650 ℃下抗拉强度415.58 MPa,表面制备涂层后抗拉强度有所下降,推测高温下Al元素易向基体内扩散从而降低了合金的高温抗拉强度,提高了基体的延展性。 (4)涂层样品经碳化腐蚀5 000 h后,常温抗拉强度为716.30 MPa,强度提升约20.9%,同时样品近表面硬度仍比合金高约75.0%,常温下力学性能较好。碳化样品在650 ℃下的抗拉强度为483.02 MPa,强度提升约16.3%,样品高温力学性能良好。从碳化样品的力学性能看,渗Al涂层有效阻止了碳化腐蚀对合金基体的破坏,样品强度提升主要来自基体的时效强化。 (5)合金、涂层及涂层碳化5 000 h样品的宏观断口处均有大量微孔与韧窝,符合典型的韧性断裂特征,且样品的常温断裂机制和高温断裂机制存在差异:合金常温下晶粒强度较高而晶界较为薄弱故断口处存在沿晶裂纹,而高温断口则由于合金塑性提升以穿晶裂纹为主;合金制备涂层后,断裂机制不变,常温下由于涂层在拉伸过程中开裂,裂纹扩展不深,而高温下涂层软化,表面裂纹更易向内扩展;涂层样品碳化5 000 h后,常温和高温断口处均以穿晶裂纹为主,裂纹源处可见少量腐蚀产物且未发现碳化物,不同位置仍能观测到涂层的结构,可以判断5 000 h碳化后涂层仍具有一定的防护作用。 |
论文外文摘要: |
Carburization frequently emerged in facilities such as high-temperature ethylene cracking tubes and supercritical CO2 units when exposed to a working atmosphere with a high carbon content during service. Currently, in the domain of energy and chemical engineering, particularly in novel energy equipment systems such as supercritical CO2 and high-temperature gas-cooled reactors, the phenomenon of carburization awaits further investigation. High-temperature metal protective coatings, as one of the effective measures against carburization, also require in-depth research on their anti-carburization capabilities. In this study, an Al-infiltration coating was fabricated on the surface of Incoloy800H alloy using the high-temperature diffusion method. The samples were embedded in nano-graphite powder, and helium gas was introduced into the atmosphere and heated to 650 ℃ to simulate a long-term service environment for studying the anti-carbonization ability of the coating. Based on the existing research on carburization, this paper further examines the carburization behavior of the Incoloy800H alloy after surface aluminized coating, analyzes the microstructure of the aluminized coating, the changes in surface morphology and cross-sectional corrosion layer thickness under coating protection, and investigates the room and high-temperature properties of the Incoloy800H alloy, the alloy with coating, and the carburization samples of the coating. (1) The aluminized coating on the surface of Incoloy800H alloy presents a three-layer structure of Fe-Al, Fe(Ni, Al), and Cr-rich layers. After 5,000 hours of carburization at 650 ℃, the coating structure vanishes. The thickness variation of the carburization layer approximately conforms to a parabolic law and tends to stabilize after 5,000 hours, with an average thickness of 24.67 μm. The anti-carburization ability of Incoloy800H after aluminized coating strengthens. (2) The primary carburization product is Al2O3, with no obvious carbides formed. As the corrosion duration prolongs, the corrosion products exhibit negligible changes, and a Cr and O deposition layer emerges at the interface between the substrate and the coating. This indicates that the Al-infiltration coating consumes and hinders the diffusion of active C atoms, preventing the formation of carbides within the substrate and effectively reducing the damage of carburization to the alloy itself. (3) The room-temperature tensile strength of Incoloy800H alloy amounts to 628.83 MPa. After the coating is fabricated on the surface, the hardness of the near-surface of the alloy significantly escalates due to the high hardness of the coating, and the elastic modulus of the alloy also increases. Nevertheless, due to the thin coating, the tensile strength undergoes little alteration. The tensile strength of the alloy at 650 ℃ is 415.58 MPa. After the coating is fabricated on the surface, the tensile strength declines. It is hypothesized that at high temperatures, Al elements readily diffuse into the substrate, thereby reducing the high-temperature tensile strength of the alloy and enhancing the ductility of the substrate. (4) After 5,000 hours of carburization, the room-temperature tensile strength of the coated sample reaches 716.30 MPa, an increase of approximately 20.9%. Simultaneously, the near-surface hardness of the sample remains approximately 75.0% higher than that of the alloy, and the mechanical properties at room temperature are favorable. The tensile strength of the carbonized sample at 650°C is 483.02 MPa, an increase of approximately 16.3%. The high-temperature mechanical properties of the sample are satisfactory. Judging from the mechanical properties of the carbonized sample, the Al-infiltration coating effectively impedes the damage of carburization to the alloy substrate, and the increase in sample strength primarily stems from the aging strengthening of the substrate. (5) A considerable number of micropores and dimples are observable at the macroscopic fracture surfaces of the alloy, coating, and carbonized corrosion sample of the coating, which are typical characteristics of ductile fracture. Moreover, the room-temperature fracture mechanism and high-temperature fracture mechanism of the samples differ: at room temperature, the grain strength of the alloy is high while the grain boundary is relatively weak, resulting in intergranular cracks at the fracture surface; at high temperatures, the fracture surface is mainly characterized by transgranular cracks due to the enhanced plasticity of the alloy. After the alloy is coated, the fracture mechanism remains unchanged. At room temperature, due to the cracking of the coating during tensile testing, the crack propagation is not profound. At high temperatures, the coating softens, and surface cracks are more prone to extend inward. After carburization of the coating, transgranular cracks predominate at both room temperature and high-temperature fracture surfaces. A small quantity of corrosion products can be detected at the crack sources, and no carbides are found. The structure involving the coating can still be observed regardless of the position. It can be concluded that the coating still retains a certain protective effect after 5,000 hours of carburization. |
参考文献: |
[1] 石倩, 张天琦, 于溯源. 高温气冷堆蒸汽发生器中粉尘颗粒的重悬浮特性[J].中国粉体技术,2023,29(04):1-10. [2] 杨珍, 鲁金涛, 张鹏等. Super304H钢表面铝扩散涂层的组织结构和抗蒸汽氧化性能[J].表面技术, 2020,49(01):64-71. [3] 雒晓卫. 10 MW高温气冷堆中石墨粉尘行为研究[D]. 北京, 清华大学, 2005. [4] 郭丽潇, 梁栋, 王秀娟等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积[J].中国粉体技术,2019,25(02):47-53. [5] 肖博, 朱忠亮, 李瑞涛等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展[J].热力发电,2020,49(10): 30-37. [6] 贾逸群, 刘人铜, 李施放等. 油气管道二氧化碳腐蚀研究[J].云南化工,2019,46(02): 177-178. [9] 肖雯雯, 张文博, 林德云等. 塔河油田H2S-CO2-O2共存体系下伴生气管道选材和内涂层评价[J].材料保护,2023,56(02): 44-50. [11] 谭家隆, 李德俊, 于永泗等.奥氏体耐热钢抗渗碳性能的研究[J]. 大连理工大学学报, 1988, (04): 37-44. [12] 李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为[J]. 中国腐蚀与防护学报, 2004(03): 61-65. [13] 李处森,杨院生,吴欣强.HP耐热钢结焦、渗碳的原因分析[J]. 中国腐蚀与防护学报, 2002(05):31-34. [16] 金沛斌. 高温复杂环境对乙烯裂解炉管性能影响分析[D]. 江苏, 中国矿业大学, 2017:52-71. [17] 邹正平, 王一帆, 姚李超等. 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报, 2022, 48(09): 1643-1677. [18] 刘桂秀, 易经纬, 李根等.耦合S-CO2布雷顿循环的自然循环铅冷快堆控制策略研究[J]. 核动力工程, 2023, 44(04):138-147. [19] 肖博, 李开洋, 王碧辉等.多种高温金属材料在超临界二氧化碳中的腐蚀行为[J].中国电机工程学报. 2023, 43(11): 4198-4207. [20] 肖博, 王碧辉, 岑栋梁等.镍基合金Inconel 617在高温超临界CO2下的腐蚀特性研究[J].动力工程学报, 2023, 43(04): 406-413. [24] 史力, 赵加清, 刘兵等.高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(04): 270-278. [25] 黄锦阳, 鲁金涛, 邢瑞华等. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(02): 365-370. [27] 王猛, 王全礼, 杨建炜等. 高炉布料滑槽金属碳化腐蚀失效分析[J].物理测试, 2011, 29(06): 35-40. [28] 方旭东, 王雨舟, 包汉生等. 超超临界锅炉烟气环境中 S31042、S31035、C-HRA-5 奥氏体耐热钢热腐蚀行为研究[J].热力发电, 2023, 52(1): 111-122. [29] 黄锦阳, 鲁金涛, 杨征等. 不同组织状态的镍–铁基高温合金耐烟灰/气腐蚀性能研究[J].中国电机工程学报, 2018, 38(22): 6640-6647. [30] 李广, 付一川, 喇培清等. 光热发电用不锈钢的熔盐腐蚀评价及机理[J/OL]. 材料工程, 1-18[2025-04-13]. [32] Baker R T K. Catalytic growth of carbon filaments[J]. Carbon, 1989, 27(3): 315-323. [34] 吴欣强,杨院生,詹倩等.25Cr35Ni耐热合金表面结焦机制[J].腐蚀科学与防护技术,1999,(05):274-278. [35] 王福会. 金属材料在高温含碳气氛中的腐蚀[J].腐蚀科学与防护技术, 1996(04):40-44. [41] 王梦瑶,梁志远,桂雍等.超临界CO2腐蚀对耐热材料力学性能影响研究进展[J].中国电机工程学报,2023,43(17): 6709-6718. [43] 郭亭山, 梁志远, 赵钦新.超临界CO2材料腐蚀过程动力学与产物热力学研究[J]. 西安交通大学学报, 2023, 57(12): 136-145. [45] 石宇. 合金元素对不锈钢表面“膨胀”α相形成及性能的影响研究[D].黑龙江, 哈尔滨工程大学, 2020. [46] 王津. 低碳钢气体渗氮/氮碳共渗工艺及其渗层改性研究[D].湖南, 湖南大学, 2016. [48] 程茹, 田勇, 宋超伟等. 真空低压渗碳对304与316L奥氏体不锈钢组织和性能的影响[J]. 金属热处理, 2022, 47(09): 1-6. [49] 宋若康, 张麦仓, 彭以超等. Cr35Ni45钢高温长期服役过程的氧化与渗碳机理[J].北京科技大学学报, 2014, 36(08): 1045-1051. [55] 李江, 詹英杰, 李季等. 国产Incoloy800H合金在氦气中时效后力学性能及微观组织演化, 热力发电, 2020, 49(11): 120-125. [61] 黄志荣, 尤一匡. 金属材料的碳化腐蚀及防护研究进展[J].江苏石油化工学院学报,2001(02): 9-12. [62] 马赵丹丹, 丛硕, 陈勇等. 含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为[J].核动力工程, 2022, 43(06): 101-107. [63] 陈灵芝, 和雅洁, 付晓刚等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展[J]. 材料导报, 2023, 37(S2): 421-427. [64] 黄志荣, 马刘宝, 李培宁. HK40钢的渗铝新工艺及抗碳化腐蚀性能研究[J]. 材料工程, 2005(01): 25-28. [65] 黄锦阳, 钟强, 黄浩刚等. P92耐热钢粉末包埋渗铝与化学气相渗铝涂层组织结构研究[J]. 热力发电, 2020, 49(3): 124-129. [66] 鲁金涛, 朱圣龙, 王福会. Al-Cr涂层的制备及抗热腐蚀性能研究[J].腐蚀科学与防护技术, 2011, 23(05):399-402. [67] 李琰, 鲁金涛, 杨珍等. 铝化物涂层改性Super304H钢在模拟锅炉煤灰/气环境中的腐蚀行为[J]. 机械工程材, 2017, 41(05): 89-94+99. [68] 李宇旸. 奥氏体钢在超临界二氧化碳环境下的耐腐蚀性能试验研究[D]. 北京, 华北电力大学, 2022. [80] 钟厉, 孙艳鹏. 热扩渗工艺的研究应用及进展[J]. 热加工工艺, 2007, (22): 81-4+94. [89] 李江,詹英杰,李季,等.Incoloy 800H合金在模拟服役条件试验过程中的性能与组织演化研究[J].热力发电,2022,51(10):177-183. [90] 唐丽英,詹英杰,李江,等.Incoloy 800H合金在675℃蒸汽中的氧化机理研究[J].热力发电,2023,52(04):99-103. |
中图分类号: | TG174 |
开放日期: | 2025-06-18 |