- 无标题文档
查看论文信息

论文中文题名:

 压电-磁电双模式俘能器系统建模与响应特性研究    

姓名:

 许恒涛    

学号:

 21205016039    

保密级别:

 内部    

论文语种:

 chi    

学科代码:

 0802    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能检测与控制    

第一导师姓名:

 张旭辉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Modeling and Response Characteristics of Piezoelectric-Magnetoelectric Dual-mode Energy Harvester System    

论文中文关键词:

 压电-磁电双模式 ; 非线性 ; 振动能量俘获 ; 磁力耦合 ; 功率输出特性    

论文外文关键词:

 Piezoelectric-magnetoelectric dual-mode ; Nonlinearity ; Vibration energy harvesting ; Magnetic coupling ; Power output characteristics    

论文中文摘要:

新形势下,煤矿智能化是实现煤炭行业高质量发展的必由之路,建设少人或无人综采工作面对煤矿装备的智能感知与控制提出了更新、更高标准的技术要求。无线传感器网络作为一种新兴的信息获取技术,在灵活和便携性上具有显著的优势,但传感器的电能供给问题始终制约着其在煤矿井下的推广应用。电池供电不仅维护成本较高,还易引起环境污染。前期研究发现,将机械设备运行产生的振动能量进行俘获并转化为电能是实现无线传感器自供能的一种有效途径。针对当前单一俘获方式的俘能器普遍存在输出电量小和能量密度低等问题,为提高对振动能量的俘获效率,论文提出一种磁力耦合的压电-磁电双模式俘能器设计思路。通过理论建模、仿真与实验研究相结合的方法,揭示双模式俘能器的高能输出响应和宽频俘能规律,对面向实际应用的压电-磁电双模式俘能器优化设计具有支撑和指导意义。论文的主要研究工作如下:

根据压电和磁电俘能理论,对压电振子和感应线圈的发电进行有限元模拟。通过将压电与磁电两种俘能方式相结合,设计出一种非线性的双模式振动俘能器结构,利用非线性磁力作用实现俘能器系统的协同配合和宽频俘能。依据力平衡原理和基尔霍夫定律建立双模式俘能器的机电耦合理论模型。通过有限元与数据拟合的方法得到压电模块的刚度模型,基于点磁荷偶极子理论计算俘能器系统的非线性磁力,此外引入修正系数以提高系统模型的预测精度。

为探究双模式俘能器的系统参数对其输出响应的影响机理,采用Matlab的龙格库塔算法对模型进行数值求解,分析不同激励条件、磁铁间距、弹簧刚度和负载电阻下双模式俘能器的动态响应特性。研究结果显示,选取合适的外界激励参数能够显著提升俘能器的电压和功率输出,调整磁铁间距可有效拓宽俘能器系统的俘能工作频带。增大弹簧刚度会加强压电模块的输出但又减弱磁电模块的输出性能。随着激励频率的增加,磁电模块的最佳负载不变,而压电模块的最佳负载则逐渐减小。

针对煤矿井下实际环境的振动特征,利用带限随机信号激励模拟采掘环境的振动激励。通过Simulink仿真工具对双模式俘能器进行系统建模,重点讨论俘能器系统中压电和磁电模块在带限随机激励下的俘能特性。研究表明,激励强度的增加对提高系统的能量俘获能力具有显著效果。随着激励强度由1m2/s4增大至9m2/s4,双模式俘能器整体的输出峰值功率从4.7mW提升至37.1mW。激励的中心频率与悬臂梁的共振频率相符时,俘能器系统的输出性能最优。增加频带宽度会导致激励的能量向外扩散,从而降低双模式俘能器中压电和磁电模块的响应输出。

为验证理论建模与分析的双模式俘能器响应特性的正确性,制作双模式俘能器并搭建振动测试平台,实验研究俘能器参数对输出的影响规律和带限随机激励下系统的响应行为。在幅值1.2g、频率16Hz的激励作用下,俘能器整体的功率输出相比单独压电俘能提升118.9%,相比单独磁电俘能提升84.1%,表明双模式俘能器的能量俘获性能明显高于单一的俘能方式。此外,对俘能器为电容充电和LED二极管供电展开测试。双模式俘能器经32s将100μF电容器稳定充电至5.7V,点亮LED二极管的个数为107,经俘能电路处理后的直流功率达到16.05mW,充分验证了压电-磁电双模式俘能器通过俘获振动能量为微电子器件供电的可行性。

论文外文摘要:

Under the new situation, the intelligentization of coal mines is the only way to achieve high-quality development of the coal industry. The construction of fully mechanized coal mining with few or no people puts forward newer and higher standard technical requirements for intelligent sensing and control of coal mine equipment. As a new information acquisition technology, wireless sensor network has significant advantages in flexibility and portability, but the power supply problem of sensors has always restricted its popularization and application in coal mines. Battery power supply not only has high maintenance cost, but also easily causes environmental pollution. Previous studies have found that harvesting the vibration energy generated by the operation of mechanical equipment and converting it into electric energy is an effective way to realize the self-energy supply of wireless sensors. In order to improve the efficiency of vibration energy harvesting, a design idea of piezoelectric-magnetoelectric dual-mode energy harvester with magnetic coupling is proposed in the thesis, aiming at the problems of low output power and low energy density in the current single harvesting mode. Through theoretical modeling, simulation and experimental research, the high energy output response and broadband energy harvesting law of the dual-mode energy harvester are revealed. It is of great support and guidance significance for the optimization design of the piezoelectric-magnetoelectric dual-mode energy harvester for practical applications. The main research work of the paper is as follows:

Based on the theory of piezoelectric and magnetoelectric energy harvesting, the generation of piezoelectric oscillator and induction coil is simulated by finite element method. By combining the piezoelectric and magnetoelectric modes of energy harvesting, a nonlinear dual-mode vibration energy harvesting structure is designed. The coordination and wide-band energy harvesting of the energy harvesting system are realized by using the nonlinear magnetic force. According to the force balance principle and Kirchhoff's law, the electromechanical coupling theoretical model of the dual-mode energy harvester is established. The stiffness model of the piezoelectric module is obtained by the finite element method and data fitting method. The nonlinear magnetic force of the energy harvesting system is calculated based on the point magnetic charge dipole theory. In addition, correction coefficient is introduced to improve the prediction accuracy of the system model.

In order to explore the influence mechanism of the system parameters on the output response of the dual-mode energy harvester, the Runge-Kutta algorithm of Matlab is used to solve the model numerically, and the dynamic response characteristics of the dual-mode energy harvester under different excitation conditions, magnet spacing, spring stiffness and load resistance are analyzed. The research results show that the voltage and power output of the energy harvester can be significantly improved by appropriate external excitation parameters, and the energy harvesting frequency band of the energy harvesting system can be effectively widened by adjusting the magnet spacing. Increasing spring stiffness will enhance the output of piezoelectric module but weaken the output performance of magnetoelectric module. With the increase of excitation frequency, the optimum load of magnetoelectric module remains unchanged, while the optimum load of piezoelectric module decreases gradually.

According to the vibration law of the actual environment in coal mine, the vibration excitation of mining environment is simulated by using band-limited random signal excitation. The dual-mode energy harvester is modeled by Simulink simulation tool, and the energy harvesting characteristics of piezoelectric and magnetoelectric modules in the energy harvesting system under band-limited random excitation are emphatically discussed. The research shows that the increase of excitation intensity has a significant effect on improving the energy harvesting ability of the system. As the excitation intensity increases from 1m2/s4 to 9m2/s4, the overall output peak power of the dual-mode energy harvester increases from 4.7mW to 37.1mW. When the excitation center frequency is consistent with the resonant frequency of the cantilever beam, the output performance of the energy harvesting system is optimal. Increasing the frequency bandwidth will cause the energy of excitation to diffuse outward, thus reducing the response output of piezoelectric and magnetoelectric modules in the dual-mode energy harvester.

In order to verify the correctness of the theoretical modeling and analysis of the response characteristics of the dual-mode energy harvester, the experimental device of the dual-mode energy harvester and the vibration test platform are made. The influence of the parameters of the energy harvester on the output and the response behavior of the system under band-limited random excitation are studied experimentally. Under the excitation of 1.2g amplitude and 16Hz frequency, the overall power output of the energy harvester is increased by 118.9% compared with that of piezoelectric energy harvester alone and 84.1% compared with that of magnetoelectric energy harvester alone, which shows that the energy harvesting performance of the dual-mode energy harvester is obviously higher than that of single energy harvesting mode. In addition, test the charging of capacitor and the power supply of LED diode by energy harvester. After 32s, the dual-mode energy harvester can stably charge 100 μF capacitor to 5.7V, the number of LED diodes is 107, and the DC power after being processed by the energy harvester circuit reaches 16.05mW, which fully verifies the feasibility of the piezoelectric-magnetoelectric dual-mode energy harvester to supply power to microelectronic devices by harvesting vibration energy.

中图分类号:

 TM619    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式