- 无标题文档
查看论文信息

论文中文题名:

 冷热冲击下煤体瓦斯吸附及损伤渗流规律研究    

姓名:

 张弦    

学号:

 21220226150    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 秦雷    

第一导师单位:

 西安科技大学    

第二导师姓名:

 石钰    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on gas adsorption and damage seepage laws of coal under cold-hot shock    

论文中文关键词:

 冷热冲击 ; 瓦斯吸附 ; CT三维重构 ; 孔隙演化 ; 损伤渗流 ; 气液两相    

论文外文关键词:

 Cold-hot shock ; Gas adsorption ; CT three-dimensional reconstruction ; Pore evolution ; Damaged seepage ; Gas-liquid two-phase    

论文中文摘要:

液态CO2压裂技术作为一项环保的无水压裂技术,在煤矿安全开采生产过程中引发重点关注。但是,长时间的低温液态CO2注入易导致煤层中的水遇冷凝结,造成孔隙堵塞从而严重制约瓦斯开采和运移。为解决上述难题,本文提出利用高温水蒸气与低温液态CO2交替循环冲击煤体的方法,解决液态CO2压裂过程中孔隙水久冻不消的问题。在此基础上,研究冷热冲击下煤体瓦斯吸附特性及微晶形态结构特征,探究冲击过程中煤体损伤特性,同时利用COMSOL软件模拟实际工程实践过程中煤层内部气液两相渗流规律,并讨论其他因素对冷热冲击过程中煤层内部气液两相渗流的影响。

利用PCTPro高压吸附仪及日本理学Rigaku Ultma IV X射线衍射仪,研究冷热冲击实验不同变量下煤体瓦斯吸附特性及微晶形态结构特征。结果表明,随着单次液态CO2冲击时间及冷热循环冲击次数的增加,瓦斯最大吸附量呈先增大,后减小,最后逐渐增大的趋势,当低温液态CO2冲击时长为150分钟时,吸附量达到最大值为11.59837ml/g,到10循环时吸附量达到最大值为8.73595ml/g。随着高温水蒸气冲击时间的增大,煤样吸附瓦斯能力逐渐增强,瓦斯最大吸附量逐渐增大,并在冲击到150分钟时达到最大吸附量为6.13062ml/g。循环冲击过程中,衍射角在26°附近反映微晶堆垛石墨烯层在Z轴方向堆积结构的(002)峰都非常明显;热冲击前后的(002)峰均在26.6°左右,与石墨的(002)峰具有0.1°左右的差距;低温液态CO2冲击后,煤样(002)峰的形状从初始的略微弥散峰到逐渐尖峰,在液态CO2冲击时间持续到120分钟时最窄,随后峰略变宽。

基于CT扫描技术研究冷热冲击下煤体损伤特性。分别采用形状因子、平整度、当量直径及孔隙配位数等特征参量多尺度表征冷热冲击过程中煤体孔隙及孔喉损伤演化特征。结果表明,不同循环冲击次数下,孔隙当量直径、形状因子及孔隙长度的概率分布趋势相同。煤样孔喉形状因子及其概率分布趋势同样不因冷热冲击循环次数的变化而变化;孔喉半径分布不一,第9次循环时,孔喉半径分布范围最广为0~800μm;随循环次数的增加,煤样孔喉长度的种类呈现先增大后减小的趋势。基于煤体微观损伤演化特征,定量化分析冷热循环冲击煤体孔隙微观损伤量,讨论冷热循环冲击煤体孔隙损伤机理。

基于实验室研究成果,利用COMSOL软件模拟实际工程实践过程中煤层内部气液两相渗流规律,并讨论其他因素影响下对冷热冲击过程中煤层内部气液两相渗流的影响。数值模拟结果表明,随着低温液态CO2冲击时间的增加,CO2气体渗流量呈现先迅速增加,后逐渐平稳的趋势,液态CO2渗流量呈现阶段式下降;随着高温水蒸气冲击时间的增加,液态水渗流量呈现阶段式下降,水蒸气渗流量呈现先迅速增加,后逐渐平稳的趋势。随着循环冲击次数的增加,水蒸气渗流量迅速增加,液态水渗流量呈现阶段式下降,CO2气体渗流量呈现线性增长的趋势,且增长率基本保持不变;液态CO2的渗流量随绝对冲击时间的增加呈现线性下降的趋势;增加煤层初始温度可以极大促进CO2气液两相渗流效果,对水的两相渗流作用不明显;增加介质注入压力对CO2及水的气液两相渗流影响均不大。

本文提出液态CO2-高温水蒸气冷热冲击煤层快速冻融增透技术,对液态CO2-水蒸气冷热循环冲击煤体瓦斯吸附特征分析及孔隙演化特征深入研究,通过数值模拟研究冲击过程煤体孔隙内气液两相渗流特征,研究结果对完善冷热冲击致裂煤体理论,提高瓦斯灾害防治与煤层气资源开发水平具有重要价值。

论文外文摘要:

Liquid CO2 fracturing technology, as an environmentally friendly waterless fracturing technique, has attracted significant attention in the process of safe coal mining production. However, prolonged injection of low-temperature liquid CO2 can lead to the condensation of water in the coal seam due to cooling, causing pore blockage and severely restricting gas extraction and transportation. To address this issue, this study proposes a method of using alternating cycles of high-temperature steam and low-temperature liquid CO2 to impact the coal body, aiming to solve the problem of persistent freezing of pore water during the liquid CO2 fracturing process. Based on this approach, experiments on gas adsorption in coal under cold and hot shocks and characterization of microcrystalline morphology are conducted to explore the damage characteristics of the coal body during the shock process. COMSOL software is used to simulate the laws of gas-liquid two-phase flow inside the coal seam during actual engineering practices. Additionally, the impacts of other factors on gas-liquid two-phase flow inside the coal seam during cold and hot shocks are discussed.

Using the PCT Pro high-pressure adsorption instrument and the Rigaku Ultima IV X-ray diffractometer from Japan, the coal gas adsorption experiment and microcrystalline morphology characteristics under different variables during cold-hot shock experiments were studied. The results showed that with the increase of single liquid CO2 shock time and the number of cold-hot cycles, the maximum adsorption capacity initially increased, then decreased, and finally gradually increased. When the low-temperature liquid CO2 shock time was 150 minutes, the maximum adsorption capacity reached 11.59837 ml/g; after 10 cycles, the maximum adsorption capacity reached 8.73595 ml/g. With the increase of high-temperature water vapor shock time, the gas adsorption capacity of the coal sample gradually increased, and the maximum gas adsorption capacity increased gradually, reaching a maximum adsorption capacity of 6.13062 ml/g after 150 minutes of shock. During the cyclic shock process, the diffraction angle around 26° reflected the stacking structure of microcrystalline graphene layers in the Z-axis direction, and the (002) peak was very obvious. The (002) peak before and after the thermal shock was around 26.6°, with a difference of about 0.1° compared to the (002) peak of graphite. After the low-temperature liquid CO2 shock, the shape of the coal sample's (002) peak gradually changed from the initial slightly diffuse peak to a sharp peak, becoming narrowest when the liquid CO2 shock time continued to 120 minutes, and then slightly widened.

Based on CT scanning technology, the characteristics of coal damage under cold-hot shock were studied. Shape factor, smoothness, coordination number, equivalent diameter, and pore coordination number were used as characteristic parameters to characterize the evolution of coal pore and pore throat damage during cold-hot shock processes at multiple scales. The results indicate that under different numbers of cyclic shocks, the probability distribution trends of pore equivalent diameter, shape factor, and pore length are the same. The shape factor and its probability distribution of pore throat in coal samples remain unchanged with the change of the number of cold-hot shock cycles. The distribution of pore throat radius varies, and at the 9th cycle, the widest range of pore throat radius distribution is 0~800μm. With the increase of cycle number, the types of pore throat lengths in coal samples show a trend of increasing first and then decreasing. Based on the microscopic damage evolution characteristics of coal, the microscopic damage amount of coal pores under cold-hot cyclic shock was quantitatively analyzed, and the mechanism of coal pore damage under cold-hot cyclic shock was discussed.

Based on laboratory research results, COMSOL software was used to simulate the laws of gas-liquid two-phase seepage inside coal seams in actual engineering practices, and the effects of other factors on gas-liquid two-phase seepage inside coal seams during cold-hot shock processes were discussed. Numerical simulation results show that with the increase of low-temperature liquid CO2 shock time, the gas seepage rate of CO2 shows a rapid increase followed by a gradual stabilization trend, while the liquid CO2 seepage rate shows a phased decrease. With the increase of high-temperature water vapor shock time, the liquid water seepage rate shows a phased decrease, while the water vapor seepage rate shows a rapid increase followed by a gradual stabilization trend. With the increase of cycle shock times, the water vapor seepage rate increases rapidly, the liquid water seepage rate shows a phased decrease, and the CO2 gas seepage rate shows a linear growth trend, with the growth rate basically remaining unchanged. The seepage rate of liquid CO2 shows a linear decrease trend with the increase of absolute shock time. Increasing the initial temperature of the coal seam can greatly promote the effect of CO2 gas-liquid two-phase seepage, with different effects on the two-phase seepage of water. Increasing the injection pressure of the medium has little influence on the gas-liquid two-phase seepage of both CO2 and water.

This paper introduces a rapid freeze-thaw enhancement permeability technology for coal seams using liquid CO2-high-temperature water vapor thermal shock. It delves into the analysis of the adsorption-desorption characteristics of coalbed methane under the impact of liquid CO2-water vapor thermal cycling, and conducts an in-depth study of the characteristics of gas-liquid two-phase seepage within the pores of coal. Through numerical simulation, it explores the characteristics of gas-liquid two-phase seepage within coal pores during the impact process. The research results are of significant value for improving the theory of thermal shock-induced fracturing of coal, and enhancing the prevention and control of gas disasters and the development of coalbed methane resources.

参考文献:

[1] 谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2023:1-11 10.13225/j.cnki.jccs.2023.1091.

[2] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021,46(05):1365-1377.

[3] 袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学, 2023,25(05):103-110.

[4] 李树刚, 张静非, 林海飞, 等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术, 2024,52(01):138-153.

[5] 谢和平, 李铭辉. 深部煤矿瓦斯精准探测与灾害防控专刊客座主编寄语[J]. 煤田地质与勘探, 2023,51(08):3-4.

[6] 王国法, 刘合, 王丹丹, 等. 新形势下我国能源高质量发展与能源安全[J]. 中国科学院院刊, 2023,38(01):23-37.

[7] 袁亮, 张通, 张庆贺, 等. 双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J]. 煤炭学报, 2022,47(06):2131-2139.

[8] 张天军, 刘荣涛, 潘红宇, 等. 抽采钻孔孔周破裂煤体瓦斯径向渗透流态转捩特征试验研究[J]. 煤炭学报, 2023:1-10 10.13225/j.cnki.jccs.2023.0287.

[9] 李树刚, 秦澳立, 龙航, 等. 有效应力对煤体瓦斯解吸-渗流与变形特征影响的实验研究[J]. 中国安全生产科学技术, 2023,19(06):59-65.

[10] 王家臣, 唐岳松, 王兆会, 等. 千米深井综采工作面覆岩微震显现特征与损伤度计算方法[J]. 中国矿业大学学报, 2023,52(03):417-431.

[11] 齐庆新, 马世志, 孙希奎, 等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报, 2023,48(05):1861-1874.

[12] 张天军, 孟钰凯, 庞明坤, 等. 有效应力对孔周破裂煤体渗透率演化规律的影响[J]. 煤炭科学技术, 2023,51(S1):122-131.

[13] 姜德义, 郭朋煜, 范金洋, 等. 升温速率对高温作用后砂岩的宏细观性质影响[J]. 岩土力学, 2022,43(10):2675-2688.

[14] 陈向军, 杜云飞, 李立杨. 煤体水力化措施综合消突作用研究[J]. 煤炭科学技术, 2017,45(06):43-49.

[15] 蒋长宝, 杨毅毫, 刘辉辉, 等. 天然裂缝对水力压裂煤的起裂及扩展试验研究[J]. 煤炭科学技术, 2023,33(12):1-11 .

[16] 申军伟. 气相压裂和水力割缝强化瓦斯抽采技术应用[J]. 江西煤炭科技, 2023(04):181-183.

[17] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体力学损伤特性及能量演化的实验研究[J]. 煤炭科学技术, 2022:1-12 10.13199/j.cnki.cst.2022-1596.

[18] 冯国瑞, 朱林俊, 郭军, 等. 电脉冲循环冲击作用对花岗岩抗剪性能弱化研究[J]. 中南大学学报(自然科学版), 2023,54(03):785-796.

[19] 王登科, 庞晓非, 魏建平, 等. 气体性质和孔隙压力对煤体微裂隙扩展的影响[J]. 煤炭科学技术, 2023,51(02):183-192.

[20] 江堃, 邓守春, 李海波. 甲烷燃爆压裂技术的实验研究[J]. 煤炭学报, 2023,48(12):4297-4307.

[21] Shuanshi F, Wangyang Y, Chi Y, et al. Investigation of enhanced exploitation of natural gas hydrate and CO2 sequestration combined gradual heat stimulation with CO2 replacement in sediments[J]. Journal of Natural Gas Science and Engineering, 2022,104 10.1016/j.jngse.2022.104686.

[22] 魏建平, 李翔, 刘勇, 等. 自激振荡脉冲SC-CO2射流冲击频率调制研究[J]. 煤炭学报, 2023:1-16 10.13225/j.cnki.jccs.2023.0688.

[23] 蒋长宝, 李琳, 殷文明, 等. 冻融循环下页岩孔裂隙和渗透率演化特征研究[J]. 煤炭科学技术, 2023,51(S1):18-26.

[24] 张震, 刘高峰, 李宝林, 等. CO2相变致裂煤的纳米孔隙尺度改造效应[J]. 岩石力学与工程学报, 2023,42(03):672-684.

[25] 张磊, 卢硕, 唐俊, 等. 液氮溶浸时间对烟煤渗流特性的影响及传热过程模拟[J]. 采矿与安全工程学报, 2021,38(06):1231-1239.

[26] 田苗苗, 张磊, 薛俊华, 等. 液氮致裂煤体技术研究现状及展望[J]. 煤炭科学技术, 2022,50(07):191-198.

[27] 倪冠华, 李钊, 温永瓒, 等. CO2注入下煤层气产出及储层渗透率演化规律[J]. 采矿与安全工程学报, 2022,39(04):837-846.

[28] 赵丹, 刘晓青. 液态CO2煤层增透技术及应用研究[J]. 煤炭科学技术, 2021,49(10):107-114.

[29] 黄辉龙, 冯俊文, 邓广哲, 等. 基于CO2水基压裂液的煤体软化及降尘技术应用[J]. 煤炭技术, 2024,43(01):129-132.

[30] Liu P, Shi L, Liu P, et al. Experimental study of high-temperature CO2 foam flooding after hot-water injection in developing heavy oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2020,185 10. 1016/j.petrol.2019.106597.

[31] Mahmoud M, Hussein I, Carchini G, et al. Effect of rock mineralogy on Hot-CO2 injection for enhanced gas recovery[J]. Journal of Natural Gas Science and Engineering, 2019, 72 10.1016/j.jngse.2019.103030.

[32] 胡林杰, 冯增朝, 周动, 等. 煤层气原位注热开采的数值模拟研究及工程实践[J]. 煤炭学报, 2023,48(12):4473-4486.

[33] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016,41(11):2793-2799.

[34] 马小敏. 液态CO2相变致裂影响有效抽采半径试验研究[J]. 煤炭科学技术, 2019,47(02):88-93.

[35] 汪开旺. 基于CO2致裂影响的钻孔有效抽采半径研究[J]. 煤炭技术, 2020,39(04):114-116.

[36] 贾进章, 李斌, 王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报, 2021,31(04):57-63.

[37] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018,43(07):1938-1950.

[38] 王兆丰, 周大超, 李豪君, 等. 液态CO2相变致裂二次增透技术[J]. 河南理工大学学报(自然科学版), 2016,35(05):597-600.

[39] 王海东. 突出煤层掘进工作面CO2可控相变致裂防突技术[J]. 煤炭科学技术, 2016,44(03):70-74.

[40] Salmachi A, Haghighi M. Feasibility Study of Thermally Enhanced Gas Recovery of Coal Seam Gas Reservoirs Using Geothermal Resources[J]. Energy & Fuels, 2012,26(8):5048-5059.

[41] Wang Z, Wang X, Ma X, et al. Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading[J]. Adsorption, 2020,26(1):61-73.

[42] 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J]. 煤炭学报, 2013,38(06):1044-1049.

[43] Teng T, Zhao Y, Gao F, et al. A fully coupled thermo-hydro-mechanical model for heat and gas transfer in thermal stimulation enhanced coal seam gas recovery[J]. International Journal of Heat and Mass Transfer, 2018,125:866-875.

[44] 程瑞端, 陈海焱, 鲜学福, 等. 温度对煤样渗透系数影响的实验研究[J]. 煤炭工程师, 1998(01):11-14.

[45] 钟玲文, 郑玉柱, 员争荣, 等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报, 2002(06):581-585.

[46] 张登峰, 崔永君, 李松庚, 等. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J]. 煤炭学报, 2011,36(10):1693-1698.

[47] 杨新乐, 张永利, 李成全, 等. 考虑温度影响下煤层气解吸渗流规律试验研究[J]. 岩土工程学报, 2008,30(12):1811-1814.

[48] 郤保平, 吴阳春, 王帅, 等. 热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J]. 岩土力学, 2020,41(S1):83-94.

[49] 郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019,38(11):2194-2207.

[50] 唐世斌, 罗江, 唐春安. 低温诱发岩石破裂的理论与数值模拟研究[J]. 岩石力学与工程学报, 2018,37(07):1596-1607.

[51] 朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018,39(S2):169-176.

[52] 张慧梅, 雷利娜, 杨更社. 温度与荷载作用下岩石损伤模型[J]. 岩石力学与工程学报, 2014,33(S2):3391-3396.

[53] Memon K R, Ali M, Awan F U R, et al. Influence of cryogenic liquid nitrogen cooling and thermal shocks on petro-physical and morphological characteristics of Eagle Ford shale[J]. Journal of Natural Gas Science and Engineering, 2021,96:104313.

[54] 魏建平, 孙刘涛, 王登科, 等. 温度冲击作用下煤的渗透率变化规律与增透机制[J]. 煤炭学报, 2017,42(08):1919-1925.

[55] Huang X, Zhu J, Li J, et al. Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure[J]. International Communications in Heat and Mass Transfer, 2016,75:78-85.

[56] Caulk R A, Ghazanfari E, Perdrial J N, et al. Experimental investigation of fracture aperture and permeability change within Enhanced Geothermal Systems[J]. Geothermics, 2016,62:12-21.

[57] Kamali-Asl A, Ghazanfari E, Perdrial N, et al. Experimental study of fracture response in granite specimens subjected to hydrothermal conditions relevant for enhanced geothermal systems[J]. Geothermics, 2018,72:205-224.

[58] Dobson P F, Kneafsey T J, Sonnenthal E L, et al. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada[J]. J Contam Hydrol, 2003,62-63:459-476.

[59] Watanabe N, Saito K, Okamoto A, et al. Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments[J]. Applied Energy, 2020,260:114306.

[60] 李和万, 王来贵, 牛富民, 等. 冷热交替作用致煤样裂隙结构损伤试验[J]. 安全与环境学报, 2016,16(01):40-43.

[61] Shen Y, Hou X, Yuan J, et al. Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism[J]. Bulletin of Engineering Geology and the Environment, 2020,79(10):5385-5398.

[62] 刘淑敏, 王登科, 尹光志, 等. 温度冲击下煤的双胡克体-统计损伤本构模型研究[J]. 采矿与安全工程学报, 2019,36(05):1025-1033.

[63] 郭涛, 金晓波, 武迪迪, 等. 川东南南川区块龙潭组深部煤层气成藏特征及勘探前景[J]. 煤田地质与勘探, 2024,21(07):1-8.

[64] 秦雷, 张弦, 林海飞, 等. 液氮冻融过程无烟煤未冻水分布及温度-应力场演化规律[J]. 煤炭科学技术:1-13 (2024网络首发).

[65] 苏现波, 赵伟仲, 王乾, 等. 煤矿采动影响体微生物采残煤与CO2-粉煤灰协同充填关键技术[J]. 煤炭学报:1-16 (2024网络首发).

[66] 陈德承. 煤层气和页岩气孔隙地层复杂流动数值模拟研究[J]. 内蒙古石油化工, 2022,48(06):102-106.

[67] 唐明云, 张亮伟, 郑春山, 等. 考虑蒸汽相变煤层气注热开采数值模拟研究[J]. 采矿与安全工程学报, 2022,39(02):370-379.

[68] 袁亮, 杨科. 再论废弃矿井利用面临的科学问题与对策[J]. 煤炭学报, 2021,46(01):16-24.

[69] Schrefler B A, Zhan X. A fully coupled model for water flow and airflow in deformable porous media[J]. Water Resources Research, 1993,29(1):155-167.

[70] 张延军, 王恩志, 王思敬. 非饱和土中的流-固耦合研究[J]. 岩土力学, 2004, 02(06):999-1004.

[71] 徐炎兵, 韦昌富, 李幻, 等. 非饱和土渗流与变形耦合问题的有限元分析[J]. 岩土力学, 2009,30(05):1490-1496.

[72] Rahman N A, Lewis R. Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems[J]. Computers and Geotechnics, 1999,24(1):1-6.

[73] Gawin D, Baggio P, Schrefler B A. Coupled heat, water and gas flow in deformable porous media[J]. International Journal for Numerical Methods in Fluids, 1995,20(8-9):969-987.

[74] Gawin D, Schrefler B A, Do M G. Thermo‐hydro‐mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996,13(7):113-143.

[75] Schrefler B A, Scotta R. A fully coupled dynamic model for two-phase fluid flow in deformable porous media[J]. Computer Methods in Applied Mechanics & Engineering, 2001,190(22):3223-3246.

[76] Tong F, Jing L, Zimmerman R W. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(2):205-217.

[77] 陈益峰, 周创兵, 童富果, 等. 多相流传输THM全耦合数值模型及程序验证[J]. 岩石力学与工程学报, 2009,28(04):649-665.

[78] Wu Y, Forsyth P. On the selection of primary variables in numerical formulation for modeling multiphase flow in porous media[J]. Journal of contaminant hydrology, 2001,48:277-304.

[79] Abriola L M, Rathfelder K. Mass balance errors in modeling two-phase immiscible flows: causes and remedies[J]. Advances in Water Resources, 1993,16(4):223-239.

[80] Celia M A, P B. A mass conservative numerical solution for two‐phase flow in porous media with application to unsaturated flow[J]. Water Resources Research, 1992,28(10):2819-2828.

[81] Ghoreishian A S A, S S A, H G. A hybrid numerical model for multiphase fluid flow in a deformable porous medium[J]. Applied Mathematical Modelling, 2017,45:881-899.

[82] 李树刚, 周雨璇, 胡彪, 等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探, 2023,51(02):127-136.

[83] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018,38(02):181-186.

[84] 程根银, 汤晓辰, 司俊鸿. CO2/N2/C2H4及C2H6分子在烟煤中的吸附模拟[J]. 煤炭技术, 2024,43(03):179-183.

[85] 林进, 汪心雯, 王香增, 等. 矿物表面CO2-CH4竞争吸附特征与扩散过程研究——以延安气田山西组2段为例[J]. 中国地质:1-18 (2024网络首发).

[86] 张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023,30(05):113-120.

[87] 苏现波, 司青, 王乾. 煤变质演化过程中的XRD响应[J]. 河南理工大学学报(自然科学版), 2016,35(04):487-492.

[88] 李宗翔, 张明乾, 杨志斌, 等. FTIR和XRD在断层构造煤结构分析中的应用[J]. 光谱学与光谱分析, 2023,43(02):657-664.

[89] 宗志芳, 龙红明, Yilin Gui, 等. 基于XRD及FTIR的固废型纳米高硫水泥的微观特性[J]. 光谱学与光谱分析, 2023,43(06):1974-1980.

[90] 孟朕, 吴琼, 鲁莎, 等. 基于CT扫描的巴东组易滑岩组微观结构劣化研究[J]. 安全与环境工程, 2022,29(04):11-23.

[91] 张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021,42(10):2659-2671.

[92] 朱昌星, 孙家鑫, 王彦伟. 基于CT扫描单轴压缩下注浆体试块裂隙动态演化过程试验研究[J]. 岩土力学, 2022,43(09):2493-2503.

[93] 李小二, 王鹏, 靳翔飞, 等. 基于CT扫描的煤样图像处理及裂隙形态表征[J]. 煤矿安全, 2022,53(02):125-129.

[94] 王帅, 许莹, 张艳博, 等. 基于CT扫描的砂岩主次裂纹扩展特征及影响因素研究[J]. 岩土工程学报, 2022,44(04):702-711.

[95] 董怀民, 孙建孟, 林振洲, 等. 基于CT扫描的天然气水合物储层微观孔隙结构定量表征及特征分析[J]. 中国石油大学学报(自然科学版), 2018,42(06):40-49.

中图分类号:

 TD712    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式