论文中文题名: | 基于三维地形扫描的黄丘区坡沟系统侵蚀产沙过程与机理研究 |
姓名: | |
学号: | 19210061033 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 081602 |
学科名称: | 工学 - 测绘科学与技术 - 摄影测量与遥感 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地貌遥感与水土保持 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-25 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Erosion processes and mechanisms of slope-gully systems in the hilly and gully loess plateau investigated based on terrestrial laser scanning |
论文中文关键词: | |
论文外文关键词: | Erosion of slope-gully system ; TLS ; Monitoring accuracy ; Hydrodynamics ; Topographic changes ; Hilly and gully loess plateau |
论文中文摘要: |
坡沟系统是黄土丘陵沟壑区产沙的主要源地,深入理解其侵蚀产沙过程与机理对区域土壤侵蚀防治和过程模型构建具有重要意义。已有研究主要基于室内试验和回填土开展,鲜有研究开展自然坡沟系统侵蚀产沙过程精细化研究,尤其对地形变化—侵蚀产沙过程的交互作用及其机理认识不足。地面三维激光扫描技术(Terrestrial laser scanning,TLS)可快速、高效、无接触的监测地形变化,成为土壤侵蚀过程精细研究的有力工具,并已被应用于沟谷坡侵蚀产沙监测。然而,其对自然梁峁坡侵蚀的监测精度尚不清晰。鉴于此,本文以黄土丘陵沟壑区自然坡沟系统为研究对象,首先于两个梁峁坡径流小区各开展14场模拟放水冲刷试验,利用TLS扫描地形变化计算产沙量,并以实测产沙量评估计算结果,验证TLS在自然梁峁坡侵蚀监测精度。进而,开展五种放水流量(85 L min-1、70 L min-1、55 L min-1、40 L min-1、25 L min-1)自然坡沟系统小区冲刷试验,基于试验前后TLS地形扫描结果,分析侵蚀产沙时空过程。最后,基于试验径流参数计算五种流量下的雷诺数、弗劳德数、Darcy-Weisbach阻力系数、Manning糙率系数、径流剪切力、径流功率、单位径流功率、过水断面单位能量等水动力学参数,根据地形扫描结果计算坡沟系统试验前后的地形粗糙度、高斯曲率、平均曲率等参数,分析不同流量下地形变化—水动力学参数—侵蚀产沙的关系,揭示地形变化与侵蚀产沙的关系及其机制。主要研究结果如下: (1)TLS监测精度方面。基于TLS的梁峁坡累计计算产沙量精度明显高于基于TLS的单场次计算产沙量。当像元尺寸大于等于5 mm时,计算产沙量结果趋于稳定,像元尺寸不再对体积变化计算产生明显影响。其中,基于5 mm计算结果最精确。当选用5 mm像元计算体积变化时,两个梁峁坡径流小区单场次计算产沙量的绝对误差大小为1.67 kg(0.56 kg—4.76 kg),1.73 kg(0.28 kg—3.81 kg),相对误差为784.12 %(80.21 %—4705.44 %),466.21 %(153.15 %—1180.65 %),计算产沙量和实测产沙量之间的线性拟合R2分别为0.11(p = 0.245),0.47(p = 0.006)。累计计算产沙量的绝对误差大小为0.87 kg(0.004 kg—1.79 kg),1.26 kg(0.12 kg—2.78 kg),相对误差为25.02 %(0.06 %—124.49 %),56.82 %(2.34 %—180.06 %),计算产沙量和实测产沙量之间的线性拟合R2分别为0.61(p < 0.001),0.82(p < 0.001)。表明TLS更适用于监测梁峁坡连续侵蚀过程。 (2)侵蚀时空过程方面。不同流量下的梁峁坡侵蚀时空过程中,侵蚀均主要集中在坡面中上部,沉积主要集中在坡面下部。在较大流量(85 L min-1、70 L min-1、55 L min-1)下的五场试验后,梁峁坡侵蚀沉积已经逐渐稳定,不再产生大范围的分布变化。在较小流量(40 L min-1、25 L min-1)下的五场试验后,梁峁坡侵蚀、沉积、无变化区域的分布依然存在大范围的明显变化。研究还发现紧邻沟缘线周围都是侵蚀区域,沟缘线后退越活跃的位置,其周围侵蚀强度越大。在沟谷坡侵蚀过程中,不同流量下沉积都主要集中于坡底区域,较强侵蚀区域都位于沟缘线后退位置的下方,但较强侵蚀、较弱侵蚀、无变化区域分布存在差异。 (3)侵蚀机理研究方面。不同流量下的地形起伏度随时间呈对数曲线增大,且放水流量越大,数值越高。在85 L min-1、55 L min-1流量下,地形起伏度的增大对侵蚀产沙有着抑制作用(R2在0.54—0.99,p < 0.001至p = 0.155),在其余流量下二者关系不明确。不同流量下的梁峁坡水动力学与侵蚀产沙之间未发现统一明确的关系(R2在0.001—0.94之间,p = 0.007至p = 0.990)。在较大流量(85 L min-1、70 L min-1、55 L min-1)下,梁峁坡径流功率随地形起伏度增大而增大(R2在0.62—0.97之间,p = 0.002至p = 0.112),沟谷坡Darcy-Weisbach阻力系数、Manning糙率系数、径流剪切力、径流功率四种参数与坡沟系统产沙之间正相关(R2在0.45—0.99,p < 0.001至p = 0.213)。在85 L min-1、55 L min-1、40 L min-1、25 L min-1流量下,沟谷坡Darcy-Weisbach阻力系数和径流剪切力都因地形粗糙程度的增大而减小(R2在0.63—0.99, p < 0.001至p = 0.111)。综上结果表明,径流侵蚀导致的地形变化会反向抑制径流侵蚀作用,削弱坡沟系统产沙能力。地形起伏变化应当作为区域水土保持措施优化和侵蚀模型开发中的重要因素。 |
论文外文摘要: |
The slope-gully system provide the major source of sediment yield in the hilly and gully loess plateau, and an in-depth understanding of erosion process and mechanism is of great significance for regional soil erosion control and process-based erosion model development. Previous erosion process studies were undertaken mainly based on indoor experiments and backfill soil, but few studies have been conducted to study the erosion process of natural slope-gully system, and in particular the interaction between topographic changes and erosion process and its underlying mechanism were not well understood. Terrestrial Laser Scanning (TLS), which is able to monitor topographic changes efficiently in a non-invasive manner, has become a powerful tool for a high-resolution study of soil erosion processes and has already often been applied to monitor gully erosion processes. However, its accuracy of hillslope erosion monitoring was still unclear. In view of these, this study investigated the processes and mechanisms of slope-gully systems through runoff scouring experiments and teresstiral laser scanning conducted on erosion plots established on a natural sope of a typical small catchment (i.g. Xindiangou catchment) in the hilly and gully loess plateau. Firstly, fourteen runoff scouring experiments were conducted on two plots. The sediment yield was calculated based on topographic changes achieved by TLS, and the measured sediment yield was used to verify the accuracy of TLS-derived results. Five runoff scouring experiments were undertaken on each of five plots with different inflow discharges (85 L min-1, 70 L min-1, 55 L min-1, 40 L min-1, 25 L min-1) and TLS was employed to investigate the spatiotemporal patterns of erosion based on the terrain information achieved by the TLS before and after each of the experiments. Finally, the hydrodynamic parameters such as reynolds number, froude number, Darcy-Weisbach friction coefficient, Manning roughness coefficient, shear stress, runoff power, unit runoff power, and unit energy of water-carrying section were derived based on the runoff relevant parameters measured during the experiments. Pre-experiment and post-experiment roughness, gaussian curvature, and mean curvature of the slope-gully system were also calculated based on the achieved high-resolution terrain information. The interaction among terrain change, hydrodynamic parameters and sediment yield under different runoff discharges was also studied. The main findings are as follows.
(1) The results demonstrated that the accuracy of the TLS-derived cumulative sediment yield from hillslope of the two plots was apparently higher than that of TLS-derived consecutive sediment yield. When the cell size is greater than or equal to 5 mm, the results of calculated sediment yield tend to be stable, and the cell size no longer has a significant effect on the calculation of volume change. Among them, the results based on 5 mm are the most accurate. When a 5 mm grid-cell size was chosen to calculate the volume change, the magnitude of absolute error for the calculated consecutive sediment yield was 1.67 kg (0.56 kg—4.76 kg) and 1.73 kg (0.28 kg—3.81 kg), the magnitude of relative error for the calculated consecutive sediment yield from hillslopes of the two plots was 784.12 % (80.21 %—4705.44 %) and 466.21 % (153.15 %—1180.65 %), and the R2 of the linear relationships between the calculated and measured consecutive sediment yield were 0.11 (p = 0.245) and 0.47 (p = 0.006), respectively. The magnitude of absolute error for the calculated cumulative sediment yield was 0.87 kg (0.004 kg—1.79 kg) and 1.26 kg (0.12 kg—2.78 kg), the magnitude of relative error for the calculated cumulative sediment yield from hillslopes of the two plots was 25.02 % (0.06 %—124.49 %) and 56.82 % (2.34%—180.06 %), and the R2 of the linear relationships between the calculated and measured cumulative sediment yield were 0.61 (p < 0.001) and 0.82 (p < 0.001), respectively. This demonstrated that TLS was more suited to monitor hillslope erosion over a relative long time period rather than individual rainfall events.
(2) With regard to the spatiotemporal process of hillslope erosion under different flow discharge, the erosion was mainly concentrated in the middle and upper part of the slope, and the deposition was mainly concentrated in the lower part of the slope. After five scouring experiments under large flow charges (85 L min-1, 70 L min-1, 55 L min-1), the spatial distribution of erosion and deposition on the hillslope gradually stabilized. After five field experiments under small flow (40 L min-1, 25 L min-1), the distribution of erosion, deposition and unchanged area of hillslope still changed considerably. It is also found that there were erosion areas near the gully shoulder line. The more active the retreat of the gully shoulder line, the more eroded area around it. In the process of gully slope erosion, the deposition under different flows were mainly concentrated in the slope bottom area, and the intensive erosion areas were located below the retreat position of the gully shoulder line, but the distribution of intensive erosion, weak erosion and unchanged areas was different.
(3) The topographic relief at different runoff discharges increased logarithmically throughout time, and topographic relief was also higher for plots with higher input flow. At 85 L min-1 and 55 L min-1 runoff discharges, the increase in topographic relief decreased erosion (R2 =0.54—0.99, p < 0.001—0.155), and the relationship between them was not clear for other runoff discharges. No strong and significantrelationships were found between the hydrodynamics and erosion on the hillslopes at different runoff discharges (R2 = 0.001—0.94, p = 0.007—0.990). At higher runoff discharges, the relationship between topographic variation and runoff power of the hillslopes was more significant (R2 = 0.62—0.97, p = 0.002—0.112), and the Darcy-Weisbach friction coefficient, Manning roughness coefficient, shear stress and runoff power of gullyslope had positive correlations with the sediment yield of slope-gully system (R2 = 0.45—0.99, p <0.001—0.213). At 85 L min-1, 55 L min-1, 40 L min-1, and 25 L min-1 runoff discharges, the Darcy-Weisbach fricion coefficient and shear stress of gullyslope decreased with increasing terrain roughness (R2 = 0.63—0.99, p < 0.001—0.111). In summary, the results indicated that topographic changes due to runoff erosion could inversely inhibit the subsequent erosion and lowered the sediment yield from slope-gully systems. Topographic relief changes should be used as a indicator in the optimization of regional soil and water conservation measures and erosion model development. |
参考文献: |
[2] 张光辉. 对土壤侵蚀研究的几点思考[J]. 水土保持学报, 2020, 34(04): 21-30. [6] 朱显谟. 黄土高原的形成与整治对策 [J]. 水土保持通报, 1991, (01): 1-8+17. [8] 魏霞, 李占斌, 李勋贵. 黄土高原坡沟系统土壤侵蚀研究进展 [J]. 中国水土保持科学, 2012, 10(1): 108-113. [9] 金钊. 走进新时代的黄土高原生态恢复与生态治理 [J]. 地球环境学报, 2019, 10(03): 316-322. [10] 王光谦, 李铁键, 薛海, 等. 流域泥沙过程机理分析 [J]. 应用基础与工程科学学报, 2006, (04): 455-462. [14] 王玲玲, 姚文艺, 王文艺, 等. 黄丘区坡沟系统不同时间尺度下的侵蚀产沙特征 [J]. 水利学报, 2013, 44(11): 1347-1351. [15] 魏霞, 李勋贵, 李占斌. 黄土高原坡沟系统径流泥沙过程 [J]. 兰州大学学报, 2010, 46(5): 7-10+18. [16] 朱冰冰, 霍云霈, 周正朝. 黄土高原坡沟系统植被格局对土壤侵蚀影响研究进展 [J]. 中国水土保持科学, 2021, 19(04): 149-156. [17] 魏霞, 李勋贵, 李占斌, 等. 黄土高原坡沟系统径流水动力学特性试验[J]. 农业工程学报, 2009, 25(10): 19-24. [22] 谢小立, 王凯荣. 红壤坡地雨水地表径流及其侵蚀 [J]. 农业环境科学学报, 2004, (05): 839-845. [26] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望 [J]. 自然杂志, 2008, (01): 12-16+63. [27] 姚文艺, 肖培青. 黄土高原土壤侵蚀规律研究方向与途径 [J]. 水利水电科技进展, 2012, 32(02): 73-78. [28] 黄河中游水土保持委员会. 1954—1963黄河中游水土保持径流测验资料 天水,西峰,绥德站小流域部分 [M]// 陕西: 黄河中游水土保持委员会, 1966: 192-299. [29] 朱显谟. 黄土高原水蚀的主要类型及其有关因素 [J]. 水土保持通报, 1981, (03): 1-9. [30] 朱显谟. 黄土区土壤侵蚀的分类 [J]. 土壤学报, 1956, 4(2): 99-115. [31] 蒋德麒, 赵诚信, 陈章霖. 黄河中游小流域径流泥沙来源初步分析 [J]. 地理学报, 1966, 32(1): 20-36. [32] 龚时旸, 蒋德麒. 黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理 [J]. 中国科学, 1978, (6): 671-678. [33] 刘元保, 朱显谟, 周佩华, 等. 黄土高原土壤侵蚀垂直分带性研究 [J]. 中国科学院西北水土保持研究所集刊, 1988, (7): 5-8. [34] 雷阿林, 唐克丽. 坡沟系统土壤侵蚀研究回顾与展望 [J]. 水土保持通报, 1997, 17(3): 37-43. [35] 焦菊英, 刘元保, 唐克丽. 小流域沟间与沟谷地径流泥沙来量的探讨 [J]. 水土保持学报, 1992, 6(2): 24-28. [36] 郑粉莉. 黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究 [J]. 土壤学报, 1998, 35(1): 95-103. [37] 陆兆熊, 蔡强国, 王贵平. 黄土丘陵沟壑区土壤侵蚀过程研究 [J]. 中国水土保持, 1991, (11): 21-24+64-65. [38] 吴普特, 周佩华. 地表坡度对雨滴溅蚀的影响 [J]. 水土保持通报, 1991, 11(3): 8-13+28. [40] 张新和, 郑粉莉, 张鹏, 等. 黄土坡面侵蚀方式演变过程中汇水坡长的侵蚀产沙作用分析 [J]. 干旱地区农业研究, 2007, (06): 126-131. [41] 刘俊娥, 王占礼, 高素娟, 等. 黄土坡面片流产流过程模拟研究 [J]. 土壤学报, 2013, 50(2): 268-274. [42] 刘俊娥, 王占礼, 高素娟. 黄土坡面片蚀过程试验研究 [J]. 水土保持学报, 2011, 25(03): 35-39. [43] 和继军, 王硕, 蔡强国, 等. 黄土缓坡片蚀过程及其水力参数适宜性试验研究 [J]. 水科学进展, 2021, 32(01): 97-108. [44] 徐建民. 黄土高原浅沟发育主要影响因素及其防治措施研究 [J]. 水土保持学报, 2008. 22(4): p. 39-41. [46] 郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展 [J]. 农业机械学报, 2016, 47(08): 48-59+116. [47] 王贵平, 白迎评, 贾志军, 等. 细沟发育及侵蚀特征初步研究 [J]. 中国水土保持, 1988, (05): 15-18. [50] 雷廷武, 张晴雯, 赵军. 陡坡细沟含沙水流剥蚀率的试验研究及其计算方法[J]. 农业工程学报, 2001, 17(3): 24-27. [51] 袁殷, 王占礼, 刘俊娥, 等. 黄土坡面细沟径流输沙过程试验研究 [J]. 水土保持学报, 2010, 24(5): 88-91. [54] 沈海鸥, 郑粉莉, 温磊磊, 等. 黄土坡面细沟侵蚀形态试验 [J]. 生态学报, 2014, 34(19): 5514-5521. [55] 龙琪, 韩剑桥, 何育聪, 等. 黄土坡面细沟侵蚀强度的空间分布及形态分异特征 [J]. 水土保持学报, 2022, 36(01): 1-7. [56] 张科利, 唐克丽, 王斌科. 黄土高原坡面浅沟侵蚀特征值的研究 [J]. 水土保持学报, 1991, 5(2): 8-13. [58] 郑粉莉, 武敏, 张玉斌, 等. 黄土陡坡裸露坡耕地浅沟发育过程研究 [J]. 地理科学, 2006, 26(4): 438-442. [60] 徐锡蒙, 郑粉莉,覃超,等. 沟蚀发育的黄土坡面上秸秆覆盖防蚀效果研究 [J]. 农业机械学报, 2015, 46(8): 130-137. [61] 康宏亮, 王文龙, 薛智德,等. 冲刷条件下黄土丘陵区浅沟侵蚀形态及产流产沙特征 [J]. 农业工程学报, 2016, 32(20): 161-170. [62] 郭军权, 王文龙. 变流量对浅沟侵蚀产沙和水动力参数的影响 [J] 中国水土保持科学, 2022, 20(01): 9-14. [63] 郭军权, 王文龙. 坡度对浅沟侵蚀产沙的野外放水冲刷试验影响 [J]. 水土保持学报, 2019, 33(04): 87-92+212. [65] 伍永秋, 刘宝元. 切沟、切沟侵蚀与预报 [J]. 应用基础与工程科学学报, 2000, (02): 134-142. [67] 于章涛, 伍永秋. 黑土地切沟侵蚀的成因与危害 [J]. 北京师范大学学报(自然科学版), 2003, (05): 701-705. [69] 李斌兵, 郑粉莉, 张鹏. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定 [J]. 水土保持通报, 2008, 28(5): 16-20. [70] 张光辉. 切沟侵蚀研究进展与展望 [J]. 水土保持学报, 2020, 34(05): 1-13. [74] 江忠善,王志强,刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究 [J]. 土壤侵蚀与水土保持学报, 1996, (01): 1-9. [75] 杨武德, 王兆骞, 眭国平, 等. 红壤坡地不同土地利用方式土壤侵蚀的时空分布规律研究 [J]. 应用生态学报, 1998, 9(2): 155-158. [79] 杨维鸽, 郑粉莉, 王占礼, 等. 地形对黑土区典型坡面侵蚀—沉积空间分布特征的影响 [J]. 土壤学报, 2016, 53(03): 572-581. [80] 徐振剑, 权鑫, 史红伟, 等. 黄土坡面侵蚀过程与侵蚀—沉积空间分布特征 [J]. 陕西师范大学学报(自然科学版), 2021, 49(06): 98-105. [82] 张由松, 李钢, 王冉. 坡面流侵蚀的水动力学研究进展 [J]. 浙江水利科技, 2020, 48(04): 10-14+27. [83] 王龙生, 蔡强国, 蔡崇法, 等. 黄土坡面细沟发育过程中含沙量与水动力学参数的关系 [J]. 水土保持学报, 2013, 27(5): 1-6. [99] 潘成忠, 上官周平. 牧草对坡面侵蚀动力参数的影响 [J]. 水利学报, 2005, (03): 371-377. [100]王文龙, 王兆印, 雷阿林, 等. 黄土丘陵区坡沟系统不同侵蚀方式的水力特性初步研究 [J]. 中国水土保持科学, 2007, (02): 11-17. [101]杨春霞, 王丹, 王玲玲, 等. 草被覆盖度对坡面流水动力学参数的影响 [J]. 中国水土保持, 2008, (09): 36-38+60. [102]龚家国, 王文龙, 郭军权. 黄土丘陵沟壑区浅沟水流水动力学参数实验研究 [J]. 中国水土保持科学, 2008, 6(1): 93-100. [107]李桂芳, 郑粉莉, 卢嘉, 等. 降雨和地形因子对黑土坡面土壤侵蚀过程的影响 [J]. 农业机械学报, 2015, 46(04): 147-154+182. [108]刘志,江忠善. 降雨因素和坡度对片蚀影响的研究 [J]. 水土保持通报, 1994, (06): 19-22+61. [114]马星, 王文武, 郑江坤, 等. 植物篱措施对紫色土坡耕地产流产沙及微地形的影响 [J]. 水土保持学报, 2017, 31(06): 85-89+188. [117] 张思琪, 马芊红, 朱彤, 等. 基于三维激光扫描技术的喀斯特地表微地形特征及其侵蚀响应 [J]. 水土保持研究, 2021, 28(04): 8-14. [118]郭珂歆, 艾刚, 马兴祥, 等. 北方土石山区土壤侵蚀对典型地形因子的响应——以北京市房山区为例 [J]. 中国水土保持科学, 2021, 19(04): 137-142. [122]胡国庆, 董元杰, 史衍玺, 等. 坡面土壤侵蚀空间分异特征的磁性示踪法和侵蚀针法对比研究 [J]. 水土保持学报, 2010, 24(01): 53-57. [123]董元杰, 史衍玺, 孔凡美, 等. 基于磁测的坡面土壤侵蚀空间分布特征研究 [J]. 土壤学报, 2009, 46(01): 144-148. [124]丁晋利, 郑粉莉, 张信宝, 等. 利用7Be研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征 [J]. 水土保持通报, 2005, 025(002): 16-19. [125] 马琨, 王兆骞, 陈欣. 土壤侵蚀示踪方法研究综述 [J]. 水土保持研究, 2002, (04): 90-95. [126] 王文龙, 雷阿林, 李占斌, 等. 黄土区不同地貌部位径流泥沙空间分布试验研究 [J]. 农业工程学报, 2003, 19(4): 40-43. [127]丁文峰, 李勉, 张平仓, 等. 坡沟系统侵蚀产沙特征模拟试验研究 [J]. 农业工程学报, 2006, 22(3): 10-14. [128]温永福, 高鹏, 穆兴民, 等. 野外模拟降雨条件下径流小区产流产沙试验研究 [J]. 水土保持研究, 2018, 25(01): 23-29. [129] 高玄娜, 肖培青, 张攀, 等. 复合侵蚀作用下砒砂岩坡面侵蚀泥沙颗粒特征 [J]. 水土保持学报, 2021, 35(01): 44-49. [130]覃超, 吴红艳, 郑粉莉, 等. 黄土坡面细沟侵蚀及水动力学参数的时空变化特征 [J]. 农业机械学报, 2016, 47(8): 146-154+207. [131]邓神宝, 沈清华, 陈三雄, 等. 基于地面三维激光扫描及BIM技术的坡面土壤侵蚀监测 [J]. 水利技术监督, 2018, 14(1): 37-40. [136] 范海英, 杨伦, 邢志辉, 等. Cyra三维激光扫描系统的工程应用研究 [J]. 矿山测量, 2004, (03): 16-18+4. [138]霍云云, 吴淑芳, 冯浩, 等. 基于三维激光扫描仪的坡面细沟侵蚀动态过程研究 [J]. 中国水土保持科学, 2011, 9(2): 32-37. [149]杨春霞, 李莉, 王佳欣, 等. 坡沟系统侵蚀时空分布特征试验研究 [J]. 人民黄河, 2017, 39(1): 95-97. [150]宇涛, 张霞, 李占斌, 等. 不同草带覆盖位置条件下坡沟系统侵蚀产沙差异性 [J]. 水土保持学报, 2018, 32(06): 22-27+122. [152]张姣, 郑粉莉, 温磊磊, 等. 利用三维激光扫描技术动态监测沟蚀发育过程的方法研究 [J]. 水土保持通报, 2011, 31(06): 89-94. [153]肖海, 夏振尧, 朱晓军, 等. 三维激光扫描仪在坡面土壤侵蚀研究中的应用 [J]. 水土保持通报, 2014, 34(3): 198-200. [154]王一峰, 牛俊, 张长伟. 基于三维激光扫描仪技术的坡面径流小区土壤侵蚀运用研究 [J]. 中国农业信息, 2013, (23): 151-152. [155]徐小玲, 延军平, 梁煦枫. 无定河流域典型淤地坝水资源效应比较研究——以辛店沟、韭园沟和裴家峁为例 [J]. 干旱区资源与环境, 2008, 22(12): 77-83. [156]于德文, 赵志普. 从辛店试验场的实践看黄土丘陵沟壑区的治理 [J]. 人民黄河, 1983, (06): 42-45. [158] 杨帆, 潘成忠. 黄土丘陵沟壑区多年生草地的保水固土效益 [J]. 水土保持通报, 2016, 36(02): 300-306. [165]FRENCH R. Open-channel Hydraulics [M]// New York: McGraw-Hill, 1985: 111. [181]王玲玲, 姚文艺, 王文龙, 等. 黄土丘陵沟壑区多尺度地貌单元输沙能力及水沙关系 [J]. 农业工程学报, 2015, 31(24): 120-126. [183]康宏亮, 王文龙, 薛智德, 等. 北方风沙区砾石对堆积体坡面径流及侵蚀特征的影响 [J]. 农业工程学报, 2016, 32(3): 125-134. [185]张光辉, 卫海燕, 刘宝元. 坡面流水动力学特性研究 [J]. 水土保持学报, 2001, 15(1): 58-61. [187]肖培青, 郑粉莉, 姚文艺. 坡沟系统坡面径流流态及水力学参数特征研究 [J]. 水科学进展, 2009, 20(2): 236-240. |
中图分类号: | P237 |
开放日期: | 2023-06-27 |