- 无标题文档
查看论文信息

论文中文题名:

 二氧化碳注入和封存对断层活动性的影响机制    

姓名:

 丁锐    

学号:

 21109071006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 岩土体稳定与地质灾害防治    

第一导师姓名:

 孙强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-05-30    

论文外文题名:

 Mechanisms of carbon dioxide injection and sequestration on fault mobility    

论文中文关键词:

 二氧化碳封存 ; 断层活动性 ; 应变场 ; 温度场 ; 围压敏感性    

论文外文关键词:

 CO2 sequestration ; fault activity ; strain field ; temperature field ; confining pressure sensitivity    

论文中文摘要:

二氧化碳(CO2)是主要的温室气体之一,对全球气候变化有显著影响,已引起生态系统破坏等一系列问题。CO2地质封存不仅是实现“双碳”目标的重要技术途径,更是CO2捕集、利用与封存技术的关键环节。CO2注入后可能会影响断层的力学稳定性,使断层面滑动,但目前关于CO2注入断层的研究非常有限。因此,研究CO2封存作用下断层活动性特征及机制对于CO2有效安全封存具有现实意义。

本文基于内蒙古自治区科技重大专项“CO2封存作用下断层活化机制与临界条件”的课题三“CO2环境暴露效应评估与断层活化调控技术开发”,以伊敏河东矿区第一煤矿(敏东一矿)为地质背景,综合采用物理模型、室内试验和理论分析等方法研究了断层在CO2注入过程及封存条件下的应变-温度场响应规律,探讨了不同倾角断层在CO2注入过程中的围压敏感性,从化学和力学作用角度揭示了CO2封存对断层稳定性的影响机制。研究成果和结论如下:

(1)基于自主设计的大型三维CO2封存系统,构建了符合敏东一矿实际地层的物理模型,研究了CO2注入过程的地层压力及声发射特征,分析了CO2注入过程中断层的应变-温度场响应规律。CO2注入过程的压力变化具有明显阶段性,可分为升/降压阶段、稳定阶段和升压阶段,随着CO2注入会逐渐生成CO2水合物,阻塞流动通道,压力由稳定阶段的4 MPa快速上升至40 MPa。声发射定位点主要分布于CO2封存出口及出口上方断层两侧。地层应变和温度变化趋势基本对应,主要变化区域均位于断层附近,变化值随CO2注入时间增加呈增大趋势。CO2注入层的应变和温度变化最大,分别可达125 με和10.5 ℃,显著高于其它地层。地层应变在CO2注入过程中以拉应变为主,相同位置横向应变大于纵向应变。经剖面划分可知地层应变和温度升高的中心位置以及声发射定位点与地层水分布密切相关。

(2)基于大型三维CO2封存物理模型,分析了CO2封存条件下断层的应变-温度场响应规律,并基于地层的视电阻率演化特征探讨了CO2扩散过程。地层的应变和温度变化在CO2封存过程中具有明显阶段性,整体变化趋势为先增加后降低并保持稳定。应变场的拉应变区域以及温度场的温度升高区域随封存时间增加逐渐向CO2封存出口收缩,拉应变逐渐转化为压应变,在第72 h时压应变和温度降低值达到最大,最大区域与注入CO2结束时的拉应变和温度变大区域基本一致。CO2封存出口位置以及断层端点的视电阻率变化与地层水分布以及CO2注入后发生固化反应的位置密切相关。

(3)基于真三轴CO2封存系统,研究了液态CO2注入断层试样的压力变化规律,分析了断层倾角及围压对CO2注入压力及试样裂纹演化的影响。当断层倾角相同时,CO2注入最大压力、试样表面裂纹发育程度和最大波速变化值均与围压呈正相关。当围压相同时,CO2注入最大压力随着断层倾角的增大呈现先降低后增加的趋势,在45°时最低。试样表面裂纹分布与断层倾角相关,裂缝沿断层向四周发育。波速变化与试样表面的裂缝发育基本对应,变化最大区域位于试样中心附近。

(4)基于CO2与含水地层反应系统,研究了类比不同类型断层砂岩在CO2与地层水长期耦合作用下的温度和压力变化,分析了砂岩反应前后的孔隙变化特征。并构建了有效气体压力对断层失稳的数学模型,揭示了CO2注入诱发断层活动性机制。CO2与含水地层反应的温度和压力变化过程整体可以分为快速下降期、缓慢下降期和稳定变化期三个阶段。贯通样由于与溶液的接触面积最大,生成的新矿物晶体和黏土颗粒堵塞孔隙喉道使其孔隙度减小值最大,高浓度的盐溶液会抑制CO2与含水地层反应。CO2注入引起的孔隙压力变化是诱发断层活动的潜在触发条件。当断层内的气体压力大于断层所承受的压应力时,岩体会发生脆性破裂或滑移,断层扩展。

论文外文摘要:

CO2 is one of the primary greenhouse gases, exerting a significant impact on global climate change and giving rise to a range of issues such as ecosystem degradation. CO2 geological storage is not only serves as a pivotal technological approach towards achieving the "dual-carbon", but also plays a critical role in the overall framework of CO2 capture, utilization, and storage. The injection of CO2 may have an impact on the mechanical stability of faults, potentially resulting in fault plane sliding. However, current research on CO2 injection into faults is limited. Therefore, it is of practical significance to study the characteristics and mechanisms of fault mobility under CO2 sequestration for effective and safe CO2 sequestration.

Based on the "Assessment of CO2 environmental exposure effect and development of fault activation regulation technology", which is part of the Inner Mongolia Autonomous Region Science and Technology Major Project "Fault Activation Mechanism and Critical Condition under CO2 Sequestration". Based on the geological background of the Mindong No.1 mine, a comprehensive investigation was conducted using physical modeling, laboratory experiments, and theoretical analysis to examine the strain-temperature field response of faults under conditions of CO2 injection and long-term storage. The sensitivity of different inclined faults to confining pressure during the CO2 injection process was explored, while elucidating the impact mechanism of CO2 storage on fault stability from both chemical and mechanical perspectives. The research results and conclusions are as follows:

(1) The construction of a large-scale three-dimensional CO2 sequestration system, designed independently, involved the development of a physical model that accurately represents the geological formation of Mindong No.1 mine. This study focuses on investigating formation pressure and acoustic emission characteristics during the process of CO2 injection, as well as analyzing the response of fault strain-temperature fields to CO2 injection. The pressure change during the CO2 injection process exhibits distinct stages, which can be categorized into the stages of pressure increase/decrease, stability, and further pressure increase. As CO2 is injected, gradual formation of CO2 hydrates leads to the obstruction of flow channels, resulting in a rapid rise in pressure from 4 MPa during the stable stage to 40 MPa. Acoustic emission localization points are mainly located on both sides of the CO2 sequestration outlet and the fault above the outlet. Strain and temperature variations of formation closely correspond with each other, primarily occurring near fault zones. The magnitude of these variations tends to amplify as the duration of CO2 injection increases. The strain and temperature changes in the CO2 injection layer are the highest, reaching up to 125 με and 10.5 ℃ respectively, significantly higher than other layers. During the CO2 injection process, the strain of the formation primarily exhibits tensile strain, with lateral strain surpassing vertical strain at the same location. By segmenting into sections, it becomes evident that the centers of strain and temperature increase in the formation are closely associated with groundwater distribution within the formation.

(2) Based on a large-scale three-dimensional physical model of CO2 sequestration, we analyzed the strain-temperature field response of the faults under long-term CO2 sequestration conditions, and explored the CO2 diffusion process based on the apparent resistivity evolution characteristics of the formation. The long-term process of CO2 sequestration involves distinct stages of strain and temperature changes in the formation, characterized by an initial increase followed by a subsequent decrease and eventual stability. The tensile strain region of the strain field and the temperature increase region of the temperature field gradually contracted toward the CO2 storage outlet with the increase of storage time, and the tensile strain was gradually converted into compressive strain, and the compressive strain and temperature decrease reached the maximum at the 72nd hour, and the maximum region was basically the same as that at the end of the injection of CO2, with the tensile strain and the temperature becoming larger. Changes in electrical resistivity at CO2 sequestration outlet locations and fault endpoints are closely related to the spatial distribution of formation water and the location where the solidification reaction occurs subsequent to CO2 injection.

(3) Based on the true triaxial CO2 sealing system, the pressure changes rule of liquid CO2 injected into the fault specimen was investigated. The effects of fault dip angle and confining pressure on the CO2 injection pressure and specimen crack evolution were analyzed. When the fault dip angle is the same, the maximum pressure of CO2 injection, the degree of crack development on the surface of the specimen and the change value of the maximum wave velocity are positively correlated with the confining pressure. When the confining pressure is the same, the maximum pressure of CO2 injection shows a tendency of decreasing and then increasing with the increase of the fault dip angle, and it is the lowest at 45°. The distribution of surface cracks in the test sample is correlated with the fault dip angle, and these cracks propagate outward along the fault plane. The variation in wave velocity exhibits a close correspondence with the evolution of surface cracks, displaying maximum changes near the central region of the sample.

(4) Based on the reaction system between CO2 and water-bearing strata, the temperature and pressure changes of sandstones of analogous different types of faults under the long-term coupling of CO2 and formation water were investigated, and the pore change characteristics of sandstones before and after the reaction were analyzed. A mathematical model of effective gas pressure on fault destabilization was also constructed, revealing the mechanism of CO2 injection-induced fault activity. The overall process of temperature and pressure changes in the reaction between CO2 and water-bearing strata can be categorized into three distinct stages: an initial rapid decline period, followed by a subsequent gradual decline period, and ultimately leading to a stable variation period. As the contact area with the solution is the largest, the new mineral crystals and clay particles generated in the through sample block the pore throat, which results in the largest decrease in porosity, and the high concentration of salt solution inhibits the reaction between CO2 and the water-bearing strata. The changes in pore pressure resulting from CO2 injection represent potential triggering conditions for fault activity. When the gas pressure within the fault surpasses its stress threshold, the rock will undergo brittle fracture or slip, leading to expansion of the fault.

参考文献:

[1] 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考[J]. 中国科技论坛, 2021: 14-20.

[2] Rahman F A, Aziz M M A, Saidur R, et al. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future [J]. Renewable & Sustainable Energy Reviews, 2017, 71: 112-126.

[3] Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution [J]. Energy Conversion Management, 2003, 44(20): 3151-3175.

[4] Gao W, Liang S, Wang R, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges [J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.

[5] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47: 1416-1429.

[6] 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47: 1430-1451.

[7] Zheng Y, Gao L, Li S, et al. A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method [J]. Energy, 2022, 239: 122033.

[8] Azadi M, Edraki M, Farhang F, et al. Opportunities for Mineral Carbonation in Australia's Mining Industry [J]. Sustainability, 2019, 11(5): 1250.

[9] Cao X, Wang H, Yang K, et al. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications [J]. Journal of Petroleum Science and Engineering, 2022, 219: 111121.

[10] 张春杰, 申建, 秦勇, 等. 注CO2提高煤层气采收率及CO2封存技术[J]. 煤炭科学技术, 2016, 44: 205-210.

[11] 秦长文, 肖钢, 王建丰, 等. CO2地质封存技术及中国南方近海CO2封存的前景[J]. 海洋地质前沿, 2012, 28: 40-45.

[12] 高志豪, 赵锐锐, 成建梅. 砂岩含水层CO2封存中考虑盐沉淀反馈作用的数值模拟:以鄂尔多斯盆地为例[J]. 地质科技通报, 2022, 41: 269-277.

[13] Wilkin R T, Digiulio D C. Geochemical impacts to groundwater from geologic carbon sequestration: controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling [J]. Environmental Science & Technology, 2010, 44(12): 4821-4827.

[14] 王展鹏, 刘琦, 叶航, 等. CO2地质封存泄漏监测技术研究进展[J]. 环境工程, 2023, 41: 69-81.

[15] Zhang K, Xu Y, Ling L, et al. Numerical investigation for enhancing CO2 injectivity in saline aquifers [J]. Energy Procedia, 2013, 37: 3347-3354.

[16] 于恩毅, 邸元, 吴辉, 等. CO2地质封存风险分析的多场耦合数值模拟技术综述[J]. 力学学报, 2023, 55: 2075-2090.

[17] Chen Z, Zhou F, Rahman S S. Effect of cap rock thickness and permeability on geological storage of CO2: laboratory test and numerical simulation [J]. Energy Exploration & Exploitation, 2014, 32(6): 943-964.

[18] 郝牧歌, 张金功, 李顺明, 等. 断层输导差异性定量评价及其在致密油气藏勘探中的应用[J]. 油气地质与采收率, 2023, 30: 60-68.

[19] 曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29: 651-661.

[20] Fisher Q, Schaefer F, Kaminskaite I, et al. Fault and top seals thematic collection: a perspective [J]. Petroleum Geoscience, 2021, 27(2): petgeo2020-2136.

[21] Zou C, Zhu R, Wu S, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance [J]. Acta Petrolei Sinica, 2012, 33(2): 173.

[22] Pereira F L G, Roehl D, Laquini J P, et al. Fault reactivation case study for probabilistic assessment of carbon dioxide sequestration [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 310-319.

[23] Rutqvist J, Birkholzer J T, Tsang C F. Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 132-143.

[24] 周军平, 田时锋, 鲜学福, 等. 不可采煤层CO2封存断层活化机制分析[J]. 地下空间与工程学报, 2019, 15: 1362-1369.

[25] 崔振东, 刘大安, 曾荣树, 等. CO2地质封存工程的潜在地质环境灾害风险及防范措施[J]. 地质论评, 2011, 57: 700-706.

[26] 李小春, 袁维, 白冰. CO2地质封存力学问题的数值模拟方法综述[J]. 岩土力学, 2016, 37: 1762-1772.

[27] 张志雄, 谢健, 戚继红, 等. 地质封存二氧化碳沿断层泄漏数值模拟研究[J]. 水文地质工程地质, 2018, 45: 109-116.

[28] Pruess K. On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir [J]. Environmental Geology, 2008, 54: 1677-1686.

[29] Lu C, Sun Y, Buscheck T, et al. Uncertainty quantification of CO2 leakage through a fault with multiphase and nonisothermal effects [J]. Greenhouse Gases Science Technology, 2012, 2(6): 445-459.

[30] Tao Q, Alexander D, Bryant S L. Development and Field Application of Model for Leakage of CO2 Along a Fault [J]. Energy Procedia, 2013, 37: 4420-4427.

[31] Häring M O, Schanz U, Ladner F, et al. Characterisation of the Basel 1 enhanced geothermal system [J]. Geothermics, 2008, 37(5): 469-495.

[32] Ashworth P, Quezada G. Who’s talking CCS? [J]. Energy Procedia, 2011, 4: 6194-6201.

[33] Nerlich B, Jaspal R. UK media representations of carbon capture and storage: Actors, frames and metaphors [J]. Metaphor the social world, 2013, 3(1): 35-53.

[34] Boyd A D, Paveglio T B. Front page or “buried” beneath the fold? Media coverage of carbon capture and storage [J]. Public Understanding of Science, 2014, 23(4): 411-427.

[35] 李阳, 王锐, 赵清民, 等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报, 2023, 8: 391-397.

[36] Yu S, Horing J, Liu Q, et al. CCUS in China’s mitigation strategy: insights from integrated assessment modeling [J]. International Journal of Greenhouse Gas Control, 2019, 84: 204-218.

[37] Leonzio G, Foscolo P U, Zondervan E, et al. Scenario Analysis of Carbon Capture, Utilization (Particularly Producing Methane and Methanol), and Storage (CCUS) Systems [J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6961-6976.

[38] Zhang J, Zhang Y, Yuan L, et al. Dynamic Adsorption of CO2 in Different Sized Shale Organic Pores Using Molecular Dynamic Simulations under Various Pressures [J]. Energy & Fuels, 2021, 35(19): 15950-15961.

[39] Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects [J]. Renewable & Sustainable Energy Reviews, 2018, 96: 502-525.

[40] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49: 10-20.

[41] 薛博, 刘勇, 王沉, 等. 碳捕获、封存与利用技术及煤层封存CO2研究进展[J]. 化学世界, 2020, 61: 294-297.

[42] He L, Shen P, Liao X, et al. Study on CO2 EOR and its geological sequestration potential in oil field around Yu lin city [J]. Journal of Petroleum Science and Engineering, 2015, 134: 199-204.

[43] 张泉, 林进, 折印楠, 等. 我国二氧化碳地质封存潜力评价研究进展[J]. 中国石油和化工标准与质量, 2022, 42: 144-146.

[44] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究 [D]. 大连: 大连海事大学, 2014.

[45] Li Y, Pang Z. Capacity and suitability assessment of deep saline aquifers for CO2 sequestration in the Bohai Bay Basin, East China [J]. Environmental Earth Sciences, 2016, 75(5): 402.

[46] Seo S, Mastiani M, Hafez M, et al. Injection of in-situ generated CO2 microbubbles into deep saline aquifers for enhanced carbon sequestration [J]. International Journal of Greenhouse Gas Control, 2019, 83: 256-264.

[47] Guo R, Sun H, Zhao Q, et al. A Novel Experimental Study on Density-Driven Instability and Convective Dissolution in Porous Media [J]. Geophysical Research Letters, 2021, 48(23): e2021GL095619.

[48] 包琦, 叶航, 刘琦, 等. 不同地质体中CO2封存研究进展[J]. 低碳化学与化工, 2024: 1-10.

[49] 胡冉, 陈益峰, 万嘉敏, 等. 超临界CO2-水两相流与CO2毛细捕获:微观孔隙模型实验与数值模拟研究[J]. 力学学报, 2017, 49: 638-648.

[50] 刘永强. CO2煤层地质处置技术[J]. 煤炭技术, 2014, 33: 78-81.

[51] Jiang R, Yu H. Interaction between sequestered supercritical CO2 and minerals in deep coal seams [J]. International Journal of Coal Geology, 2019, 202: 1-13.

[52] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage [J]. Applied Energy, 2017, 208: 1389-1419.

[53] Adams E E, Caldeira K. Ocean storage of CO2 [J]. Elements, 2008, 4(5): 319-324.

[54] Sabine C L, Tanhua T. Estimation of anthropogenic CO2 inventories in the ocean [J]. Annual review of marine science, 2010, 2: 175-198.

[55] Drange H, Alendal G, Johannessen O M. Ocean release of fossil fuel CO2: A case study [J]. Geophysical Research Letters, 2001, 28(13): 2637-2640.

[56] Tao Y, Edwards R W J, Mauzerall D L, et al. Strategic Carbon Dioxide Infrastructure to Achieve a Low-Carbon Power Sector in the Midwestern and South-Central United States [J]. Environmental Science & Technology, 2021, 55(22): 15013-15024.

[57] Bielicki J M, Pollak M F, Fitts J P, et al. Causes and financial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources [J]. International Journal of Greenhouse Gas Control, 2014, 20: 272-284.

[58] 郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2: 36-46.

[59] Zhang H. Regulations for carbon capture, utilization and storage: Comparative analysis of development in Europe, China and the Middle East [J]. Resources Conservation and Recycling, 2021, 173: 105722.

[60] Michael K, Golab A, Shulakova V, et al. Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations [J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667.

[61] Fang Z, Khaksar A. Role of geomechanics in assessing the feasibility of CO2 sequestration in depleted hydrocarbon sandstone reservoirs [J]. Rock mechanics rock engineering, 2013, 46: 479-497.

[62] 李术艺, 冯旗, 董依然. 地质封存二氧化碳与深地微生物相互作用研究进展 [J]. 微生物学报, 2021, 61: 1632-1649.

[63] 刘世奇, 皇凡生, 杜瑞斌, 等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探, 2023, 51: 158-174.

[64] 赵兴雷, 马瑞, 李国涛, 等. 神华咸水层CO2封存监测安全评价体系的研究[J]. 化工进展, 2016, 35: 389-395.

[65] 杨术刚, 蔡明玉, 张坤峰, 等. CO2-水-岩相互作用对CO2地质封存体物性影响研究进展及展望 [J]. 油气地质与采收率, 2023, 30: 80-91.

[66] An S, Erfani H, Hellevang H, et al. Lattice-Boltzmann simulation of dissolution of carbonate rock during CO2-saturated brine injection [J]. Chemical Engineering Journal, 2021, 408: 127235.

[67] Akinfiev N N, Diamond L W. Thermodynamic model of aqueous CO2–H2O–NaCl solutions from− 22 to 100 ℃ and from 0.1 to 100 MPa [J]. Fluid Phase Equilibria, 2010, 295(1): 104-124.

[68] Portier S, Rochelle C. Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 C and from 1 to 300 bar: Application to the Utsira Formation at Sleipner [J]. Chemical Geology, 2005, 217(3-4): 187-199.

[69] 李荣. 碳封存条件下多孔结构内多相流动机理与运移规律研究 [D]. 北京: 清华大学, 2017.

[70] Lv Q, Zheng R, Zhou T, et al. Visualization study of CO2-EOR in carbonate reservoirs using 2.5 D heterogeneous micromodels for CCUS [J]. Fuel, 2022, 330: 125533.

[71] Tzachristas A, Kanellopoulou D G, Koutsoukos P G, et al. The effect of surface wettability on calcium carbonate precipitation in packed beds [J]. Surfaces and Interfaces, 2022, 34: 102354.

[72] 王千. 低渗储层注超临界CO2驱替及封存规律研究 [D]. 北京: 中国石油大学(北京), 2020.

[73] Li X, Xue J, Wang Y, et al. Experimental study of oil recovery from pore of different sizes in tight sandstone reservoirs during CO2 flooding [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109740.

[74] 刘泉声, 张伟, 卢兴利, 等. 断层破碎带大断面巷道的安全监控与稳定性分析[J]. 岩石力学与工程学报, 2010, 29: 1954-1962.

[75] 陈晓祥, 吴俊鹏. 断层破碎带中巷道围岩大变形机理及控制技术研究[J]. 采矿与安全工程学报, 2018, 35: 885-892.

[76] 耿萍, 吴川, 唐金良, 等. 穿越断层破碎带隧道动力响应特性分析[J]. 岩石力学与工程学报, 2012, 31: 1406-1413.

[77] 胡明慧, 刘日成, 李树忱, 等. 废弃油气藏气体能源存储过程中不同浸润界面类型的断层活化试验研究[J]. 岩石力学与工程学报, 2024, 43: 75-89.

[78] 李季, 张荣光, 余洋, 等. 采动应力偏转诱发回采巷道顶板断层活化风险评估 [J]. 岩石力学与工程学报, 2023, 42: 4109-4120.

[79] 孙文斌, 薛延东, 杨辉, 等. 工作面回采对断层裂隙带应力扰动规律及注浆加固机制研究[J]. 岩石力学与工程学报, 2023, 42: 2668-2681.

[80] Ellsworth W L. Injection-induced earthquakes [J]. science, 2013, 341(6142): 1225942.

[81] Keranen K M, Savage H M, Abers G A, et al. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence [J]. Geology, 2013, 41(6): 699-702.

[82] Rubinstein J L, Ellsworth W L, Mcgarr A, et al. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado [J]. Bulletin of the Seismological Society of America, 2014, 104(5): 2162-2181.

[83] Langenbruch C, Zoback M D. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? [J]. Science Advances, 2016, 2(11): e1601542.

[84] Guglielmi Y, Cappa F, Avouac J-P, et al. Seismicity triggered by fluid injection-induced aseismic slip [J]. science, 2015, 348(6240): 1224-1226.

[85] Donnelly L. A review of coal mining induced fault reactivation in Great Britain [J]. Quarterly Journal of Engineering Geology Hydrogeology, 2006, 39(1): 5-50.

[86] Wu Q, Wang M, Wu X. Investigations of groundwater bursting into coal mine seam floors from fault zones [J]. International Journal of Rock Mechanics Mining Sciences, 2004, 41(4): 557-571.

[87] Wu Q, Hao Z, Zhao Y, et al. Prediction of concealed faults in front of a coalface using feature learning [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 4191-4204.

[88] Cheng G, Li L, Zhu W, et al. Microseismic investigation of mining-induced brittle fault activation in a Chinese coal mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104096.

[89] Yin H, Sang S, Xie D, et al. A numerical simulation technique to study fault activation characteristics during mining between fault bundles [J]. Environmental Earth Sciences, 2019, 78(5): 148.

[90] Cui G, Zhang C, Ye J, et al. Influences of dynamic normal disturbance and initial shear stress on fault activation characteristics [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5): 159.

[91] Song W, Liang Z. Theoretical and numerical investigations on mining-induced fault activation and groundwater outburst of coal seam floor [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5757-5768.

[92] Wang F, Xu J, Xie J, et al. Mechanisms influencing the lateral roof roadway deformation by mining-induced fault population activation: a case study [J]. International Journal of Oil Gas and Coal Technology, 2016, 11(4): 411-428.

[93] 李振雷, 窦林名, 蔡武, 等. 深部厚煤层断层煤柱型冲击矿压机制研究[J]. 岩石力学与工程学报, 2013, 32: 333-342.

[94] 朱术云, 姜振泉, 孙强. 采动底板断层“活化”的解析计算及其工程应用[J]. 矿业研究与开发, 2010, 30: 7-9+17.

[95] 林远东, 涂敏, 付宝杰, 等. 断层自锁与活化的力学机理及稳定性控制[J]. 采矿与安全工程学报, 2019, 36: 898-905.

[96] 李青锋, 王卫军, 朱川曲, 等. 基于隔水关键层原理的断层突水机理分析[J]. 采矿与安全工程学报, 2009, 26: 87-90.

[97] Liu H, Li L, Li Z, et al. Numerical Modelling of Mining-induced Inrushes from Subjacent Water Conducting Karst Collapse Columns in Northern China [J]. Mine Water and the Environment, 2018, 37(4): 652-662.

[98] Sainoki A, Mitri H S. Quantitative analysis with plastic strain indicators to estimate damage induced by fault-slip [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 1-10.

[99] Bukowski P. Water hazard assessment in active shafts in upper silesian coal basin mines [J]. Mine water the Environment, 2011, 30: 302-311.

[100] Lamoreaux J W, Wu Q, Zhou W. New development in theory and practice in mine water control in China [J]. Carbonates and Evaporites, 2014, 29(2): 141-145.

[101] Xue Y, Kong F, Qiu D, et al. The classifications of water and mud/rock inrush hazard: a review and update [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 1907-1925.

[102] Vilarrasa V, Rutqvist J, Rinaldi A P. Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria [J]. Greenhouse Gases-Science and Technology, 2015, 5(4): 449-461.

[103] Jha B, Juanes R. Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering [J]. Water Resources Research, 2014, 50(5): 3776-3808.

[104] Niu Z, Li Q, Wei X, et al. Numerical simulation of a hidden fault at different stages of evolution in a carbon dioxide-enhanced saline water recovery site [J]. Journal of Petroleum Science and Engineering, 2017, 154: 367-381.

[105] Brodsky E E, Prejean S G. New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B4): B04302.

[106] Brodsky E E, Van Der Elst N J. The uses of dynamic earthquake triggering [J]. Annual Review of Earth Planetary Sciences, 2014, 42: 317-339.

[107] Atkinson G M, Eaton D W, Igonin N. Developments in understanding seismicity triggered by hydraulic fracturing [J]. Nature Reviews Earth & Environment, 2020, 1(5): 264-277.

[108] Eyre T S, Eaton D W, Garagash D I, et al. The role of aseismic slip in hydraulic fracturing-induced seismicity [J]. Science Advances, 2019, 5(8): eaav7172.

[109] Song J, Zhang D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration [J]. Environmental Science & Technology, 2013, 47(1): 9-22.

[110] Streit J E, Hillis R R. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock [J]. Energy, 2004, 29(9-10): 1445-1456.

[111] Yin D, Chen S, Liu X, et al. Effect of joint angle in coal on failure mechanical behaviour of roof rock-coal combined body [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2018, 51(2): 202-209.

[112] Wiprut D, Zoback M D. Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea [J]. Geology, 2000, 28(7): 595-598.

[113] Bakhtiari M, Shad S, Zivar D, et al. Coupled hydro-mechanical analysis of underground gas storage at Sarajeh field, Qom formation, Iran [J]. Journal of Natural Gas Science and Engineering, 2021, 92: 103996.

[114] Passelègue F X, Brantut N, Mitchell T M. Fault reactivation by fluid injection: Controls from stress state and injection rate [J]. Geophysical Research Letters, 2018, 45(23): 12,837-812,846.

[115] Ji Y, Wanniarachchi W a M, Wu W. Effect of fluid pressure heterogeneity on injection-induced fracture activation [J]. Computers and Geotechnics, 2020, 123: 103589.

[116] 张志超, 柏明星, 高硕, 等. CO2地质封存系统泄漏风险评价[J]. 油气地质与采收率, 2023, 30: 135-143.

[117] 林潼, 王孝明, 张璐, 等. 盖层厚度对天然气封闭能力的实验分析[J]. 天然气地球科学, 2019, 30: 322-330.

[118] Xiao T, Xu H, Moodie N, et al. Chemical‐mechanical impacts of CO2 intrusion into heterogeneous caprock [J]. Water Resources Research, 2020, 56(11): e2020WR027193.

[119] Cui G, Wang Y, Rui Z, et al. Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers [J]. Energy, 2018, 155: 281-296.

[120] De Silva G P D, Ranjith P G, Perera M S A. Geochemical aspects of CO2 sequestration in deep saline aquifers: A review [J]. Fuel, 2015, 155: 128-143.

[121] Iglauer S, Paluszny A, Pentland C H, et al. Residual CO2 imaged with X‐ray micro‐tomography [J]. Geophysical Research Letters, 2011, 38(21): L21403.

[122] 张烈辉, 张涛, 赵玉龙, 等. 二氧化碳-水-岩作用机理及微观模拟方法研究进展[J]. 石油勘探与开发, 2024, 51: 199-211.

[123] Bachu S, Gunter W, Perkins E. Aquifer disposal of CO2: hydrodynamic and mineral trapping [J]. Energy Conversion management, 1994, 35(4): 269-279.

[124] 张成龙, 郝文杰, 胡丽莎, 等. 泄漏情景下碳封存项目的环境影响监测技术方法[J]. 中国地质调查, 2021, 8: 92-100.

[125] Apps J A, Zheng L, Zhang Y, et al. Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage [J]. Transport in porous media, 2010, 82: 215-246.

[126] White D, Team W G M. Geophysical monitoring of the Weyburn CO2 flood: Results during 10 years of injection [J]. Energy Procedia, 2011, 4: 3628-3635.

[127] Boyd A D, Liu Y, Stephens J C, et al. Controversy in technology innovation: Contrasting media and expert risk perceptions of the alleged leakage at the Weyburn carbon dioxide storage demonstration project [J]. International Journal of Greenhouse Gas Control, 2013, 14: 259-269.

[128] 郑菲, 施小清, 吴吉春, 等. 苏北盆地盐城组咸水层CO2地质封存泄漏风险的全局敏感性分析[J]. 高校地质学报, 2012, 18: 232-238.

[129] Xu L, Li Q, Tan Y, et al. Characterization of carbon dioxide leakage process along faults in the laboratory [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 674-688.

[130] Yang C, Hovorka S D, Trevino R H, et al. Integrated framework for assessing iImpacts of CO2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO2 enhanced oil recovery site [J]. Environmental Science & Technology, 2015, 49(14): 8887-8898.

[131] Nakajima T, Xue Z, Chiyonobu S, et al. Numerical simulation of CO2 leakage along fault system for the assessment of environmental impacts at CCS site [J]. Energy Procedia, 2014, 63: 3234-3241.

[132] Mosleh M H, Govindan R, Shi J Q, et al. The use of polymer-gel remediation for CO2 leakage through faults and fractures in the caprock [J]. Energy Procedia, 2017, 114: 4164-4171.

[133] Romano V, Hyman J D H, Karra S, et al. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy) [J]. Energy Procedia, 2017, 125: 556-560.

[134] Meguerdijian S, Pawar R J, Harp D R, et al. Thermal and solubility effects on fault leakage during geologic carbon storage [J]. International Journal of Greenhouse Gas Control, 2022, 116: 103633.

[135] Miocic J M, Gilfillan S M V, Roberts J J, et al. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection [J]. International Journal of Greenhouse Gas Control, 2016, 51: 118-125.

[136] Zhang L, Zhang S, Jiang W, et al. A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage [J]. Energy, 2018, 165: 1178-1190.

[137] Umar B A, Gholami R, Downey W S, et al. A novel approach to determine across-fault leakage in CO2 reservoirs [J]. Journal of Petroleum Science and Engineering, 2019, 181: 106137.

[138] Wang L, Bai B, Li X, et al. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir [J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2845-2863.

[139] Cheng Y, Liu W, Xu T, et al. Seismicity induced by geological CO2 storage: A review [J]. Earth-Science Reviews, 2023, 239: 104369.

[140] Lu C, Sun Y, Buscheck T A, et al. Uncertainty quantification of CO2 leakage through a fault with multiphase and nonisothermal effects [J]. Greenhouse Gases: Science Technology, 2012, 2(6): 445-459.

[141] 于子望, 卢帅屹, 白林, 等. CO2地质封存岩石力学问题研究进展[J]. 吉林大学学报(地球科学版), 2023: 1-15.

[142] Oldenburg C M. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs [J]. Energy Conversion Management, 2007, 48(6): 1808-1815.

[143] 谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38: 181-188.

[144] Jing J, Yang Y, Cheng J, et al. Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage [J]. Energy, 2023, 280: 128021.

[145] Jing J, Tang Z, Yang Y, et al. Impact of formation slope and fault on CO2 storage efficiency and containment at the Shenhua CO2 geological storage site in the Ordos Basin, China [J]. International Journal of Greenhouse Gas Control, 2019, 88: 209-225.

[146] Jia B, Le P, Kang X, et al. Leakage risk evaluation model for wells in the process of CO2 storage in low permeability reservoirs [J]. Advances in Geosciences, 2019, 9(3): 112-120.

[147] 夏盈莉, 许天福, 杨志杰, 等. 深部储层中CO2沿断层泄漏量的影响因素[J]. 环境科学研究, 2017, 30: 1533-1541.

[148] Chang K W, Minkoff S E, Bryant S L. Simplified model for CO2 leakage and its attenuation due to geological structures [J]. Energy Procedia, 2009, 1(1): 3453-3460.

[149] Fernø M, Haugen M, Eikehaug K, et al. Room-scale CO2 injections in a physical reservoir model with faults [J]. Transport in porous media, 2023: 1-25.

[150] Haugen M, Saló-Salgado L, Eikehaug K, et al. Physical variability in meter-scale laboratory CO2 injections in faulted geometries [J]. Transport in porous media, 2024: 1-29.

[151] 魏世明, 柴敬, 邓明. 相似模拟实验中光纤光栅传感测试的温度补偿[J]. 西安科技大学学报, 2007: 565-568.

[152] 邓明. 相似模拟实验中光纤光栅测试的温度补偿方法 [D]. 西安: 西安科技大学, 2006.

[153] 王雅莉, 徒芸, 涂善东, 等. 基于光纤光栅传感器温度补偿的低温应变测量方法研究[J]. 仪表技术与传感器, 2023: 26-33.

[154] 董陇军, 张义涵, 孙道元, 等. 花岗岩破裂的声发射阶段特征及裂纹不稳定扩展状态识别[J]. 岩石力学与工程学报, 2022, 41: 120-131.

[155] 张强, 张润鑫, 刘峻铭, 等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术, 2022, 50: 1-26.

[156] Wang Y, Deng H, Deng Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420.

[157] Zhang H, Wang Z, Song Z, et al. Acoustic emission characteristics of different brittle rocks and its application in brittleness evaluation [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 48.

[158] 杨永杰, 王德超, 郭明福, 等. 基于三轴压缩声发射试验的岩石损伤特征研究[J]. 岩石力学与工程学报, 2014, 33: 98-104.

[159] Yang J, Mu Z, Yang S. Experimental study of acoustic emission multi-parameter information characterizing rock crack development [J]. Engineering Fracture Mechanics, 2020, 232: 107045.

[160] Zhang J, Peng W, Liu F, et al. Monitoring Rock Failure Processes Using the Hilbert-Huang Transform of Acoustic Emission Signals [J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 427-442.

[161] Zhang Y, Chen G, Wang Z, et al. Fracture Evolution Analysis of Rock Bridges in Hard Rock with Nonparallel Joints in True Triaxial Stress States [J]. Rock Mechanics and Rock Engineering, 2023, 56(2): 997-1023.

[162] Lockner D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883-899.

[163] Lockner D, Byerlee J D, Kuksenko V, et al. Quasi-static fault growth and shear fracture energy in granite [J]. Nature, 1991, 350(6313): 39-42.

[164] Tang C, Kaiser P. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—part I: fundamentals [J]. International Journal of Rock Mechanics Mining Sciences, 1998, 35(2): 113-121.

[165] 严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36: 576-584.

[166] 陈贻祥, 黄奇波, 覃小群, 等. 自然电场法与高密度电法联作在西江中下游岩溶区找水中的应用[J]. 中国岩溶, 2022, 41: 684-697.

[167] Chen B, Wang Y, Hu X. Marine Electrical Resistivity Tomography Research in Pearl River Estuary of Greater Bay Area [J]. Earth Science, 2020, 45(12): 4550-4562.

[168] 胡啸. 基于高密度电法的煤矿多层采空区数值模拟研究 [D]. 太原: 太原理工大学, 2016.

[169] 董江鑫, 王飞. 地质雷达和高密度电法联合探测底板含水性的应用[J]. 煤炭科学技术, 2022, 50: 222-231.

[170] 胡瑞华, 林君, 孙彩堂, 等. 均匀大地CSAMT静态效应模拟及其特征研究[J]. 物探与化探, 2015, 39: 1150-1155.

[171] Xie J, Zhang K, Hu L, et al. Understanding the carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin with numerical simulations [J]. Greenhouse Gases-Science and Technology, 2015, 5(5): 558-576.

[172] Meng Q, Jiang X, Li D, et al. Numerical simulations of pressure buildup and salt precipitation during carbon dioxide storage in saline aquifers [J]. Computers & Fluids, 2015, 121: 92-101.

[173] Fan C, Li Q, Ma J, et al. Fiber Bragg grating-based experimental and numerical investigations of CO2 migration front in saturated sandstone under subcritical and supercritical conditions [J]. Greenhouse Gases-Science and Technology, 2019, 9(1): 106-124.

[174] Chevalier S, Faisal T F, Bernabe Y, et al. Numerical sensitivity analysis of density driven CO2 convection with respect to different modeling and boundary conditions [J]. Heat and Mass Transfer, 2015, 51(7): 941-952.

[175] Chen Y, Irfan M. Experimental study of Kaiser effect under cyclic compression and tension tests [J]. Geomechanics and Engineering, 2018, 14(2): 203-209.

[176] Zhao K, Zhang L, Yang D, et al. Cyclic Impact Damage and Water Saturation Effects on Mechanical Properties and Kaiser Effect of Red Sandstone Under Uniaxial Cyclic Loading and Unloading Compression [J]. Rock Mechanics and Rock Engineering, 2024, 57(1): 181-195.

[177] 徐晓阳, 苏怀智, 闫潇群, 等. 基于波速修正的堆石坝面板损伤声发射源组合定位方法[J]. 水利水电科技进展, 2023, 43: 86-91+104.

[178] 王秀彦, 郭文鑫, 吴斌, 等. 线性神经网络及模态声发射在时差定位中的应用[J]. 声学技术, 2010, 29: 569-572.

[179] Sen N, Kundu T, Missoum S. A note on the effect of material uncertainty on acoustic source localization error in anisotropic plates [J]. Ultrasonics, 2022, 119: 106623.

[180] Gorman M R. Plate wave acoustic emission [J]. The Journal of the Acoustical Society of America, 1991, 90(1): 358-364.

[181] Zhang Z, Jiang F, Li B, et al. A novel time difference of arrival localization algorithm using a neural network ensemble model [J]. International Journal of distributed sensor networks, 2018, 14(11): 1550147718815798.

[182] Xiansheng G, Haoran L, Yan Z, et al. Study on joint passive localization using time difference of arrival and frequency difference of arrival to improve the accuracy of four-satellite localization [J]. Advances in Mechanical Engineering, 2017, 9(12): 1687814017737451.

[183] 李光海, 刘时风. 基于小波分析的声发射源定位技术[J]. 机械工程学报, 2004: 136-140.

[184] 黄逸群, 孙岳阳, 王洋, 等. 混凝土声发射信号源定位精度的细观模型计算分析[J]. 应用声学, 2022, 41: 982-989.

[185] 张美玲, 牟立伟, 蔺建华. 地层主应力综合计算方法及其在套损预测中的应用[J]. 地球物理学进展, 2016, 31: 1281-1288.

[186] Lu G, Momeni S, Peruzzo C, et al. Rock anisotropy promotes hydraulic fracture containment at depth [J]. Journal of Geophysical Research: Solid Earth, 2024, 129(4): e2023JB028011.

[187] 桑树勋, 牛庆合, 曹丽文, 等. 深部煤层CO2注入煤岩力学响应特征及机理研究进展[J]. 地球科学, 2022, 47: 1849-1864.

[188] 王学滨, 岑子豪, 薛承宇, 等. 正断层下盘开采应力演化及断层阻隔效应连续-非连续方法模拟[J]. 地球物理学进展, 2022, 37: 2612-2621.

[189] Ouyang M, Cao Y. Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation [J]. Energy, 2023, 284: 128626.

[190] 王中辉, 苏胜, 尹子骏, 等. CO2矿化及吸收-矿化一体化(IAM)方法研究进展[J]. 化工进展, 2021, 40: 2318-2327.

[191] 陈博文, 王锐, 李琦, 等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报, 2023, 29: 85-99.

[192] 祁生文, 郑博文, 路伟, 等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究, 2023, 43: 523-550.

[193] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44: 573-581.

[194] 沈金松, 郭乃川. 各向异性层状介质中视电阻率与磁场响应研究[J]. 地球物理学报, 2008: 1608-1619.

[195] Chao Y, Chaoliu L, Cancan Z, et al. Forward simulation of array laterolog resistivity in anisotropic formation and its application [J]. Petroleum Exploration Development, 2020, 47(1): 80-88.

[196] Tobler W R. A computer movie simulating urban growth in the Detroit region [J]. Economic geography, 1970, 46(sup1): 234-240.

[197] Castrignanò A, Quarto R, Venezia A, et al. A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support [J]. Precision agriculture, 2019, 20: 193-213.

[198] Diggle P J, Tawn J A, Moyeed R. Model‐based geostatistics [J]. Journal of the Royal Statistical Society: Series C, 2007, 47: 299-350.

[199] Wackernagel H, Oliveira V D, Kedem B. Multivariate geostatistics [J]. SIAM Review, 1997, 39(2): 340-340.

[200] Cressie N. The origins of kriging [J]. Mathematical geology, 1990, 22: 239-252.

[201] Bu F, Xu T, Wang F, et al. Influence of highly permeable faults within a low-porosity and low- permeability reservoir on migration and storage of injected CO2 [J]. Geofluids, 2016, 16(4): 769-781.

[202] Yang D, Zhang L. Carbon Dioxide Leakages through Fault Zones: Potential Implications for the Long-term Integrity of Geological Storage Sites [J]. Aerosol and Air Quality Research, 2021, 21(12): 210220.

[203] Xu L, Li Q, Tan Y, et al. Phase change-induced internal-external strain of faults during supercritical CO2 leakage [J]. Gondwana Research, 2023, 122: 215-231.

[204] Peacock D C P. Propagation, interaction and linkage in normal fault systems [J]. Earth-Science Reviews, 2002, 58(1-2): 121-142.

[205] 孙强, 王少飞, 葛振龙, 等. 基于热声发射技术的陕北火烧岩烧变温度识别[J]. 煤田地质与勘探, 2022, 50: 82-88.

[206] Meng Q, Zhang M, Han L, et al. Acoustic Emission Characteristics of Red Sandstone Specimens Under Uniaxial Cyclic Loading and Unloading Compression [J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 969-988.

[207] Zhang Z, Zhang R, Xie H, et al. Differences in the acoustic emission characteristics of rock salt compared with granite and marble during the damage evolution process [J]. Environmental Earth Sciences, 2015, 73(11): 6987-6999.

[208] Li X, Wang S, Ge S, et al. Numerical simulation of rock fragmentation during cutting by conical picks under confining pressure [J]. Comptes Rendus Mecanique, 2017, 345(12): 890-902.

[209] Wu Z, Zhang P, Fan L, et al. Numerical study of the effect of confining pressure on the rock breakage efficiency and fragment size distribution of a TBM cutter using a coupled FEM-DEM method [J]. Tunnelling and Underground Space Technology, 2019, 88: 260-275.

[210] 朱子涵, 李明远, 林梅钦, 等. 储层中CO2—水—岩石相互作用研究进展[J]. 矿物岩石地球化学通报, 2011, 30: 104-112.

[211] Fereidooni D. Assessing the effects of mineral content and porosity on ultrasonic wave velocity [J]. Geomechanics and Engineering, 2018, 14(4): 399-406.

[212] El Sayed N A, Abuseda H, Kassab M A. Acoustic wave velocity behavior for some Jurassic carbonate samples, north Sinai, Egypt [J]. Journal of African Earth Sciences, 2015, 111: 14-25.

[213] Zhang YB, Yao XL, Liang P, et al. Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology [J]. Journal of Central South University, 2021, 28(9): 2752-2769.

[214] Fathollahy M, Uromeiehy A, Riahi M A, et al. P-Wave Velocity Calculation (PVC) in Rock Mass Without Geophysical-Seismic Field Measurements [J]. Rock Mechanics and Rock Engineering, 2021, 54(3): 1223-1237.

[215] An Q, Zhang L, Zhang X, et al. Experiment on no-flow and flow CO2-water-rock interaction: A kinetics calculation method for rock pore evolution [J]. Chemical Engineering Journal, 2023, 464: 142754.

[216] Ma B, Cao Y, Zhang Y, et al. Role of CO2-water-rock interactions and implications for CO2 sequestration in Eocene deeply buried sandstones in the Bonan Sag, eastern Bohai Bay Basin, China [J]. Chemical Geology, 2020, 541: 119585.

[217] 王怀远. CO2流体—石千峰组砂岩相互作用的实验研究 [D]. 长春: 吉林大学, 2012.

[218] Wang S, Sun Q, Wang N, et al. High-temperature response characteristics of loess porosity and strength [J]. Environmental Earth Sciences, 2021, 80(17): 547.

[219] Wang Z, Sun Q, Wang N. Effect of wet-dry cycling on the pore characteristics of red sandstone after heat treatment [J]. Bulletin of Engineering Geology and the Environment, 2024, 83(1): 19.

[220] 任建峰. 油田CO2封存渗漏机制及监测方法研究 [D]. 青岛: 中国石油大学(华东), 2016.

[221] 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质, 1998: 45-50.

[222] Etchecopar A, Vasseur G, Daignieres M. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis [J]. Journal of Structural Geology, 1981, 3(1): 51-65.

[223] Gephart J W, Forsyth D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B11): 9305-9320.

[224] Vilarrasa V, De Simone S, Carrera J, et al. Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring [J]. Nature Communications, 2022, 13(1): 3447.

[225] Parisio F, Vilarrasa V, Wang W, et al. The risks of long-term re-injection in supercritical geothermal systems [J]. Nature Communications, 2019, 10: 4391.

[226] 童亨茂, 王建君, 赵海涛, 等. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学:地球科学, 2014, 44: 1948-1957.

[227] 童亨茂, 张宏祥, 侯泉林, 等. 广义破裂活动准则[J]. 地质力学学报, 2024, 30: 3-14.

中图分类号:

 P642    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式