- 无标题文档
查看论文信息

论文中文题名:

 双金属负载USY催化热解黄陵富油煤研究    

姓名:

 王瀚姣    

学号:

 19213213054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 煤炭洁净转化利用    

第一导师姓名:

 杜美利    

第一导师单位:

 西安科技大学    

第二导师姓名:

 康恩兴    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Study on the catalytic pyrolysis of Huangling tar-rich coal over bimetal supported USY    

论文中文关键词:

 黄陵煤 ; 稠环芳烃 ; USY分子筛 ; Py-GC/MS ; 催化热解    

论文外文关键词:

 Huangling coal ; Polycyclic aromatic hydrocarbons ; USY zeolite ; Py-GC/MS ; Catalytic pyrolysis    

论文中文摘要:

黄陵煤是焦油产率>7%的富油煤,本文通过双金属改性USY分子筛对黄陵富油煤进行催化热解,系统分析了影响二次催化热解的关键因素,力求实现金属间与USY加氢位点的协同作用,旨在提高焦油中轻质组分的同时降低稠环芳烃含量,为提高煤炭转化效率奠定基础。

黄陵煤具有低灰分、特低硫、高氢含量、高发热量、中高焦油产率(11.98%)的整体特点;煤中矿物质以高岭石、石英为主;原煤中含有相对丰富的脂肪族化合物;分布活化能法(DAEM)对黄陵煤热行为研究发现,当失重温度在460 ℃~560 ℃阶段煤热解发生单步反应,转化率大于0.6的热解阶段活化能变化剧烈;黄陵煤快速热解焦油中苯(B)、甲苯(T)、二甲苯(X)和乙苯(E)总收率为31.05%,BTXE收率分别为11.81%、13.80%、7.31%和0.96%。

通过过量浸渍法分别将Mg、Ni、Zr负载于USY,采用XRF、SEM、NH3-TPD等表征说明金属的负载不会改变USY的物相,但分子筛比表面积减小,Ni、Zr改性USY酸量增加。将其用于黄陵煤催化热解,发现产物分布仍以单环芳烃、稠环芳烃和酚类为主;相比于原煤常规热解,产物中有机物种类均减少、单环芳烃含量增多、焦油组分最高收率由T转移至B。对比发现,Zr-USY具备最优提萘降酚效果,萘收率是原煤的2.32倍,酚类由15.55%降至11.17%;经Zr-USY催化热解,产物BTXE含量增加最多,由原煤热解焦油的33.57%增加至43.96%,BTXE的收率分别达到17.05%、15.85%、9.87%和1.19%;经Ni-USY催化热解,产物中稠环芳烃含量最低,说明其有利于重质组分开环裂化。

基于Zr-USY制备不同Ni负载量的双金属改性USY,表征发现Ni的负载使Zr-USY比表面积增加、弱酸量减少、强酸含量增加。将其用于黄陵煤催化热解,发现脂肪族化合物、稠环芳烃、酚类等分布更为均匀,Zr-Ni与USY酸位间的协同作用促进稠环芳烃加氢开环裂化,并降低3Zr-USY对萘及其衍生物的催化活性,呈“降萘”现象,致使稠环芳烃减少。当Ni负载量为2%时,催化热解产物中B收率最高,达到19.45%,是原煤热解B收率的1.65倍,此时稠环芳烃含量最低,得出3Zr/2Ni-USY在催化热解中对B具备高催化活性,同时可以保障重质组分开环裂解,实现焦油提质。

论文外文摘要:

Huangling coal is a tar-rich coal with a tar yield of more than 7%. In this paper, the catalytic pyrolysis of Huangling tar-rich coal was carried out by bimetallic modified USY molecular sieve, and the key factors affecting the secondary catalytic pyrolysis were systematically analyzed, striving to achieve the synergistic effect of intermetallic and USY hydrogenation sites, aiming to increase the light components in tar while reducing the yield of polycyclic aromatic hydrocarbons (PAHs), laying a foundation for improving coal conversion efficiency.

Huangling coal has the overall characteristics of low ash, ultra-low sulfur, high calorific value, high hydrogen content, and medium-high tar yield (11.98%). Kaolinite and quartz are the main minerals found in Huangling coal. The raw coal is relatively rich in aliphatic compounds. The thermal behavior of Huangling coal was studied by distributed activation energy method (DAEM), and it was found that a single-step reaction occurred in the coal pyrolysis at the weight loss of 460 ℃ ~ 560 ℃, and the activation energy changes sharply in the pyrolysis stage when the conversion rate was greater than 0.6. The sum of yields of benzene, toluene, xylene and ethylbenzene in Huangling coal rapid pyrolysis tar was 33.57%, of which the yields of BTXE were 11.81%, 13.80% 7.31% and 0.96%, respectively.

Magnesium, nickel and zirconium were loaded respectively on the USY by excess impregnation method. The characterization by XRF, SEM, NH3-TPD and other means showed that the loading of metal did not change the phase of USY, and the specific surface area of molecular sieve decreased and the acid content of Ni, Zr modified USY increased under this condition. They were used in the catalytic pyrolysis of Huangling coal, it was found that the distribution of products was still dominated by monocyclic aromatic hydrocarbons, PAHs and phenols; the types of organic substances in the products reduced, the content of monocyclic aromatic hydrocarbons increased, and the highest yield of tar components was transferred from T to B compared with the conventional pyrolysis of raw coal. By comparison, it was found that Zr-USY had the best effect of naphthalene-increasing and phenol-reducing, the yield of naphthalene was 2.32 times that of raw coal, and the phenols decreased from 15.55% to 11.17%; the content of BTXE increased the most in the catalytic pyrolysis product by Zr-USY, from 33.57% that of raw coal to 43.96%, and the yields of BTXE reached 17.05%, 15.85%, 9.87% and 1.19%, respectively; the content of PAHs in the catalytic pyrolysis product by Ni-USY was the lowest, indicating that it was beneficial to the ring-opening cracking of heavy components.

Bimetal modified USY were prepared with different Ni loadings based on Zr-USY, and it was found that the loading of Ni increased the specific surface area, the amount of weak acid and the content of strong acid of Zr-USY by characterization. They were used in the catalytic pyrolysis of Huangling coal, and it was found that the distribution of aliphatic compounds, PAHs and phenols was more uniform, the synergistic effect between Zr-Ni and USY acid sites promoted the hydrogenation and ring-opening cracking of PAHs and reduced the catalytic activity of 3Zr-USY for naphthalene and its derivatives, exhibiting a “naphthalen-decreasing” phenomenon and resulting in the reduction of PAHs. The yield of B in the catalytic pyrolysis product was the highest when the Ni loading was 2%, reaching 19.45%, which was 1.65 times that of the raw coal; and the content of PAHs was the lowest. It was obtained that 3Zr/2Ni-USY had high catalytic activity for B and can ensure the ring-opening cracking of heavy components in the catalytic pyrolysis to achieve tar upgrading.

参考文献:

[1] 英国石油公司.BP Statistical Review of World Energy 2021. London, June, 2021.

[2] 英国石油公司. BP Statistical Review of World Energy 2020. London, June, 2020.

[3] 英国石油公司. BP Statistical Review of World Energy 2018. London, June, 2018.

[4] 英国石油公司. BP Statistical Review of World Energy 2016. London, June, 2016.

[5] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(02): 11-16.

[6] 任红伟. 煤炭清洁开发利用现状及发展建议[J]. 内蒙古煤炭经济, 2020(12): 164-165.

[7] 艾丽华. 我国煤炭市场的可持续发展分析[J]. 经济管理文摘, 2020(23): 13-14.

[8] 李小炯. 我国煤炭资源清洁高效利用现状及对策建议[J]. 煤炭经济研究, 2019, 39: 71-75.

[9] 中国煤炭工业协会. 2020煤炭行业发展年度报告[M]. 北京, 中国经济出版社, 2020.

[10] 郭娟, 崔荣国, 闫卫东, 等. 2020年中国矿产资源形势回顾与展望[J]. 中国矿业, 2021, 30(01): 5-10.

[11] 郭富强, 丁建伟, 刘昆仑, 等. 煤炭清洁高效利用发展现状及趋势展望[J]. 煤炭加工与综合利用, 2019, 12: 55-60.

[12] 张军兴, 周安宁, 闫宁, 等. 磁性Mo/HZSM-5@SiO2@Fe3O4催化剂可控制备及催化热解[J]. 煤炭学报, 2019, 18(07): 1-10.

[13] 王俊丽, 吕婧, 李淑英, 等. 基于贝壳衍生CaO的低阶煤催化热解特性及热解机理研究[J]. 煤炭转化, 2021: 1-9.

[14] 吴洁, 狄佐星, 罗明生, 等. 煤热解技术现状及研究进展[J]. 煤化工, 2019, 47(06): 46-51.

[15] 段诗洁. 低阶烟煤的催化热解特性及机理研究[D]. 西安科技大学, 2015.

[16] 胡圣桃, 张艳妮. 黄陵矿区煤层气赋存规律分析及远景评价[J]. 陕西煤炭, 2018, 6: 87-89.

[17] 师庆民, 王双明, 王生全, 等. 神府南部延安组富油煤多源判识规律研究[J]. 煤炭学报, 2021, 1-10.

[18] 杨甫, 段中会, 马丽, 等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术, 2021: 1-14.

[19] 徐丛斌, 郭玉保, 王帅. 黄陵矿区煤质特性分析及利用方向建议[J]. 煤炭加工与综合利用, 2018, 9: 61-62, 65.

[20] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(05): 1365-1377.

[21] 王瀚姣, 杜美利, 薛文海, 等. 酸洗对黄陵富油煤结构和动力学特征的影响[J]. 煤炭转化, 2021, 4(44):37-44.

[22] Li Z L, Wei X Y, Yan H L, et al. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153: 176-182.

[23] 刘雷, 杜美利, 樊锦文, 等. 平顶山山西组煤显微组分分离富集研究[J]. 中国煤炭, 2017, 43(10): 91-95.

[24] 尤先锋. 煤热解产物的关联性研究[D]. 太原理工大学, 2002.

[25] 赵翠翠, 秦志宏. 全煤阶煤中有机小分子与大分子挥发物的组成结构规律研究[D]. 中国矿业大学, 2015.

[26] 徐绍平. 煤化工工艺学[M]. 辽宁: 大连理工出版社, 2016: 34+100-109.

[27] 张秀霞, 吕晓雪, 肖美华, 等.典型烟煤热解机理的反应动力学模拟[J]. 燃料化学学报, 2020, 48(09): 1035-1046.

[28] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(09): 1431-1439.

[29] 朱银惠, 王中慧, 梁英华, 等. 煤化学[M]. 北京:化学工业出版社, 2013: 1-10.

[30] 谢以民, 续文振, 董宪华, 等. 煤的结构与热解反应性研究[J]. 化学工程与技术, 2020, 10(4), 271-282.

[31] 谷小会. 煤焦油分离方法及组分性质研究现状与展望[J]. 洁净煤技术, 2018, 24(04): 1-6+12.

[32] 斯穆特 L D , 史密斯 P J. 煤的燃烧与气化[M]. 北京: 科学出版社, 1992: 1-7.

[33] 李经球, 石张平, 孙承林, 等. 分子筛负载铂催化剂上四氢萘加氢裂解反应行为[J]. 化学反应工程与工艺, 2019, 35(04): 315-324+333.

[34] Gao M Q, Wang Y L, Dong J, et al. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis[J]. Chemosphere, 2016, 158: 1-8.

[35] Caballero A J, Conesa A J. Math-ematical considerations for nonisothermal kinetics in thermal decomposition[J]. Journal of Analytical and Applied Pyrolysis, 2004, 73(01): 85-100.

[36] Starink M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. 2003, 404(01): 163-176.

[37] Song H J, Liu G R, Wu J H. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model[J]. Energy Conversion and Management, 2016, 126: 1037-1046.

[38] Vand V. A Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1942, 55(03): 222-246.

[39] PITT G J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, 41(03): 267-274.

[40] MIURA K, MAKJ T.A. Simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels, 1998, 12(05): 864-869.

[41] 江国栋, 魏利平, 滕海鹏, 等. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68(04): 1415-1422.

[42] Li Z K, Wei X Y, Yan H L, et al. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153: 176-182.

[43] Yan J C, Jiao H R, Li Z K, et al. Kinetic analysis and modeling of coal pyrolysis with model-free methods[J]. Fuel, 2019, 241: 382-391.

[44] 张峰, 梅霞. 低阶煤催化热解及研究进展[J]. 山西煤炭, 2020, 40(04): 86-92.

[45] Rizkiana J., Guan G, Widayatno W B, et al. Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass[J]. The Royal Society of Chemistry, 2016, 6: 2096-2105.

[46] 常玮. 不同改性方法对Y型分子筛结构和酸性的影响[J]. 化工设计通讯, 2018, 44(03):108.

[47] 韩果, 孙晓艳, 樊宏飞, 等. 不同改性方法对Y型分子筛结构和酸性的影响[J]. 石化技术与应用, 2015, 33(03): 208-211.

[48] 甄铁丽, 张树强, 王宁. 纳米Y型分子筛的制备[J]. 硅酸盐通报, 2007, 3: 482-485.

[49] 李刚, 马晓旭. 基于过渡金属氧化物/USY催化剂的神东煤催化热解研究[D]. 西北大学, 2018.

[50] 朱华元, 张信. 超稳Y型分子筛的制备、性能与工业应用[J]. 工业催化, 1993, 2: 12-19.

[51] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.

[52] Yan L J, Kong X J , Zhao R F, et al. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Processing Technology, 2015, 138: 424-426.

[53] 孔晓俊. USY分子筛对煤热解气态焦油的催化改质[D]. 太原理工大学, 2016.

[54] Kong X J, Bai Y H, Yan L J. Catalytic upgrading of coal gaseous tar over Y-type zeolites[J]. Fuel, 2016: 205-210.

[55] 羡策, 毛以朝, 龙湘云, 等. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140.

[56] Santos B P, Almeida D, Marques M F, et al. Degradation of polypropylene and polyethylene wastes over HZSM-5 and USY zeolites[J]. Catalysis Letters, 2019, 149(03): 798-812.

[57] Kassargy Chantal, Awad Sary, Burnens Gaëtan, et al. Study of the effects of regeneration of USY zeolite on the catalytic cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2019, 244: 704-708.

[58] 何鸣元, 戴逸云. 沸石催化与分离技术[M]. 北京:中国石化出版社, 2009: 182.

[59] 李博. 金属改性处理对HZSM-5催化MTP反应的影响[J]. 河南化工, 2020, 37(09): 29-31.

[60] 丁巍, 郝元川, 孙宇, 等. Co/Cu-USY分子筛制备及催化乙苯氧化性能[J]. 化工进展, 2018, 37(06): 2249-2255.

[61] 张增辉, 石垒, 邱泽刚, 等. NiW-USY分子筛催化剂的煤焦油加氢裂化性能[J]. 石油炼制与化工, 2015, 46(05): 76-81.

[62] 刘俊华, 萧莉, 曹祖宾, 等. FCC汽油在Ni-Mo-P/USY催化剂上的降烯烃工艺研究[J]. 分子催化, 2006, 20(02): 136-141.

[63] Amin M N, Li Y, Razzaq R, et al. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 54-62.

[64] Aguadoa C L, Paniaguaa M, Iglesias J, et al. Zr-USY zeolite: Efficient catalyst for the transformation of xylose into bio-products[J]. Catalysis Today, 2018, 304: 80-88.

[65] Yu S Q, Yan J S, Lin W, et al. Characterization and cracking performance of zirconium-modified Y zeolite[J]. Catalysis Communications, 2021, 148: 106-171.

[66] 邓澄浩, 祁晓岚, 郑均林, 等. 贵金属/分子筛催化芳烃转化的研究进展[J]. 化工进展, 2017, 36(05): 1711-1718.

[67] 陈俊森, 彭冲, 方向晨,等. NiMo/HY催化剂上四氢萘加氢裂化反应网络与热力学平衡分析[J]. 化工学报, 2018, 69(02): 709-717.

[68] Koichi Satoa, Yoshiki Iwataa, Toshikazu Yonedaa, et al. Hydrocracking of diphenylmethane and tetralin over bifunctional NiW sulfide catalysts supported on three kinds of zeolites[J]. Catalysis Today, 1998, 45: 367-374.

[69] Li W, Wang Z Q, Zhang M H, et al. Novel Ni2MO3N/zeolite catalysts used for aromatics hydrogenation as well as polycyclic hydrocarbon ring opening[J]. Catalysis Communications, 2005, 6: 656-660.

[70] Han J Z, Liu X X, Yue J R, et al. Catalytic upgrading of in Situ coal pyrolysis tar over Ni-char catalyst with different additives[J]. Energy & Fuels, 2014, 28: 4934-4941.

[71] LI Y, Amin M N, Lu X G, et al. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO–Al2O3 catalyst[J]. Chemical Engineering Science, 2016, 155: 194-200.

[72] Du M L, Yang Z Y, Fan J W. Study on the inference factors of Huangling coking coal pyrolysis[J]. IOP Conference Series-Earth and Environmental Science, 2018, 3(108): 032084.

[73] 谢克昌.煤的结构与反应性[M]. 北京: 科学出版社, 2002.

[74] 赵云刚, 李美芬, 曾凡桂, 等. 伊敏褐煤不同化学组分结构特征的红外光谱研究[J]. 煤炭学报,2018, 43(02): 546-554.

[75] Bin T, Qiao Y Y, Liu Q, et al. Structural features and thermal degradation behaviors of extracts obtained by heat reflux extraction of low rank coals with cyclohexanone[J]. Journal of Analytical and Applied Pyrolysis, 2017, 266(124): 266-275.

[76] B. Janković, S. Mentus, D. Jelić. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere[J]. 2009, 404(16): 2263-2269.

[77] Song H J, Liu G R, Liu J H. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model[J]. Energy Conversion and Management, 2016, 126: 1037-1046.

[78] Lu H, Zhou Z Q, George M. B. Heterogeneous modeling of chemical-looping combustion. Part 2: Particle model[J]. Chemical Engineering Science, 2014, 113: 116-128.

[79] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京:科学出版社, 2018: 203.

[80] Kang Y H, Wei X Y, Li J, et al. Green and effective catalytic hydroconversion of an extractable portion from an oil sludge to clean jet and diesel fuels over a mesoporous Y zeolite-supported nickel catalyst[J]. Fuel, 2021, 287: 119396.

[81] Sharma R K, Hajaligol M R. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds[J]. Journal of Analytical and Applied Pyrolysis, 2003, 66:123-144.

[82] Yan L J, Kong X J, Zhao R F, et al. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Processing Technology, 2015, 138: 424-429.

[83] Shukla B, Koshi M. Comparative study on the growth mechanisms of PAHs[J]. Combustion and Flame, 2011, 158, 369-375.

[84] 王涛. 过渡金属氧化物担载型 USY 分子筛对神东煤在富氢气氛下热解特性研究[D]. 西北大学, 2020.

[85] 中国石化有机原料科技情报中心站. 中国科学院大连化学物理研究所发现分子筛催化积炭跨笼生长机制. 石油炼制与化工, 2020, 51: 60.

[86] 谢德华. 改性微孔分子筛催化苯酚与甲醇烷基化合成对甲酚的研究[D]. 常州大学, 2021.

[87] Wang Y, Zhuang J, Yang G, et al. Study on the extemal surface acidity of MCM-22 zeolite: theoretical calculation and 31P MAS NMR[J]. Journal of Physical Chemistry B, 2004,108(04):1386-1391.

[88] Zhong M, Zou D, Xu Y B, et al. Effect of kaolinites modified with Zr and transition metals on the pyrolysis behaviors of low-rank coal and its model compound[J]. Journal of the Energy Institute, 2021, 95: 41-51.

中图分类号:

 TQ 530.2    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式