- 无标题文档
查看论文信息

论文中文题名:

 2023 年土耳其 Mw7.8 地震的同震与震后形变研究    

姓名:

 梁文康    

学号:

 21210226058    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 InSAR 数据处理与应用    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Co seismic and post seismic deformation of the 2023 Türkiye Mw7.8 earthquake    

论文中文关键词:

 土耳其地震 ; 同震三维形变 ; SAR 数据 ; InSAR    

论文外文关键词:

 Türkiye earthquake ; Co seismic three-dimensional deformation ; SAR data    

论文中文摘要:

地震作为一种破坏力较强的自然灾害,对人类社会的正常生活和经济发展产生了严重影响。研究地震同震及震后形变,对提取震区形变特征、分析区域构造演化、指导次生灾害防治具有重要意义。本文以2023年土耳其卡赫拉曼马拉什省Mw7.8地震为研究对象,对地震的同震以及震后形变特征进行了研究。在同震研究方面,利用地震发生前后的多源SAR卫星影像数据,结合双轨差分(D-InSAR)、多孔径干涉(MAI)和像素偏移量追踪(POT)技术提取了此次地震的同震二维形变场。在此基础上,分别构建传统函数模型和顾及地表形变特征的应力应变模型得到了土耳其地震同震三维形变场。此外,利用GPS站点数据对两种模型下的结果进行了不确定度分析,并依此剖析了土耳其地震的同震三维形变和地表破裂特征。在震后研究方面,通过收集研究区震后近一年时间内的Sentinel-1升降轨道的影像数据,运用SBAS-InSAR技术提取了震后时序形变信息,解译和分析了震后地表形变变化特征。本文主要的研究工作以及最终成果如下:

(1)基于升降轨ALOS-2、Sentinel-1和降轨LT-1卫星的SAR影像数据,构建了土耳其地震的二维形变场(LOS向和方位向)。LOS向形变场中,此次地震先后造成东安纳托利亚断层NE-NNE走向的南侧分支和EW走向的北侧分支破裂,升降轨道LOS向形变值都沿着发震断层分布,呈现出形变性质相反的特征,并且在断层附近出现失相干现象。ALOS-2和LT-1卫星的降轨LOS形变趋势具有较好一致性,在靠近Mw7.8震中位置最大形变值超过了2m;方位向形变场中,ALOS-2和Sentinel-1的观测结果在近断层部分显示了比LOS向更完整的地震破裂轨迹,在Mw7.8震中位置最大形变值超过了4m。

(2)基于多源卫星LOS向和方位向形变结果,分别采用传统函数模型和应力应变模型对土耳其同震三维形变场进行解算。结果表明,SM-VCE方法构建的应力应变模型可以对震中附近大梯度的三维形变信息进行补充,而且三维形变结果不论在方向还是大小上都更加接近GNSS实测值;同震三维形变场结果显示:Mw7.8级地震破坏了东安纳托利亚断层(EAF)系统南侧分支的四个附属断层,Mw7.7级余震破坏了北侧分支的三个附属断层,两次地震均为左旋走滑型地震,所引起的地表变形均以水平向为主,在Cardak断层水平变形最大达4.3m;在垂直方向上引起的形变较小,Erkenek段东侧近场区域垂直向形变最大达0.8m。

(3)利用SBAS-InSAR技术提取土耳其地震震后时序形变信息,解译并分析了震后地表位移变化特征。提取的震后时序形变结果显示:升轨LOS向震后累计形变量为-19.41cm~10.32cm;降轨LOS向震后累计形变量为-17.96cm~9.81cm。升降轨结果在形变趋势上具有明显的阶段性,2023年11月前震后地表累计形变量增长迅速,2023年11月之后形变速率有所减缓,但累计形变量仍在逐渐累加,体现了震后断层能量逐步释放的动态过程。震后形变主要集中在Cardak断层的北部与西南部、Erkenek断层的东北部和Pazarcik断层西南部,与同震形变解译的东安纳托利亚断层北侧和南侧分支破裂位置基本一致,表明了地表破裂解译结果的可靠性。

论文外文摘要:

As a highly destructive natural disaster, earthquakes have had a serious impact on the normal life and economic development of human society. Studying earthquake coseismic and post-earthquake deformation is of great significance for extracting deformation characteristics of earthquake areas, analyzing regional tectonic evolution, and guiding the prevention and control of secondary disasters. This paper uses multi-source spaceborne SAR satellite images before and after the 2023 Turkish earthquake as data source, and combines D-InSAR, MAI and POT technologies to extract the two-dimensional coseismic deformation field of the earthquake in the region. On this basis, a traditional function model and a stress-strain model taking into account surface deformation characteristics were constructed to obtain the coseismic three-dimensional deformation field of the Turkish earthquake. In addition, the uncertainty analysis of the results under the two models was conducted using GPS site data, and the coseismic three-dimensional deformation and surface rupture characteristics of the Turkish earthquake were analyzed accordingly. Finally, in order to track the displacement caused by post-earthquake afterslip, by collecting image data of the Sentinel-1 lifting track nearly one year after the earthquake in the study area, we used SBAS-InSAR technology to obtain post-earthquake time-series deformation results, analysis and solution The characteristics of post-earthquake surface deformation changes were translated. The main research work and final results of this article are as follows:

(1) Based on the SAR image data of the ascending and descending orbit ALOS-2, Sentinel-1 and descending orbit LT-1 satellites, the two-dimensional deformation field (LOS direction and range direction) of the Turkish earthquake was constructed using InSAR/SAR technology. In the satellite LOS direction deformation field, the deformation trends of the ALOS-2 and LT-1 satellite de-orbit images have good consistency, with the maximum deformation value exceeding 2m near the epicenter, and showing an anti-symmetrical characteristic; In the satellite azimuth deformation field, the ALOS-2 and Sentinel-1 observation results show a more complete earthquake rupture trajectory at the epicenter than the LOS direction, and the maximum deformation value at the epicenter exceeds 4m; by analyzing the two-dimensional deformation field The cross-sectional view shows that the azimuthal deformation field in the southern part of the Cardak fault and the northwest part of the EAF affiliated fault shows a surface movement trend opposite to the LOS direction.

(2) Based on multi-source satellite LOS and azimuth InSAR observation data, two model methods were used to solve the coseismic three-dimensional deformation field of Turkey. The results show that the stress and strain model constructed by the SM-VCE method can supplement the deformation information of large gradient three-dimensional deformation near the epicenter, and the results are closer to the GNSS measured values, which is conducive to the extraction of coseismic three-dimensional deformation field characteristics; the generated coseismic three-dimensional The deformation field shows that the Mw7.8 earthquake damaged four affiliated faults of the EAF, and the Mw7.7 aftershock damaged three secondary faults on the west side of the EAF. Both earthquakes were left-lateral strike-slip earthquakes, causing surface The deformation is mainly horizontal, with the maximum horizontal deformation reaching 4.3m on the Cardak fault; the deformation caused in the vertical direction is smaller, and the maximum vertical deformation in the near field area on the east side of the Erkenek segment reaches 0.8m.

(3) The SBAS-InSAR technology was used to extract time-series deformation information after the earthquake in Turkey, and the characteristics of post-earthquake surface displacement changes were interpreted and analyzed. The extracted post-earthquake time series deformation results show that the annual cumulative post-earthquake deformation of the ascending-orbit satellite is 19.41cm~10.32cm; the annual cumulative post-earthquake deformation of the descending-orbit satellite is -17.96cm~9.81cm. The post-earthquake deformation is mainly concentrated on the north and southwest sides of the EAF fault system, and the spatial and temporal distribution shows that the deformation gradually accumulates and then tends to a stable state. There are two subsidence areas in the post-earthquake deformation field, which are basically consistent with the EAF fault rupture position of the surface interpreted by co-seismic deformation, indicating the reliability of the surface rupture interpretation results.

参考文献:

[1]Roman D C, Soldati A, Dingwell D B, et al. Earthquakes indicated magma viscosity during Kīlauea’s 2018 eruption[J]. Nature, 2021, 592(7853): 237-241.

[2]许志琴, 李廷栋, 嵇少丞, 等. 大陆动力学的过去、现在和未来——理论与应用[J]. 岩石学报, 2008, 24(07): 1433-1444.

[3]Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 2013, 56(7): 1169-1176.

[4]Chen P fei, Nettles M, Okal E A, et al. Centroid moment tensor solutions for intermediate-depth earthquakes of the WWSSN–HGLP era (1962–1975)[J]. Physics of the Earth and Planetary Interiors, 2001, 124(1-2): 1-7.

[5]Du A, Wang X, Xie Y, et al. Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective[J]. Reliability Engineering & System Safety, 2023, 233: 109104.

[6]丁啸天, 谢军, 徐世庆. 近垂直共轭断层在地震中的动态激活:来自2023年土耳其Mw 7.6地震的启示[J]. 科学通报, 2024, 69(11): 1501-1516.

[7]陈运泰. 地震预测:回顾与展望[J]. 中国科学(地球科学), 2009, 039(012): 1633-1658.

[8]袁霜, 何平, 温扬茂, 等. 综合InSAR和应变张量估计2016年MW7.0熊本地震同震三维形变场[J]. 地球物理学报, 2020, 63(4): 1340-1356.

[9]Liu C, Lay T, Wang R, et al. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 2023, 14(1): 5564.

[10] Hussain E, Kalaycıoğlu S, Milliner C W D, et al. Preconditioning the 2023 Kahramanmaraş (Türkiye) earthquake disaster[J]. Nature Reviews Earth & Environment, 2023, 4(5): 287-289.

[11] 朱守彪. 2011年日本东北大地震(MW=9.0)震间与震前变形场特征及其对强震预测的启示[J]. 地球物理学报, 2020, 63(02): 427-439.

[12] Raucoules D, de Michele M, Aunay B. Landslide displacement mapping based on ALOS-2/PALSAR-2 data using image correlation techniques and SAR interferometry: Application to the Hell-Bourg landslide (Salazie circle, La Réunion Island)[J]. Geocarto international, 2020, 35(2): 113-127.

[13] 田馨, 廖明生. InSAR技术在监测形变中的干涉条件分析[J]. 地球物理学报, 2013, 56(3): 812-823.

[14] Michel R, Avouac J, Taboury J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875-878.

[15] Wright T J, Parsons B E, Lu Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1): 2003GL018827.

[16] 韩鸣, 张永志, 程冬, 等. 多视角InSAR数据解算2017两伊地震三维同震形变场[J]. 测绘通报, 2019(4): 75-78,129.

[17] Bechor N B D, Zebker H A. Measuring two-dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16).

[18] 宫熙雯, 张正加, 陈启浩, 等. 融合DInSAR和MAI技术反演九寨沟地震三维形变场[J]. 测绘工程, 2021, 30(5): 49-57.

[19] Gudmundsson S, Sigmundsson F, Carstensen J M. Three‐dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10).

[20] Guglielmino F, Nunnari G, Puglisi G, et al. Simultaneous and Integrated Strain Tensor Estimation From Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1815-1826.

[21] Liu J H, Hu J, Li Z W, et al. A Method for Measuring 3-D Surface Deformations With InSAR Based on Strain Model and Variance Component Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 239-250.

[22] Hanssen R F. Radar interferometry: data interpretation and error analysis: Vol. 2[M]. Springer Science & Business Media, 2001.

[23] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.

[24] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

[25] Fialko Y, Sandwell D, Simons M, et al. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit[J]. Nature, 2005, 435(7040): 295-299.

[26] Hilley G E, Bürgmann R, Ferretti A, et al. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5679): 1952-1955.

[27] Hu J, Ding X L, Li Z W, et al. Vertical and horizontal displacements of Los Angeles from InSAR and GPS time series analysis: Resolving tectonic and anthropogenic motions[J]. Journal of Geodynamics, 2016, 99: 27-38.

[28] Liu X, Hu J, Sun Q, et al. Deriving 3-D Time-Series Ground Deformations Induced by Underground Fluid Flows with InSAR: Case Study of Sebei Gas Fields, China[J]. Remote Sensing, 2017, 9(11): 1129.

[29] Wu S, Yang Z, Ding X, et al. Two decades of settlement of Hong Kong International Airport measured with multi-temporal InSAR[J]. Remote Sensing of Environment, 2020, 248: 111976.

[30] Wu W, Hu J, Du Z, et al. A Network Optimized Ridge Estimator for Robust PSI Parameter Estimation and Its Application on Deformation Monitoring of Urban Area[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5436-5452.

[31] 顾国华. GPS观测得的2023年2月土耳其双震前后的地壳形变[J]. Advances in Geosciences, 2023, 13: 636.

[32] 冯军, 闫纪元, 赵晓霞. 2023年2月6日土耳其M7.8级地震地表破裂带初步调查[J]. 北京大学学报(自然科学版), 2023, 59(6): 945-950.

[33] Yan K, Miyajima M, Kumsar H, et al. Preliminary report of field reconnaissance on the 6 February 2023 Kahramanmaras Earthquakes in Türkiye[J]. Geoenvironmental Disasters, 2024, 11(1): 11.

[34] Li S, Wang X, Tao T, et al. Source model of the 2023 Turkey earthquake sequence imaged by Sentinel-1 and GPS measurements: Implications for heterogeneous fault behavior along the East Anatolian Fault Zone[J]. Remote Sensing, 2023, 15(10): 2618.

[35] An Q, Feng G, He L, et al. Three-dimensional deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 earthquake sequence obtained by fusing optical and SAR Images[J]. Remote Sensing, 2023, 15(10): 2656.

[36] Ren C, Wang Z, Taymaz T, et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet[J]. Science, 2024, 383(6680): 305-311.

[37] Xu L, Aoki Y, Wang J, et al. The 2023 M w 7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard[J]. Seismological Research Letters, 2024, 95(2A): 562-573.

[38] Altindal A, Askan A. Traditional seismic hazard analyses underestimate hazard levels when compared to observations from the 2023 Kahramanmaras earthquakes[J]. Communications Earth & Environment, 2024, 5(1): 14.

[39] Dal Zilio L, Ampuero J P. Earthquake doublet in Turkey and Syria[J]. Communications Earth & Environment, 2023, 4(1): 71.

[40] Güvercin S E, Karabulut H, Konca A Ö, et al. Active seismotectonics of the East Anatolian Fault[J]. Geophysical Journal International, 2022, 230(1): 50-69.

[41] Reilinger R, McClusky S, Vernant P, et al. GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): 2005JB004051.

[42] Viltres R, Jónsson S, Alothman A O, et al. Present-Day Motion of the Arabian Plate[J]. Tectonics, 2022, 41(3): e2021TC007013.

[43] Legendre C P, Zhao L, Tseng T L. Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia, Turkey[J]. Communications Earth & Environment, 2021, 2(1): 1-7.

[44] Emre Ö, Duman T Y, Özalp S, et al. Active fault database of Turkey[J]. Bulletin of Earthquake Engineering, 2018, 16(8): 3229-3275.

[45] McClusky S, Balassanian S, Barka A, et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5695-5719.

[46] Lyberis N, Yurur T, Chorowicz J, et al. The East Anatolian Fault: an oblique collisional belt[J]. Tectonophysics, 1992, 204(1-2): 1-15.

[47] Nyst M, Thatcher W. New constraints on the active tectonic deformation of the Aegean[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B11): 2003JB002830.

[48] Calayır Y, Sayın E, Yön B. Performance of structures in the rural area during the March 8, 2010 Elazığ-Kovancılar earthquake[J]. Natural Hazards, 2012, 61(2): 703-717.

[49] Isik E, Aydin M C, Buyuksarac A. 24 January 2020 Sivrice earthquake damages and determination of earthquake parameters in the region[J]. Earthquakes and Structures, 2020, 19(2): 145-156.

[50] Şimşek A, Yurdakul Ö, Duran B, et al. Effectiveness of structural walls in improving the serviceability of a seismically-retrofitted RC building[J]. Bulletin of Earthquake Engineering, 2023, 21(12): 5545-5571.

[51] Liu C, Lay T, Wang R, et al. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 2023, 14(1): 5564.

[52] Kobayashi T, Tobita M, Nishimura T, et al. Crustal deformation map for the 2011 off the Pacific coast of Tohoku Earthquake, detected by InSAR analysis combined with GEONET data[J]. Earth, Planets and Space, 2011, 63(7): 621-625.

[53] Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120: 9-24.

[54] Filipponi F. Sentinel-1 GRD Preprocessing Workflow[J]. 3rd International Electronic Conference on Remote Sensing, 2019, 18(1): 11.

[55] Strozzi T, Carreon-Freyre D, Wegmüller U. Land subsidence and associated ground fracturing: study cases in central Mexico with ALOS-2 PALSAR-2 ScanSAR Interferometry[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382: 179-182.

[56] Vafaei S, Soosani J, Adeli K, et al. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)[J]. Remote Sensing, 2018, 10(2): 172.

[57] 孙倩, 胡俊, 陈小红. 多时相InSAR技术及其在滑坡监测中的关键问题分析[J]. 地理与地理信息科学, 2019, 35(03): 37-45.

[58] 甘洁, 胡俊, 李志伟, 等. 基于InSAR和地应变特征获取2015年M_W7.2级Murghab地震同震三维地表形变场[J]. 中国科学:地球科学, 2018, 48(10): 1335-1351.

[59] 李德仁, 周月琴, 马洪超. 卫星雷达干涉测量原理与应用[J]. 测绘科学, 2000, 25(001): 9-12.

[60] Samsonov S, Dille A, Dewitte O, et al. Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: A new method illustrated on a slow-moving landslide[J]. Engineering Geology, 2020, 266: 105471.

[61] 杨莹辉, 陈强, 刘国祥, 等. 汶川地震同震形变场的GPS和InSAR邻轨平滑校正与断层滑移精化反演[J]. 地球物理学报, 2014, 057(005): 1462-1476.

[62] 许才军, 刘洋, 温扬茂. 利用GPS资料反演汶川Mw 7.9级地震滑动分布[J]. 测绘学报, 2009, 38(03): 195-201+215.

[63] 许才军, 周力璇, 尹智. 2013年Ms 7.0级中国芦山地震断层曲面模型的构建及其滑动分布的大地测量反演[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1665-1672.

[64] Zhang Q, Zhu W, Ding X, et al. Two-dimensional deformation monitoring over Qingxu (China) by integrating C-, L- and X-bands SAR images[J]. Remote Sensing Letters, 2014, 5(1): 27-36.

[65] Yu C, Li Z, Penna N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204: 109-121.

[66] 王超, 刘智, 张红, 等. 张北-尚义地震同震形变场雷达差分干涉测量[J]. 科学通报, 2000, 45(23): 2550-2554.

[67] Liu J, Hu J, Xu W, et al. Complete Three‐Dimensional Coseismic Deformation Field of the 2016 Central Tottori Earthquake by Integrating Left‐ and Right‐Looking InSAR Observations With the Improved SM‐VCE Method[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 12099-12115.

[68] Fialko Y, Simons M, Agnew D. The complete (3‐D) surface displacement field in the epicentral area of the 1999 M W 7.1 Hector Mine Earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 2001, 28(16): 3063-3066.

[69] Li S, Leinss S, Hajnsek I. Cross-Correlation Stacking for Robust Offset Tracking using SAR Image Time-Series[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, PP(99): 1-1.

[70] Yan S, Guo H, Liu G, et al. Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data[J]. Remote Sensing Letters, 2013, 4(4-6): 494-503.

[71] Scheiber, Rolf, Moreira, et al. Coregistration of Interferometric SAR Images Using Spectral Diversity.[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000.

[72] Pepe A, Lanari R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms[J]. IEEE Transactions on Geoence and Remote Sensing, 2006, 44(9): 2374-2383.

[73] Bechor N B D, Zebker H A. Measuring two‐dimensional movements using a single InSAR pair[J]. Geophysical Research Letters, 2006, 33(16): 2006GL026883.

[74] Jung H S, Won J S, Kim S W. An improvement of the performance of multiple-aperture SAR interferometry (MAI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2859-2869.

[75] Jo M J, Jung H S, Won J S. Measurement of precise three-dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry[J]. Remote Sensing of Environment, 2017, 192: 228-237.

[76] Gomba G, Parizzi A, De Zan F, et al. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1446-1461.

[77] Sandwell D, Mellors R, Tong X, et al. Open radar interferometry software for mapping surface Deformation[J]. Eos, Transactions American Geophysical Union, 2011, 92(28): 234-234.

[78] Lan, Yang, Hanwen. Robust Two-Dimensional Phase Unwrapping for Multibaseline SAR Interferograms: A Two-Stage Programming Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5217-5225.

[79] Yan Z. Two-dimensional phase unwrapping method based on improved particle swarm optimization[J]. Chinese Journal of Radio Science, 2012.

[80] Chen C W, Zebker H A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms[J]. JOSA A, 2000, 17(3): 401-414.

[81] Xu L, Mohanna S, Meng L, et al. The overall-subshear and multi-segment rupture of the 2023 Mw7.8 Kahramanmaraş, Turkey earthquake in millennia supercycle[J]. Communications Earth & Environment, 2023, 4(1): 379.

[82] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191.

[83] Reitman N G, Briggs R W, Barnhart W D, et al. Rapid Surface Rupture Mapping from Satellite Data: The 2023 Kahramanmaraş, Turkey (Türkiye), Earthquake Sequence[J]. The Seismic Record, 2023, 3(4): 289-298.

[84] 胡俊, 李志伟, 朱建军, 等. InSAR 三维形变测量理论与应用[M]. 科学出版社, 2021.

[85] 钟雪莲, 向茂生, 郭华东, 等. 机载重轨干涉合成孔径雷达的发展[J]. Journal of Radars, 2013, 2(3): 367-381.

[86] Wohlfart C, Winkler K, Wendleder A, et al. TerraSAR-X and wetlands: A review[J]. Remote Sensing, 2018, 10(6): 916.

[87] Henry J, Chastanet P, Fellah K, et al. Envisat multi‐polarized ASAR data for flood mapping[J]. International Journal of Remote Sensing, 2006, 27(10): 1921-1929.

[88] 胡圣武, 肖本林. 现代测量数据处理理论与应用[M]. 测绘出版社, 2016.

[89] Geng J, Chen X, Pan Y, et al. PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 91.

[90] Nalbant S S, McCloskey J, Steacy S, et al. Stress accumulation and increased seismic risk in eastern Turkey[J]. Earth and Planetary Science Letters, 2002, 195(3-4): 291-298.

[91] 陈宇, 陈思, 李杰, 等. 融合主成分时空分析与时序 InSAR 的高精度地表形变信息提取——以徐州地区为例[J]. 地球信息科学学报, 25(12): 2402-2417.

[92] 云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J]. 雷达学报, 2020, 9(1): 73-85.

[93] Li S, Xu W, Li Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges[J]. Geodesy and Geodynamics, 2022, 13(2): 114-126.

[94] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12): 4767-4776.

中图分类号:

 P237    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式