- 无标题文档
查看论文信息

论文中文题名:

 采空区煤自燃氧化升温高温点迁移规律研究    

姓名:

 刘丽    

学号:

 18220214105    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 邓军    

第一导师单位:

  西安科技大学    

第二导师姓名:

 伍厚荣    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Study on the migration law of high-temperature point in coal spontaneous combustion in goaf    

论文中文关键词:

 煤自燃 ; 温度场 ; 动态采空区 ; 数值模拟    

论文外文关键词:

 Coal spontaneous combustion ; Temperature field ; Dynamic mined-out area ; Numerical simulation    

论文中文摘要:

       由于煤炭开采范围的扩大及开采工艺的转变,采空区成为煤自燃灾害的主要易发地。实际采空区的发火现场极具复杂性与动态危险性,其自燃高温点不易监测,难以判定,致使有效防控煤自燃难度加剧。因此,本文通过煤自然发火实验研究高温点的迁移规律;基于传热学理论,采用 COMSOL Multiphysics 软件模拟自然发火实验,并与实验结果进行对比分析;继而,根据采空区多场耦合理论控制方程及煤自燃过程中各物理场在工作面动态推进下的变化,考虑工作面在不同的供风量、推进速度等影响因素下,展开了采空区煤自燃氧化升温数值模拟研究,分析了采空区自燃过程中氧浓度场、温度场及流场的演化机制,研究成果对现场的采空区自燃防治工作具有重要的指导意义。

       利用煤自然发火实验系统,对大佛寺煤样的自然发火全过程进行实验测试,跟踪测定整个发火过程中温度及指标气体的变化规律,实验结果表明,炉内的高温点一直处于中心轴附近,且不断地向进风口迁移;继而根据传热学的理论,利用 COMSOL Multiphysics 软件建立煤自然发火实验系统温度场数值模型,分析不同氧体积分数与漏风强度条件下,煤自然发火高温点的迁移规律,最后通过对比模拟与实验中高温点的迁移规律,为采空区高温点的迁移规律奠定了较好的理论基础。

       基于采空区多场耦合理论控制方程及其自燃的动态演化过程,采用变形几何的方法,建立煤自燃采空区动态演化模型,模拟了大佛寺 40106 工作面在不同工况条件下(不同推进速度及不同供风量)氧浓度、温度场的分布。随着工作面推进速度的增加,采空区氧浓度场分布规律趋于稳定,而采空区的高温点随推进速度的增加逐渐降低,高温区域也存在一定的拖尾现象。此外,在一定的定量条件下,采空区的温度变化与供风量成正相关,当供风量越大时,采空区的高温点越大,就越往采空区的深部窒息带延伸。最后深入分析采空区高温区域与氧化带宽度的动态叠加效应,并与现场实测数据进行对比验证,研究结果对采空区煤自燃防治工作具有重要指导意义。

论文外文摘要:

Due to the expansion of coal mining scope and the transformation of mining technology,goafs have become the main prone areas for coal spontaneous combustion disasters. The actual fire site in the goaf is extremely complex and dynamic, and its spontaneous combustion high temperature points are difficult to monitor and difficult to determine, which makes it more difficult to effectively prevent and control coal spontaneous combustion. Therefore, this thesis uses the coal spontaneous combustion experiment to study the migration law of high temperature points; based on the theory of heat transfer, the COMSOL Multiphysics software is used to simulate the spontaneous combustion experiment, and the experimental results are compared and analyzed; Finally, according to the control equations of multi-field coupling theory in the goaf and the changes of various physical fields with the dynamic advancement of the working face during the process of coal spontaneous combustion, considering the influence factors of the working face such as different air supply and advancing speed, the coal in the goaf is developed. Numerical simulation study of spontaneous combustion and oxidation heating, analyzed the evolution mechanism of oxygen concentration field, temperature field and flow field during the spontaneous combustion of the goaf. The research results have important guiding significance for the prevention and control of spontaneous combustion in the goaf.

Using the coal spontaneous combustion experiment system, the whole process of the spontaneous combustion of the Dafosi coal sample was tested, and the temperature and index gas changes during the entire combustion process were tracked and measured. The experimental results showed that the high-temperature point in the furnace was always near the central axis. And continue to migrate to the air inlet; then based on the theory of heat transfer, use COMSOL Multiphysics software to establish a numerical model of the temperature field of the coal spontaneous combustion experiment system, and analyze the migration law of the high temperature point of the coal spontaneous combustion under the conditions of different oxygen volume fraction and air leakage intensity. Finally, by comparing the migration law of high temperature points in the simulation and experiment, a good theoretical foundation is laid for the migration law of high-temperature points in the goaf.

Based on the control equation of multi-field coupling theory of goaf and the dynamic evolution process of spontaneous combustion, the dynamic evolution model of goaf with coal spontaneous combustion was established by using the method of deformation geometry, and the distribution of oxygen concentration and temperature field in Dafosi 40106 working faceunder different working conditions (different propulsion speed and different air supply) was simulated. With the increase of the advancing speed of the working face, the distribution law of the oxygen concentration field in the goaf tends to be stable, and the high-temperature point in the goaf gradually decreases with the increase of the advancing speed, and there is also a certain tailing phenomenon in the high-temperature area. In addition, under certain quantitative conditions, the temperature change in the goaf is positively correlated with the air supply volume. When the air supply is larger, the high-temperature point in the goaf area is larger, and the more it extends to the deep suffocation zone of the goaf area. Finally, the dynamic superposition effect of the high-temperature area and the width of the oxidation zone in the goaf is deeply analyzed, and compared with the field measured data, the research results have important guiding significance for the prevention and control of coal spontaneous combustion in the goaf.

参考文献:

[1] Dawid S, Magdalena T, Jarosław B, et al. The method of combating coal spontaneous

combustion hazard in goafs, a case study[J]. Energies, 2020,13.

[2] Guo W, Guo M, Tan Y, et al. Sustainable development of resources and the environment:

mining-induced e-geological environmental damage and mitigation measures, a case

study in the Henan coal mining area, China[J]. Sustainability, 2019, 11(6),1-34.

[3] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报, 2018,43(1):137-142.

[4] Carras J N, Day S J, Saghafi A, et al. Greenhouse gas emissions from low-temperature

oxidation and spontaneous combustion at open-cut coal mines in Australia[J].

International journal of coal geology, 2009,78(2):161-168.

[5] Kong B, Li Z, Yang Y, et al. A review on the mechanism, risk evaluation, and prevention

of coal spontaneous combustion in China[J]. Environmental Science and Pollution

Research, 2017,24(1):1-18.

[6] Deng J C, Ge S K, Qi H N, et al. Underground coal fire emission of spontaneous

combustion, Sandaoba coalfield in Xinjiang, China: investigation and analysis[J].

Science of the Total Environment, 2021.

[7] 文虎, 郭军, 金永飞, 等. 我国矿井热动力灾害评价研究进展及趋势[J]. 煤矿安全,

2016,47(03):177-183.

[8] 王祥春. 杜儿坪煤矿主采煤层采空区自燃危险性研究[D]. 煤炭科学研究总院, 2009.

[9] 杨 燕 . 某 煤 矿 主 采 煤 层 自 燃 监 测 与 防 灭 火 技 术 研 究 [J]. 采矿技术 ,

2019,019(004):68-70.

[10] 张国枢. 通风安全学[M]. 北京:中国矿业大学出版社, 2007.

[11] 李兴. 沿空掘巷相邻采空区瓦斯及自燃防治技术研究[D]. 2013.

[12] Pan R K, Cheng Y P, Yu M G, et al. New technological partition for “three zones”

spontaneous coal combustion in goaf[J]. International Journal of Mining Science and

Technology, 2013,23(004):489-493.

[13] Song Y W, Gao R L, Yang J Z, et al. Prediction of gas and coal spontaneous combustion

coexisting disaster through the chaotic characteristic analysis of gas indexes in goaf gas

extraction[J]. Process Safety & Environmental Protection, 2019.

[14] Deng J, Xiao Y, Li Q, et al. Experimental studies of spontaneous combustion and

anaerobic cooling of coal[J]. Fuel, 2015,157(1):261-269.

[15] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J].International Journal of Mining Science and Technology, 2020(3):303-311.

[16] Fierro V, Miranda J L, Romero C, et al. Model predictions and experimental results on self-heating prevention of stockpiled coals[J]. Fuel, 2001,80(1):125-134.

[17] Li B, Wang J H, Bi M S, et al. Experimental study of thermophysical properties of coal

gangue at initial stage of spontaneous combustion[J]. Journal of Hazardous Materials,

2020:123-251.

[18] 傅培舫, 姚海, 周怀春. 煤低温氧化的微区组分分析与反应性研究[J]. 工程热物理

学报, 2006(06):1041-1044.

[19] 阳富强,刘晓霞.不同热分析法解算煤自燃活化能的比较研究[J]. 矿业安全与环保,

2016, 43(5): 1008-4495.

[20] 侯康, 武建军, 尚晓玲, 等.热重法研究逐级脱矿对褐煤燃烧特性的影响[J].化工

进展, 2017,1000-6613.

[21] Deng J, Wang K, Zhang Y, et al. Study on the kinetics and reactivity at the ignition

temperature of Jurassic coal in North Shaanxi[J]. Journal of Thermal Analysis &

Calorimetry, 2014,118(1):417-423.

[22] 徐精彩, 薛韩玲, 文虎, 等. 煤氧复合热效应的影响因素分析[J]. 中国安全科学学

报, 2001,11(2):31.

[23] 邓存宝. 煤的自燃机理及自燃危险性指数研究[D]. 辽宁工程技术大学, 2006.

[24] 王德明, 辛海会, 戚绪尧, 窦国兰, 仲晓星. 煤自燃中的各种基元反应及相互关系:

煤氧化动力学理论及应用[J]. 煤炭学报, 2014,39(08):1667-1674.

[25] Mao Z, Zhu H, Zhao X, et al. Experimental Study on Characteristic Parameters of Coal

Spontaneous Combustion[J]. Procedia Engineering, 2013,62:1081-1086.

[26] 秦波涛,王德明,李增华等.以活化能的观点研究煤炭自燃机理[J].中国安全科学

学报, 2005,1003-3033.

[27] 贺凯, 张玉龙, 时剑文, 等. 煤低温氧化过程中元素转化行为的动力学分析[J]. 煤

炭学报, 2016,41(6):1460-1466.

[28] Marzec A. Towards an understanding of the coal structure: a review[J]. Fuel Processing

Technology, 2002(25):25-32.

[29] 王宝俊. 煤结构与反应性的量子化学研究[D]. 太原理工大学, 2006.

[30] 王晓华, 葛岭梅, 周安宁, 等. 神府煤流化床低温氧化煤分子中活性基因的变化[J].

西安科技学院学报, 2001,21(1):40-43.

[31] 侯欣然, 乔建, 王福生. 煤炭自燃机理的研究进展[J]. 煤炭与化工, 2018,41(6):104-

107.

[32] 王福生, 张志明, 武建国,等. 煤体结构对自燃倾向性影响研究[J]. 煤炭科学技术,2020,546(05):88-93.

[33] Onifade M, Genc B. Spontaneous combustion of coals and coal-shales[J]. International

Journal of Mining Science and Technology, 2018,28(6):933-940.

[34] Wang D M, Xin H H, Qi Y Y, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016,163(1):447-460.

[35] Arisoy A, Beamish B. Reaction kinetics of coal oxidation at low temperatures. Fuel, 2015,159(1):412-417.

[36] Deng J, Lei C K, Xiao Y, et al. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face[J]. Fuel, 2018, 211:458-470.

[37] Clarkson F, Simtars Q. Results of self-heating tests of Australian coals conducted in a 16m3 reactor, 2005:201-208.

[38] Cliff D, Davis R, Bennett T, et al. Large-scale laboratory testing of the spontaneous combustibility of Australian coals.1998:175-179.

[39] Rambha R V, Ren T X. Investigation into the propensity of coal for spontaneous heating in stockpiles[J]. Journal of The Institution of Engineers (India): Series D, 2018.

[40] Genc B, Onifade M, Cook A P. Spontaneous combustion risk on south african coalfields: Part 2[J]. In Proceedings of the 21st international coal congress of Turkey, 2018:13-25.

[41] 郭小云. 煤自燃倾向性的氧化动力学测定装置设计理论与试验研究[D]. 中国矿业

大学, 2011.

[42] Yang Y L, Li Z H, Si L L, et al. Study on test method of heat release intensity and thermophysical parameters of loose coal[J]. Fuel, 2018,229:34-43.

[43] Deng J, Zhao J, Zhang Y, et al. Thermal analysis of spontaneous combustion behavior of partially oxidized coal[J]. Process Safety & Environmental Protection, 2016,104:218-224.

[44] Deng J, Liu L, Lei C K, et al. Spatiotemporal distributions of the temperature and index gases during the dynamic evolution of coal spontaneous combustion[J]. Combustion Science and Technology, 2019.

[45] Kong B, Li Z H, Wang E Y, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J].

Process Safety and Environmental Protection, 2018,119:285-194.

[46] Chen X K, Li H T, Wang Q H, et al. Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace[J]. Combustion Science and Technology,2018,190(4-6):1075-1095.

[47] 陆伟, 王德明, 仲晓星, 等. 基于活化能的煤自燃倾向性研究[J]. 中国矿业大学学报, 2006(2):201-205.

[48] Xu T, Wang D M, Xin H H, et al. Experimental study on the temperature rising characteristic of spontaneous combustion of coal[J]. Journal of Mining & Safety Engineering, 2012,29(4):575-580.

[49] Tan B, Zhu G Q, Wang H Y, et al. Prediction model of coal spontaneous combustion critical point and the characteristics of adiabatic oxidation phase[J]. Journal of China Coal Society, 2013,38(1):38-43.

[50] 朱红青, 王海燕, 宋泽阳, 等. 煤绝热氧化动力学特征参数与变质程度的关系[J].

煤炭学报, 2014,39(003):498-503.

[51] 梁运涛, 宋双林, 罗海珠, 等. 煤自然发火期计算模型及其解析解[J]. 煤炭学报,

2015,9:2110-2116.

[52] Xia T Q, Zhou F B, Wang X X, et al. Controlling factors of symbiotic disaster between

coal gas and spontaneous combustion in longwall mining gobs[J]. Fuel,

2016,182(15):886-896.

[53] 褚廷湘, 李品, 余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报, 2019,48(3):529-537.

[54] Zhang Y S, Niu K, Du W Z, et al. A method to identify coal spontaneous combustionprone regions based on goaf flow field under dynamic porosity[J]. Fuel, 2020.

[55] He Q L, Wang D M. Numerical Simulation of Spontaneous Combustion Process in Goaf Areas by Fully-Mechanized and Caving Roof Coal[J]. Journal of China University of Mining & Technology, 2004,33(1):11-14.

[56] Zhou P L, Zhang Y H, Shen X J, et al. Simulation of coal low temperature oxidation heating process in gob with “ U+L ” ventilation[J]. Matec Web of Conferences,

2016,63:01-030.

[57] 张辛亥, 邓军, 文虎, 等. 综放采空区自然发火规律动态数值模拟[J]. 湖南科技大学学报(自然科学版), 2012,27(4):1-5.

[58] Xia T, Wang X, Zhou F, et al. Evolution of coal self-heating processes in longwall gob areas[J]. International Journal of Heat & Mass Transfer, 2015,86(1):861-868.

[59] Yan Y G, Yin B, Jia B S, et al. Study on the “three zones” distribution of residual coal spontaneous combustion in goaf base on different classification index[J]. Shanxi Coking Coal Science & Technology, 2012.

[60] 文虎, 于志金, 翟小伟, 等. 沿空留巷采空区氧化带分布特征与关键参数分析[J].煤炭科学技术, 2016,494(01):138-143.

[61] Wang G, Cheng W M, Xie J. Field test research on two-dimensional gas concentration and temperature distribution in the goaf of fully mechanized caving face[J]. Procedia Engineering, 2012, 43:478-483.

[62] 褚延湘, 杨胜强, 于宝海, 等. 实测采空区温度和气体成分的自然发火“三带”范围确定[J]. 煤矿安全, 2008,39(10):7-10.

[63] 褚廷湘, 余明高, 杨胜强, 等. 基于FLUENT的采空区流场数值模拟分析及实践[J].河南理工大学学报, 2010,29(3):298-305.

[64] 余明高, 常绪华, 贾海林, 等. 基于 Matlab 采空区自燃“三带”的分析[J]. 煤炭学报, 2010,(4):600-604.

[65] Li Z X, Gang Yi, Wu J G, et al. Study on spontaneous combustion distribution of goaf based on the “O”type risked falling and non-uniform oxygen[J]. Meitan Xuebao/Journal

of the China Coal Society, 2012,37(3):484-489.

[66] 高光超, 李宗翔, 张春, 等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J].

安全与环境学报, 2017(3).

[67] 李宗翔, 吴志君, 王振祥. 采空区遗煤自燃升温过程的数值模型及其应用[J]. 安全与环境学报, 2004,4(6):58-61.

[68] 李宗翔, 韦涌清, 孙世军. 非均质采空区气-固耦合温度场迎风有限元求解[J]. 昆明理工大学学报(自然科学版), 2004,29(2):5-9.

[69] Xia T Q, Zhou F, Liu J, et al. A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams[J]. Fuel, 2014,125(1):106-115.

[70] 周佩玲. 采空区遗煤氧化升温时空演化机制研究[D]. 北京科技大学大学,2017.

[71] 时国庆, 胡方坤, 王德明, 等. 采空区自燃“三带”分布规律的四维动态模拟[J].中国矿业大学学报, 2014,43(2):189-194.

[72] Li Z X. CFD simulation of spontaneous coal combustion in irregular patterns of goaf with multiple points of leaking air[J]. Journal of China University of Ming & Technology, 2008(4):504-508.

[73] Wolf K H, Bruining H. Modelling the interaction between underground coal fires and their roof rocks[J]. Fuel, 2007,86:2761-77.

[74] 董子文, 齐庆杰, 韩光, 等.采空区氧化带与发火期动态演化规律模拟研究[J].中国安全科学学报, 2018,28(7):45-51.

[75] 刘伟. 采空区自然发火的多场耦合机理及三维数值模拟研究[D]. 中国矿业大学(北 京), 2014.

[76] 秦跃平, 刘伟, 杨小彬, 等. 基于非达西渗流的采空区自然发火数值模拟[J]. 煤炭学报. 2012(07).

[77] 李尚国, 陆伟, 梁林秀. 采空区氧化自燃带宽度与工作面推进速度关系的数值模拟[J]. 矿业安全与环保, 2011,038(5):10-12.

[78] 李品. 动态采空区煤自燃氧化升温机制的模拟研究[D]. 河南理工大学, 2018.

[79] Zhu J, Ma H. Numerical simulation of “three zones” partition of spontaneous combustion in goaf under the moving coordinates[C]. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, Hunan, China, 2011:501-504.

[80] Liang Y T, Zhang J, Wang L C, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019,57:208-22

[81] Taraba B, Michalec Z, Michalcová V, et al. CFD simulations of the effect of wind on the spontaneous heating of coal stock piles[J]. Fuel, 2014,118:107-12.

[82] Xia T Q, Zhou F B, Liu J S, et al. A fully coupled hydro-thermomechanical model for the spontaneous combustion of underground coal seams[J]. Fuel, 2014,125:106-15.

[83] Lei C K, Deng J, Cao K, et al. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J]. Fuel, 2019,239:297-311.

[84] Li H T, Chen X K, Shu C M, et al. Effects of oxygen concentration on the macroscopic characteristic indexes of high-temperature oxidation of coal[J]. Journal of the Energy Institute, 2019,92(3):554-566.

[85] Li J H, Li Z H, Yang Y L, et al. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal[J]. Fuel, 2019,233:237-246

[86] 周春山. 煤自然实验过程中温度场的数值模拟研究[D]. 太原理工大学, 2007.

[87] 亓冠圣. 煤矿封闭火区中阴燃煤体的动力学反应机理及其熄灭条件[D]. 中国矿业

大学, 2017:10-53.

[88] Karacan C, Esterhuizen G S, Schatzel S J, et al. Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production[J]. International Journal of Coal Geology, 2007,71(1):225-245.

[89] Ejlali A, Mee D J, Hooman K, et al. Numerical modelling of the self-heating process of a wet porous medium[J]. International Journal of Heat and Mass Transfer, 2011,54(1):5200-5206.

[90] Li C, Zhang L. Study on distribution law of spontaneous combustion “three zones” in goaf of fully mechanized mining face with large mining height[J]. IOP Conference Series: Earth and Environmental Science, 2019,358(3):032-041.

[91] Yuan L, Smith A C. CFD modeling of spontaneous heating in a large-scale coal chamber[J]. Journal of Loss Prevention in the Process Industries, 2009,22(4):426-433.

[92] 董子文, 刘爱群, 齐庆杰, 等. 采场气体涌出与煤自燃的动态数值模拟研究[J]. 中国安全科学学报, 2017,27(7):30-35.

中图分类号:

 TD752.2    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式