- 无标题文档
查看论文信息

论文中文题名:

 (Zr0.8Sn0.2)TiO4微波介质陶瓷/NiZn铁氧体共烧兼容特性研究    

姓名:

 武琪    

学号:

 19211025014    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 功能材料    

第一导师姓名:

 刘向春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on co-firing compatibility of (Zr0.8Sn0.2)TiO4 microwave dielectric ceramics/NiZn Ferrite    

论文中文关键词:

 ZST ; 叠层共烧 ; 界面扩散 ; 介电性能 ; 低温烧结    

论文外文关键词:

 ZST ; Laminated co-firing ; Interface diffusion ; Dielectric properties ; Low-temperature sintering    

论文中文摘要:

      在5G信息技术迅速发展的当代,电子元件随着表面贴装技术(SMT)的普及,不断向片式化、小型化、多功能化等方向发展。本文以满足多层片式LC滤波器实际应用的角度出发,将(Zr0.8Sn0.2)TiO4(ZST)微波介质陶瓷和NiZn(NZ)铁氧体叠层共烧,研究两种材料的共烧兼容特性。从介电材料(Zr0.8Sn0.2)TiO4的低温烧结入手,通过湿化学法合成高纯粉体来作为叠层复合体的初始原料;利用衍射数据对ZST材料进行了结构精修,并采用第一性原理计算得到ZST陶瓷的能级结构、电子态密度及弹性常数等结构特征参数;采用叠压工艺制备了ZST-NZ叠层复合体,通过改变成型方式,烧结温度以及加入中间层等工艺技术,来研究叠层复合体的界面结合,界面扩散以及介电性能。主要内容和结论如下:
(1)采用水热-熔盐法在1000℃制备了纯相的ZST纳米粉体。与水热-固相法相比,水热-熔盐法可以在更低温度下制备出晶体生长更完整的粉体,其形貌呈规则的纳米棒状形貌,棒状晶体直径约为50-60 nm。而且合成的ZST纳米粉体具有一定的光催化特性和紫外屏蔽特性,为拓宽ZST粉体的应用领域提供了实验基础。
(2)对ZST晶体进行精修以及第一性原理计算,结果表明:(Zr0.8Sn0.2)TiO4是以ZrTiO4为基本结构的正交晶系化合物,通过计算所得晶格常数值与结构精修所得相应数据符合良好,三种离子占同一位置的概率大小顺序为Sn4+ >Zr4+ >Ti4+。通过第一性原理计算得到ZST带隙为2.61 eV,态密度主要的峰由O原子的p轨道、s轨道和Ti、Zr、Sn原子的p轨道、s轨道贡献,Ti-O、Zr-O、Sn-O的价键类型主要为离子键。
(3)以水热-熔盐法合成的ZST粉体作为初始原料,采用热压成型工艺,在1250 ℃制备的ZST陶瓷相对密度为ρR=99.3%,介电性能:ɛr=40.5,tanδ=1.32×10-3,采用干压成型工艺,在1250℃烧结的ZST陶瓷性能为:ɛr=37.2,tanδ=9.63×10-4,ρR=98.8%。
(4)采用叠压工艺制备出了界面结合较为紧密的ZST-NZ叠层复合体,但其内部,特别是NZ一侧存在很多裂纹,导致介电损耗增加。由于两种材料之间收缩率不匹配,导致ZST-NZ叠层复合体翘曲;ZST-NZ叠层复合体界面处形成扩散层,1200℃下扩散层厚度为13-15 μm左右,随温度的升高,扩散层的厚度不断增加,在1275℃时扩散层厚度达到25 μm左右。而且在扩散层中由于ZST以及NZ铁氧体的分解产生新相TiO2和Fe3O4。
(5)采用半无限扩散偶模型,建立了ZST/NZ互扩散偶中离子浓度分布函数并对离子扩散系数进行了计算。在ZST/NZ扩散偶中扩散系数大小顺序为:D(Fe3+) > D(Zn2+) > D(Sn4+) > D(Zr4+);在1275 ℃时扩散激活能大小顺序为:Qd(Zr4+) > Qd(Sn4+) > Qd(Zn2+) > Qd(Fe3+)。
(6)将ZST和NZ按重量比1:1混合作为作为中间层材料,简称为Z1N1,采用叠压工艺制备出了界面结合紧密,无开裂的ZST-Z1N1-NZ叠层复合体。相比于ZST-NZ叠层复合体,缺陷明显减少,最佳性能试样的烧结温度从1275℃-1250℃,介电常数为34.3,介电损耗降低一个数量级;中间层的加入,在ZST和NZ材料之间起到了梯度层的作用,减小了离子层间浓度差,减缓了界面处离子的扩散行为;然而在ZST一侧加入掺杂剂,在一定程度上可以降低陶瓷的烧结温度,但也不可避免的导致内部缺陷增多,导致介电性能下降。
 

论文外文摘要:

~In the contemporary era of rapid development of 5G information technology, electronic components continue to develop in the direction of chip, miniaturization and multi-functionalization with the popularity of surface mount technology (SMT). In this paper, (Zr0.8Sn0.2)TiO4 (ZST) microwave dielectric ceramics and NiZn (NZ) ferrite were co-fired in a stack to meet the practical application of multilayer chip LC filters, and the co-fired compatibility characteristics of the two materials were studied. Starting from the low-temperature sintering of the dielectric material (Zr0.8Sn0.2)TiO4, the high-purity powder was synthesized by wet chemical method as the initial raw material for the stacked composite. Structural refinement of the ZST material was carried out using diffraction data, and structural characteristic parameters such as energy level structure, electronic density of states and elastic constants of the ZST ceramics were calculated using the first-nature principle. The ZST-NZ stacked composite was prepared by the lamination process. and the interfacial bonding, interfacial diffusion and dielectric properties of the laminated composite were investigated by changing the molding method, sintering temperature and adding intermediate layers. The main contents and conclusions are as follows:
(1) Pure-phase ZST nanocrystals were prepared by the hydrothermal-molten salt method at 1000 °C. Compared with the hydrothermal-solid phase method, the hydrothermal-molten salt method produced more complete crystal growth, lower synthesis temperature, regular nanorod-like morphology, and rod-like crystal diameter of about 50-60 nm. Moreover, the synthesized ZST nanopowders have certain photocatalytic and UV-shielding properties, which provide an experimental basis for broadening the application of ZST nanopowders.
(2) Refinement of ZST crystals and first-principles calculations showed that (Zr0.8Sn0.2)TiO4 is an orthogonal crystal compound with ZrTiO4 as the basic structure, and the calculated lattice constant values are in good agreement with the corresponding data obtained from structural refinement, and the probability of the three ions occupying the same position is in the order of Sn4+ > Zr4+ > Ti4+. The results of the first-nature principle calculations showed that the ZST band gap is 2.61 eV, the peaks of the density of states are mainly contributed by the p-orbitals and s-orbitals of O atoms and the p-orbitals and s-orbitals of Ti, Zr, and Sn atoms, and the valence bond types of Ti-O, Zr-O, and Sn-O are mainly ionic bonds.
(3) Using ZST powder synthesized by hydrothermal-molten salt method as the initial raw material, the relative density of ZST ceramics prepared by hot press molding process at 1250 oC is ρR=99.3%, dielectric properties: ɛr=40.5, tanδ=1.32×10-3, and the properties of ZST ceramics sintered by dry press molding process at 1250 oC are: ɛr=37.2, tanδ= 9.63×10-4, and ρR=98.8%.
(4) The ZST-NZ laminated composite with tighter interfacial bonding was prepared by the lamination process, but there were many cracks inside, especially on the NZ side, leading to increased dielectric losses. Due to the mismatch of shrinkage between the two materials, the ZST-NZ laminated composite warps. A diffusion layer is formed at the interface of the ZST-NZ laminated composite, and the thickness of the diffusion layer is about 13-15 μm at 1200 oC, which increases continuously with the increase of temperature. The thickness of diffusion layer is about 25 μm at 1275 oC. Moreover, the new phases TiO2 and Fe3O4 are generated in the diffusion layer due to the decomposition of ZST and NZ ferrite.
(5) Using a semi-infinite diffusion couple model, the ion concentration distribution function in the ZST/NZ mutual diffusion couple was established and the ion diffusion coefficients were calculated. The order of diffusion coefficients in the ZST/NZ diffusion couple is: D(Fe3+) > D(Zn2+) > D(Sn4+) > D(Zr4+). The order of diffusion activation energy at 1275 oC is: Qd(Zr4+) > Qd(Sn4+) > Qd(Zn2+) > Qd(Fe3+).
(6) The ZST-Z1N1-NZ laminated composite with tightly bound interfaces and no cracking was prepared by the lamination process by mixing ZST and NZ in the weight ratio of 1:1 as the intermediate layer material, referred to as Z1N1. Compared with the ZST-NZ stacked composite, the defects were significantly reduced, and the best performance specimens were sintered from 1275 °C to 1250 °C with a dielectric constant of 34.3 and dielectric loss reduced by one order of magnitude; the addition of the intermediate layer played the role of a gradient layer between the ZST and NZ materials, reducing the ion interlayer concentration difference and slowing down the diffusion behavior of ions at the interface. The addition of the ZST side dopant, to a certain extent, reduces the sintering temperature of the ceramic, but also inevitably leads to an increase in internal defects, resulting in a decrease in dielectric properties.
 

参考文献:

[1]Yang R Y, Weng M H, Kuan H. TEM observation of liquid phase sintering in V2O5 modified (Zr0.8,Sn0.2)TiO4 microwave ceramics[J]. Ceramics International, 2009, 35(1): 39-43.

[2]Lyu X S, Li L X, Sun H, et al. High-Q microwave dielectrics in wolframite magnesium zirconium tantalate ceramics[J]. Ceramics International, 2016, 42(1): 2036-2040.

[3]Zhang Y, Ding S H, Li C, et al. Bond analysis of novel MnZrTa2O8 microwave dielectric ceramics with monoclinic structure[J]. Journal of Materials Science, 2020, 55: 8491-8501.

[4]Bafrooei H B, Feizpour M, Sayyadi-shahraki A, et al. High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6-TiO2 nano powders[J]. Journal of Alloys and Compounds, 2020, 834(5): 155082.

[5]樊应县. 叠层片式电感器制造工艺及小型化研究[D]. 成都: 电子科技大学, 2011.

[6]范敬. SMT表面贴装技术工艺应用实践与趋势分析[J]. 电子世界, 2018, 6: 66-67.

[7]苏桦, 张怀武. 低温烧结NiCuZn铁氧体及叠层片式电感应用研究[J]. 电子元件与材料, 2008, 6: 87-88.

[8]刘向春. ZnO-TiO2系介电陶瓷/NiZnCu铁氧体叠层低温共烧兼容特性研究[D]. 西安: 西北工业大学, 2007.

[9]董丽, 董桂霞, 张茜. MgTiO3-CaTiO3系微波陶瓷介电性能的研究[J]. 粉末冶金技术, 2015, 33(4): 243-247.

[10]赵海龙. MgTiO3-CaTiO3系统高频陶瓷材料研究[D]. 天津: 天津大学, 2010.

[11]王奇峰, 李谦, 顾永军, 等. 添加剂对(Zr0.8Sn0.2)TiO4陶瓷微波介电性能的影响[J]. 河南科技大学学报:自然科学版, 2021, 42(5): 14-18+5.

[12]高朋召, 李玉平, 邱玉婷, 等. (Zr1-xSnx)TiO4(ZST)微波介质陶瓷制备技术及其应用的研究进展[J]. 陶瓷学报, 2007, 28(4): 80-88.

[13]任翔. 中介ZnO-Nb2O5基微波介质陶瓷的研究[D]. 天津: 天津大学, 2014.

[14]晏忠. ZnO-Nb2O5基微波介质陶瓷的制备及性能研究[D]. 洛阳: 河南科技大学, 2013.

[15]黄亚蒙, 王家邦. BiNbO4陶瓷与铜电极共烧研究[J]. 材料科学与工程学报, 2011, 29 (4): 93-97.

[16]梁一帅, 杨成韬, 周晓华, 等. BiNbO4掺杂对钛酸钡陶瓷介电性能的影响[J]. 压电与声光, 2008, 5: 101-103.

[17]陈文媛. MgTiO3/NiZnCu铁氧体复合材料的低温烧结研究及应用[D]. 成都: 电子科技大学, 2007.

[18]王曦. (Zr0.8,Sn0.2)TiO4基微波介质陶瓷的双离子取代改性研究[D]. 武汉: 华中科技大学, 2019.

[19]Huang C L, Weng M H. Liquid phase sintering of (Zr,Sn)TiO4 microwave dielectric ceramics[J]. Materials Research Bulletin, 2000, 35(11): 1881-1888.

[20]方仁德, 杨华亮, 彭兆瑀. ZST介电陶瓷的研究[J]. 佛山陶瓷, 2015, 25(6): 9-11+20.

[21]Wang X, Zou Z Y, Song X Q, et al. The effects of dispersants on sinterability and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics[J]. Ceramics International, 2018, 44(13): 14990-4994.

[22]Zhang L M, Gong W Y, Xin M, et al. Synthesis and low temperature densification of (Zr0.8Sn0.2)TiO4 ceramics with improved dielectric properties[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 5194-5202.

[23]杨扬. Zr0.8Sn0.2TiO4微波介质陶瓷材料制备及性能调控[D]. 南京: 南京航空航天大学, 2017.

[24]Christoffersen R, Davies P K, Wei X, et al. Effect of Sn substitution on cation ordering in (Zr1–xSnx)TiO4 microwave dielectric ceramics[J]. Journal of the American Ceramic Society, 1994, 77(6): 1441-1450.

[25]宋天秀. (Zr0.8,Sn0.2)TiO4介质陶瓷材料的改性研究[D]. 成都: 西华大学, 2007.

[26]Kim D J, Hahn J W, Han G P, et al. Effects of alkaline-earth-metal addition on the sinterability and microwave characteristics of (Zr,Sn)TiO4 dielectrics[J]. Journal of the American Ceramic Society, 2000, 83(4): 1010-1012.

[27]徐子杰. TiO2薄膜的制备及厚度对其光学性质的影响[D]. 上海: 复旦大学, 2013.

[28]刘芳芳. 氧空位对二氧化钛薄膜电子输运性能影响研究[D]. 重庆: 重庆大学, 2014.

[29]Sun Q L, Zhou H Q, Luo X F, et al. Influence of La2O3/SrO doping of (Zr0.8Sn0.2)TiO4 ceramics on their sintering behavior and microwave dielectric properties[J]. Ceramics International, 2016, 42: 12306-12311.

[30]Bhuyan R K, Kumar T S, Goswami D, et al. Liquid phase effect of La2O3 and V2O5 on microwave dielectric properties of Mg2TiO4 ceramics[J]. Journal of Electronceramics, 2013, 31: 48-54.

[31]Gu Y H, Wang Q F, Li Q, et al. Effects of SnCl2 concentration and Ti source on the phase composition, sinterability, and microwave dielectric properties of Zr0.8Sn0.2TiO4 ceramics by choline chloride-malonic acid deep eutectic solvent[J]. Journal of European Ceramic Society, 2021, 41(15): 7689-7696.

[32]王国庆, 吴顺华, 颜海洋. (Zr0.8,Sn0.2)TiO4 陶瓷预烧和烧结工艺研究[J]. 压电与声光, 2003, 25(4): 321-324.

[33]Arantes V L. Sintering and microwave properites of zirconium tin tinanate doped with select oxides[J]. Journal of Materials Engineering and Performance, 2012, 21(8): 1777-1784.

[34]Huang C L, Weng M H, Chen H L. Effects of additives on microstures and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics[J]. Materials Chemistry and Physics, 2001, 71(1): 17-22.

[35]Pamu D, Rao G L N, Raju K C J. Effect of BaO、SrO and MgO addition on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics[J]. Journal of Alloys and Compounds, 2009, 475(1-2): 745-751.

[36]Sun Q, Zhou H, Zhu H. Sintering behavior and microwave dielectric properties of Y2O3-ZnO doped (Zr0.8Sn0.2)TiO4 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 7750-7754.

[37]王卓斌. (Zr0.8Sn0.2)TiO4微波介质陶瓷材料工艺及应用[D]. 成都: 电子科技大学, 2012.

[38]Vahabzadeh S, Golozar M A, Ashrafizadeh F. Effect of annealing on microstruture of CuO-doped (Zr0.8Sn0.2)TiO4[J]. Journal of Alloys and Compounds, 2011, 509(4): 1129-1132.

[39]Wang L Z, Wang Z F. Effect of ZnO/Er2O3 addition on microwave properties of (Zr0.8Sn0.2)TiO4 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3929-3933.

[40]Radhapiyari L, Thakur O P. High quality pure ZST ceramics prepared from nanopowders produced by high energy ball milling process[J]. Journal of Materials Science: Materials in Electronics, 2013, 24: 3504–3507.

[41]田中青, 刘韩星, 余洪滔, 等. 微波介质陶瓷粉体的合成方法研究[J]. 材料导报, 2003, 12: 48-51.

[42]于海岗, 沈泽华, 鲍德艳. 水热法制备ZST微波陶瓷粉体[J]. 功能材料, 2004, 35: 3152-3154.

[43]Chen D, Zhang M. Hydrothermal synthesis and characterization of (Zr1-xSnx)TiO4(x=0.05-0.20) powders[J]. Materials Research Bulletin, 2000, 35(13): 2102-2108.

[44]吴毅强. sol-gel法制备微波介质陶瓷材料[J]. 电子元件与材料, 1999, 18(1): 5-7.

[45]Ho Y S, Weng M H, Dai B T. Nanopowder and microwave dielectric properties of sol-gel derived (Zr0.8Sn0.2)TiO4 ceramics[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2005, 44(8): 6152-6155.

[46]Ho Y S, Chen T S, Yang W D. The effect of tin precursors on the formation of (Zr0.8Sn0.2)TiO4 nano-powder by sol gel process[J]. Journal of Sol-Gel Science and Technology, 2010, 53(3): 613-618.

[47]Kudesia R, Mchale A E, Snyder R L. Effects of La2O3/ZnO Additives on Microstructure and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics[J]. Journal of the American Ceramic Society, 1994, 77(12): 3215-3220.

[48]Han K R, Jang J W, Cho S Y, et al. Preparation and dielectric properties of low mil emperature log interable (Zr0.8Sn0.2)TiO4 powder[J]. Journal of the American Ceramic Society, 1998, 81(5): 1209-1214.

[49]Wu J Q, Guo H F, Cao Y, et al. Preparation of SnO2-ZnO/ZST ceramics by precipitation method and its Q value.[J]. Journal of Ceramics, 2017, 38: 217-220.

[50]杨燕. 低温共烧NiCuZn铁氧体复合掺杂及离子调控研究[D]. 成都: 电子科技大学, 2020.

[51]张育龙. 低温烧结MgCuZn铁氧体粉料研制及其在叠层片式电感器应用研究[D]. 成都: 电子科技大学, 2013.

[52]韩志全. 叠层片式电感及低温烧结铁氧体的研发进展[J]. 磁性材料及器件, 2004, 35(6):5.

[53]李建德. 高性能Ni-Zn铁氧体的制备工艺及其性能研究[D]. 南昌: 南昌大学, 2010.

[54]李涛. PZT/NiCuZn铁氧体复合材料及LTCC滤波器研制[D]. 成都: 电子科技大学, 2010.

[55]黄建新. NiZn铁氧体材料的研发现状和发展趋势[J]. 轻工科技, 2014, 30(12): 13-14.

[56]Zhang H L, Yang S, Zhang B P, et al. Electrical properties of Ni-partical-dispersed alkaline niobate composites sintered in a protective atmosphere[J]. Materials Chemistry Physics, 2010, 122(1): 237-240.

[57]Dang Z M, Nan C W, Xie Y H, et al. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composities[J]. Applied Physics Letters, 2004, 85(1): 97-99.

[58]Koops C G. On the Dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies[J]. Physical Review. 1951, 83(1): 121-124.

[59]张显良. Ti掺杂NiZn铁氧体介电与磁性质研究[D]. 合肥: 安徽大学, 2012.

[60]Pandey S K, James A R, Prakash C, et al. Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method[J], Materials Science Engineering B, 2006, 133(1): 42-48.

[61]冯涛. L频段复合NiZn铁氧体介质材料性能研究及仿真应用[D]. 成都: 电子科技大学, 2012.

[62]Kolear C B, Kamble P N, Kulkarni S A, et al. Effect of Gd3+ substitution on dielectric behaviour of copper-cadmium ferrites[J]. Journal of Materials Science, 1995, 30: 5784-5788.

[63]罗广胜, 姜贵文, 李建德, 等. Cu离子掺杂Ni-Zn铁氧体的结构和介电性能[J].南昌大学学报(工科版), 2011, 33(4): 312-315.

[64]王晗毓. NiZn铁氧体材料及其离子掺杂改性研究[D]. 成都: 电子科技大学, 2016.

[65]陈秀丽, 周焕福, 方亮, 等. B2O3与CuO掺杂的ZnO2-TiO2-Nb2O5陶瓷与银电极的共烧行为研究[C] // 第七届中国功能材料及其应用学术会议. 功能材料, 2010, 234-236.

[66]陈勇. PTC陶瓷的细晶化及其与Ni电极共烧技术研究[D]. 武汉: 华中科技大学, 2010.

[67]Hsiang H I, Liao W C, Wang, Y J, et al. Interfacial of TiO2/NiCuZn ferrites in multilayer composites[J], Journal of the European Ceramic Society, 2004, 24: 2015-2021.

[68]岳振星, 李龙土, 周济, 等. 多层复合BZN电介质/Ni-Zn-Cu铁氧体的共烧行为[J], 硅酸盐学报, 1999, 27(6):709-712.

[69]Li C, Chiu C, Desu S B. Formation of lead niobates in molten salt systems[J]. Journal of the American Ceramic Society, 1991, 74: 302-307.

[70]朱文嘉. Rietveld法的理论分析及其在相分析中的应用[D]. 湘潭: 湘潭大学, 2017.

[71]殷之方. 电介质物理学[M]. 北京: 科学出版社, 2003.

[72]Mei Q J, Li C Y, Guo J D, et al. Influence of sintering temperature on dielectric properties and crystal structure of corundum-structured Mg4Ta2O9 ceramics at microwave frequencies[J]. Ceramics International, 2013, 39(8): 9145-9149.

[73]Ogawa H, Kan A, Ishihara S, et al. Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss[J]. Journal of the European Ceramic Society, 2003, 23(14): 2485-2488.

[74]李泓霖, 张仲, 吕英波, 等. 第一性原理研究稀土掺杂ZnO结构的光电性质[J]. 物理学报, 2013, 62(4): 407-413.

[75]Yan W, Liu X C, Hou S, et al. Study on Micro-nanocrystalline Structure Control and Performance of ZnWO4 photocatalysts[J]. Catalysis Science & Technology, 2019, 9: 1141-1153.

[76]王优, 左士祥, 李霞章, 等. 超细TiO2 在硅油中的流变特性与紫外保护性能[J]. 2020, 50(2): 112-117.

[77]Kurz W, Yetisen A K, Mihai V K, et al. UV-sensitive wearable devices for colormetric monitoring of UV exposure[J]. Advanced Optical Materials, 2020, 8: 1901969.

[78]Kockler J, Oelgemöller M, Robertson S, et al. Photostability of sunscreens[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012, 13(1): 91-110.

[79]Reinosa J J, Leret P, álvarez-Docio C M, et al. Enhancement of UV absorption behavior in ZnO–TiO2 composites[J]. Boletín de la Sociedad Española de Cerámica y Vidrio, 2016, 55: 55-62.

[80]徐捷, 朱信华, 孟中岩. PNN/PZT系梯度功能压电陶瓷离子互扩散动力学[J]. 材料研究学报, 1997, 11(3): 297-301.

[81]Gao F, Yang Z P, Hou Y D, Tian C S. Interface and ionic interdiffusion in cofired ferroelectric/ferrite multiayer composites[J]. Journal of Materials Science Letter, 2003, 21: 15-19.

[82]黄亚蒙. BiNbO4和ZnTiO3微波介质陶瓷改性及其与铜电极共烧[D]. 杭州: 浙江大学, 2011.

[83]Zhu X H, Xu J, Meng Z Y. Interdiffusion reaction in the PZT/PNN functionally gradient piezoelectric ceramic materials[J]. Journal of Materials Science 1998, 33: 1023-1030.

[84]张克力. 固体物理化学[M]. 武汉: 武汉大学出版社, 2005.

[85]曾令可,叶卫平. 计算机在材料科学与工程中的应用[M]. 武汉: 武汉理工大学出版社, 2005.

[86]高峰. 高介弛豫铁电陶瓷/NiZn铁氧体叠层低温共烧行为的研究[D]. 西安: 西北工业大学, 2002.

[87]周玉. 陶瓷材料学[M]. 哈尔滨: 哈尔滨工业大学出版社, 1995.

[88]黎文献, 张刚, 赖延清, 等. 梯度功能材料的研究现状与展望[J]. 材料导报, 2003, S1: 229-232+239.

[89]沈强, 张联盟, 袁润章. 梯度功能材料的研究现状与展望[J]. 中国陶瓷, 1996, 32(2): 37-40.

[90]崔学民, 周济, 王悦辉, 等. 异质材料共烧匹配调制在LTCC领域的研究进展[J]. 电子元件与材料, 2005, 24(10): 50-55.

[91]李继苗. (Zr0.8Sn0.2)TiO4微波介质陶瓷的掺杂改性研究[D]. 西安: 西安科技大学, 2017.

中图分类号:

 TQ174.1    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式