论文中文题名: |
无煤柱开采切顶卸压分析与支护技术研究
|
姓名: |
周凡
|
学号: |
19204209075
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
岩土工程
|
研究方向: |
岩土工程
|
第一导师姓名: |
谷拴成
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-12-27
|
论文答辩日期: |
2022-12-07
|
论文外文题名: |
Research on pressure relief technology of cutting roof in coal-free column-free mining
|
论文中文关键词: |
无煤柱开采 ; 切顶高度 ; 沿空留巷 ; 巷道支护 ; 矿压观测
|
论文外文关键词: |
Pillar free mining ; Cutting height ; Retaining roadway along goaf ; Roadway Support ; Ground pressure monitoring
|
论文中文摘要: |
︿
随着煤炭开采深度的持续增加,传统采煤工艺由于采掘接替紧张等问题,在中深度矿井中效率低下,难以适应社会快速发展。沿空留巷技术因其突出优势得以迅速发展。本文以红柳林项目煤北二盘区4-2煤44203工作面为背景,对沿空留巷后顶板、充填体变形、顶板离层及实体帮变形过大问题展开研究,结合理论计算、数值模拟与现场监测,研究切顶参数、充填体受力与围岩变形规律、锚杆长度、直径等参数选取对围岩的影响规律。研究成果在红柳林煤矿得以应用并取得较好的经济效益,主要成果如下:
(1)基于对沿空留巷基本顶破断的研究,对采空区垮落及围岩变形规律进行分析。运用数值模拟方法,分析爆破时切顶高度、预裂角度对顶板掉落的影响,以及围岩变形与充填体垂直应力分布的影响特性,最终确定合理的切顶参数。
(2)针对沿空留巷围岩破坏特征及承载力变化进行研究,得到沿空留巷顶板岩层经历上一回采工作面基本顶岩层破断旋转下沉,导致下一工作面受到超前支承应力影响,进而使巷道出现较大变形破坏。基于此,确定顶板沿空留巷巷内合理支护组合形式。
(3)基于上述研究成果,通过将沿空留巷矿压观测与数值模拟对照,得出结果表明:研究确定的切顶技术方案及切顶参数、充填体力学参数、巷内支护技术方案及支护参数能够有效控制4-2煤北二盘区工作面顶板沿空留巷围岩变形,研究成果具有一定的工程实用性。
﹀
|
论文外文摘要: |
︿
With the continuous increase of coal mining depth, the traditional coal mining technology has low efficiency in medium-depth mines due to problems such as tight mining replacement, and it is difficult to adapt to the rapid development of society. Gob-side entry retention technology has developed rapidly because of its outstanding advantages. In this paper, taking the 4-2coal 44203 working face of Coal North No. 2 of Hongliulin Project as the background, the problems of excessive deformation of roof and backfill body after gob-side entry retention, roof separation and solid side deformation are studied. Simulation and on-site monitoring are conducted to study the influence of parameters such as roof cutting parameters, backfill force and surrounding rock deformation law, bolt length and diameter on surrounding rock. The research results have been applied in Hongliulin Coal Mine and achieved good economic benefits. The main results are as follows:
Based on the study of the basic roof fracture of gob side entry retaining, the laws of gob collapse and surrounding rock deformation are analyzed. Using the numerical simulation method, the influence of the top cutting height and presplitting angle on the roof falling during blasting, as well as the influence characteristics of the surrounding rock deformation and the vertical stress distribution of the filling body are analyzed, and the reasonable top cutting parameters are finally determined.
(2) The study on the damage characteristics and bearing capacity changes of the surrounding rock of gob side entry shows that the roof rock of gob side entry has experienced the breaking and rotating subsidence of the basic roof rock of the previous mining face, which has led to the influence of the leading bearing stress on the next working face, thus causing a large deformation and failure of the roadway. Based on this, the reasonable support combination form in gob side entry with roof is determined.
(3) Based on the above research results, by comparing the ground pressure observation of gob side entry retaining with the numerical simulation, the results show that the roof cutting technical scheme and the roof cutting parameters, the mechanical parameters of the filling body, the support technical scheme and the support parameters in the roadway determined by the research can effectively control the deformation of the surrounding rock of gob side entry retaining roof in the working face of the No. 2 panel of No. 4-2 coal mine, and the research results have certain engineering practicality.
﹀
|
参考文献: |
︿
[1] 谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021, 46(7): 2197-2211. [2] 郭娜.煤炭企业应收账款管理绩效评价研究[D].石家庄:河北工程大学, 2021. [3] 赵聪.官地矿110工法顶板关键预裂参数研究分析及应用[J].煤炭学报,2019, 33(25): 275-283. [4] 李向阳.切顶卸压沿空留巷无煤柱开采技术的思考[J]. 现代矿业, 2021,3(5): 72-79. [5] 李春华.综采工作面矸石充填开采技术综述[J].煤炭科技,2021, 66(27): 27-32. [6] 周安海,轩绍军.巷内预构膏体充填带无煤柱开采技术的应用[J].煤炭科技,2013,43(4):45-47. [7] 王冠, 赵文静, 张步初, 等. 浅埋厚煤层条带充填开采效果研究[J]. 煤炭技术, 2019, 22(5): 197-205. [8] Huo Bing , Yu Bian , Zhang Heng , et al. Study on formation mechanism of arch shell large structure of overburden in coal mining face with multi layer hard roof[J].Coal Science and Technology, 2016,5(2):14-19. [9] Jin feng. Influence of key strata cantilever structure motion on end-face fall in fully-mechanized face with super great mining height[J].Journal of the China Coal Society, 2014,30(3):24-28. [10] B.A Poulsen,W Hack. Coal pillar load calculation by pressure arch theory and near field extraction ratio[J].International Journal of Rock Mechanics & Mining Sciences, 2010,20 (7):1158-1165. [11] Hematian J, Porter I, Aziz NI. Design of roadway support using a strain softening model[J].International Journal of Rock Mechanics&Mining Sciences,2018,32(5): 115-123. [12] Liu Wei, Pang Lin, Liu Ye, et al. Characteristics analysis of roof overburden fracture in thick coal seam in deep mining and engineering application of super high water material in backfill mining[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2485-2494. [13] Chaudhary D K, Palei S K, Kumar V, et al. Whole-body vibration exposure of heavy earthmoving machinery operators in surface coal mines: a comparative assessment of transport and non-transport earthmoving equipment operators[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 174-183. [14] Lei Sen , Man Wei , Long jing , et al. Combination of Bolting,Meshing and Shotcreting for Supporting of Broken Rock Mass Roadway[J].Metal Mine, 2018,15(8):106-112. [15] Wang Hao, Jiang Chen, Zhang Peng, et al. Deformation and failure mechanism of surrounding rocks in crossed-roadway and its support strategy[J]. Engineering Failure Analysis, 2020, 116(65): 104-112. [16] Gong Jian. Application of Bolt Support Reinforcement Technology in Roadway Excavation[J].Modern Chemical Research, 2019,58(2):6-15. [17] 崔斌,顾威龙.沿空留巷技术在煤矿中探索应用[J].中国矿业大学学报2016,35(12):128-136. [18] 许家林.岩层控制与煤炭科学开采—记钱鸣高院士的学术思想和科研成就[J].采矿与安全工程学报, 2019, 36(1): 1-6. [19] 朱珍.切顶成巷无煤柱开采围岩结构特征及其控制[D]. 北京:中国矿业大学, 2019. [20] 何满潮,陈上元,郭志滩,等.切顶卸压沿空留巷围岩结构控制及其工程应用[J].中国矿业大学学报,2017,43(5):959-969. [21] 孙晓明,韩强,王炯,等.中兴矿切顶爆破参数研究[J].煤炭技术,2017,60(3):56-58. [22] 郭志腾,王将,曹天培,等.薄煤层切顶卸压自动成巷关键参数研究[J].中国矿业大学学报,2016,55(5):879-885. [23] 杨晓杰,王二雨,张民,等.大埋深破碎顶板煤层切顶卸压成巷技术研究[J].煤炭科学技术,2017,2(9):86-91. [24] 高玉兵,杨军,何满潮,等.厚煤层无煤柱切顶成巷碎石帮变形机制及控制技术研究[J].岩石力学与工程学报,2017,8(10):2492-2502. [25] 朱珍,袁红平,张科学,等.切顶卸压无煤柱自成巷顶板下沉分析及控制技术[J].煤炭科学技术,2018,66(11):1-7. [26] 李学华,侯朝炯,姚强岭,等.综放沿空掘巷大,小结构稳定性原理及其应用[C].综采放顶技术理论与实践的创新发展——综放开采30周年科技论文集.北京:中国科学技术出版社,2012. [27] 韩昌良,张农,王晓卿,等.沿空留巷砌块式墙体结构承载特性及应用研究[J].采矿与安全工程学报, 2013,15(5):678-685. [28] 黄炳香, 张农, 靖洪文, 等. 深井采动巷道围岩流变和结构失稳大变形理论[J]. 煤炭学报, 2020, 45(3): 911-926. [29] 朱珍,袁红平,张科学,等.切顶卸压无煤柱自成巷顶板下沉分析及控制技术[J].煤炭科学技术,2018,20(11):11-17. [30] 马新根,王炯,武海龙,等.塔山煤矿回采工作面无煤柱开采切顶爆破试验研究[J].煤炭科学技术,2018,33(11):27-32. [31] 刘书梁.坚硬顶板超前预裂爆破在沿空留巷中的应用[J].煤矿开采,2013,15(21):3-9. [32] Li Xin. The coal pillar design method for a deep mining roadway based on the shape of the plastic zone in surrounding rocks[J]. Arabian Journal of Geosciences, 2020, 3(2): 1-12. [33] Wang Fei, Xu Jian, Xie Jing. Effects of arch structure in unconsolidated layers on fracture and failure of overlying strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114(28): 141-152. [34] 谢孔金, 王霞. 基于K.Terzaghi固结理论的尾矿坝沉积尾矿的渗流模型[J]. 西部探矿工程, 2009, 21(2):4. [35] Li Cheng. Principles and methods of rock support for rockburst control[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 46-59. [36] 郭志飚,李二强,张跃林,等.南山煤矿构造应力区软岩巷道变形破坏机理研究[J].采矿与安全工程学报,2015,77(2):267-272. [37]N.G. Baxte. Study of the application of T-H support systems in coal mine gate roadways in the UK : Baxter, N G; Watson, T P; Whittaker, B N Min Sci TechnolV10, N2, March [J].1990,35(5):291-300. [38] Liu Heng, Zhang Biao, Li Xin, et al. Research on roof damage mechanism and control technology of Gob-side entry retaining under close distance gob[J]. Engineering Failure Analysis, 2022, 45(13): 106-111. [39] Palei S K , Das S K . Sensitivity analysis of support safety factor for predicting the effects of contributing parameters on roof falls in underground coal mines[J]. International Journal of Coal Geology, 2008,22(4):241-247. [40] Chang Jin, He Kai, Yin Zheng, et al. Study on the instability characteristics and bolt support in deep mining roadways based on the surrounding rock stability index: example of pansan coal mine[J]. Advances in Civil Engineering, 2020, 56(43):41-45. [41] Pelizza. Elasto-plastic mechanics calculation and application of bolt support to stability of surrounding rock [J]. Energy and Energy Conservation, 2014,6(12):233-242. [42] Gao Fei, Kaiser P K, Stead D, et al. Numerical simulation of strainbursts using a novel initiation method[J]. Computers and Geotechnics, 2019,26 (106): 117-127. [43] Amrouche C , Dambrine M , Raudin Y . An L p theory of linear elasticity in the half-space[J]. Journal of Differential Equations, 2012,40(3):916-922. [44] Zhao Lin , Li Dian, Li Lei , et al. Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face[J]. Computers & Geotechnics,2017,28(9):32-48. [45] 何满潮,马资敏,郭志鹰,等.深部中厚煤层切顶成巷关键技术参数研究[J].中国矿业大学学报,2018,33(3):468-477. [46] 谷拴成,苏锋,崔希鹏.煤巷复合顶板变形破坏规律分析[J].煤炭科学技术,2012,88 (5):20-28. [47] 张农,陈红,陈瑶.千米深井高地压软岩巷道沿空留巷工程案例[J].煤炭学报,2015, 9(3):12-19. [48] 童荣,李化敏,孙浩,等.特厚煤层综放工作面沿空掘巷小煤柱合理宽度留设研究[J]. 河南理工大学学报 (自然科学版), 2021,43(52):331-342. [49] 李迎富,华心祝.沿空留巷上覆岩层关键块稳定性力学分析及巷旁充填体宽度确定[J].岩土力学,2012,49:(13)431-445. [50] 张宇宁,唐建新,陈宇龙,等.大倾角煤层柔性护巷特性及应用研究[J].采矿与安全工程学报,2017,98(3):8-16. [51] 康红普,姜鹏飞,黄炳香,等.煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报, 2020, 45(3): 845-864. [52] 周睿,李元辉,闫斌移.基本顶断裂位置条件下沿空留巷充填体参数确定[J].中国矿业,2016,40(12):781-788. [53] 杨博,柴敬,王民华.直覆厚硬顶板沿空留巷巷旁支护方式研究[J].煤矿安全,2018,33(7):43-52. [54] 赵健,张鹏.沿空留巷段围岩给定变形规律及巷旁支护时机研究[J].煤炭工程,2017,66(2):432-440. [55] 李国栋,曹树刚,杨红运.端部约束作用下巷旁支护体承载与破坏规律研究[J].采矿与安全工程学报, 2016,79(4):77-85. [56] 马立强,王烁康,余伊河,等.壁式连采连充保水采煤技术及实践[J]. 采矿与安全工程学报, 2021, 38(5):902-908. [57] 沈平,姜永东,杨启军,等.大倾角煤层沿空留巷弓形柔性掩护支架控制技术[J].煤炭科学技术,2021,53(56):43-52. [58] Brown E T. The evolution of support and reinforcement philosophy and practice for underground mining excavations[J]. Rock support and reinforcement practice in mining. Routledge, 2018,55(21): 3-12. [59] Pender N P , Hardiman O . Cognitive impairment in amyotrophic lateral sclerosis[J]. Lancet Neurology, 2017,65(1):998-1007. [60] 于水,黄克军,杨建辉.曹家滩煤矿首采面导水裂隙带高度研究[J]. 陕西煤炭, 2020, 39(21): 42-46. [61] 祝江鸿.隧洞围岩应力复变函数分析法中的解析函数求解[J].应用数学和力学, 2013, 34(4): 345-354. [62] 朱浮声,郑雨天,杜嘉鸿.矿山巷道锚喷支护设计[J].预应力技术, 1999 ,25(3): 36-42. [63] 冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,2017,58(2):1-5. [64] 陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990,48(3):20-24. [65] 董方庭,宋宏伟.巷道围岩松动圈支护理论[J].煤炭学报,2015,57(1):12-23. [66] Castro L , Mccreath D , Kaiser P . Rockmass strength determination from breakouts in tunnels and boreholes[J]. International Society for Rock Mechanics, 1995,21(45):121-130. [67] 赵洪宝,李华华,王中伟.边坡潜在滑移面关键单元岩体裂隙演化特征细观试验与滑移机制研究[J].岩石力学与工程学报,2015,27(5):8-16. [68] Dong Ye, Liu Xiang, Yang Chengyong, et al. Effects of New Tunnelling on a Buried Pipeline with Joints and Its Detachment[J]. Applied Sciences,2022,74(7):33-42. [69] 陈星,黄坚,冷云,等.拉剪应力状态裂隙岩体动态损伤演化[J].西北水电,2010,38(4):3-9. [70] 高玉兵.柠条塔煤矿厚煤层110工法关键问题研究[D].北京:中国矿业大学,2015. [71] 陈新年,张琨,任建喜,等.锚注加固技术在高应力碎胀岩体巷道支护中的应用研究[J].煤炭工程,2011,67(7):26-32. [72] 孔祥雷,何晓光.金属雷管聚能射流和金属飞片防护的试验研究[J],煤炭学报,2022,84(4):83-92. [73] 孙开龙,姚依林,邬昱.门克庆矿深部巷道围岩表面位移变化规律[J].能源技术与管理, 2016,89(35):223-236. [74] 鲁岩,樊胜强,邹喜正.工作面超前支承压力分布规律[J].辽宁工程技术大学学报:自然科学版,2018,43(29):462-468. [75] 窦仲四.基于地应力-沉积岩层结构控制的采场底板巷道围岩变形机理研究[D].合肥:安徽理工大学,2017. [76] 吴顺涛. 超声波在类岩石材料裂隙扩展过程中的传播特性及应用[D]. 北京:中国矿业大学,2018. [77] 王博.基于Android系统的多功能矿用本安型钻孔成像仪设计与应用[J]. 煤炭技术, 2019,38(12):145-153. [78] 程先振, 陈连军, 栾恒杰,等.基质-裂隙相互作用对煤渗透率的影响:考虑煤的软化[J].岩土工程学报, 2022, 44(10):12-19. [79] 靖洪文, 宋宏伟, 郭志宏. 软岩巷道围岩松动圈变形机理及控制技术研究[J]. 中国矿业大学学报, 1999, 28(6):51-57.
﹀
|
中图分类号: |
TD353
|
开放日期: |
2022-12-28
|