- 无标题文档
查看论文信息

论文中文题名:

 SiO2纳米纤维增强弹性硅气凝胶的制备及性能研究    

姓名:

 袁彬    

学号:

 19211025006    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 SiO2气凝胶领域    

第一导师姓名:

 刘俊    

第一导师单位:

 西安科技大学材料学院    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Preparation and Properties of SiO2 Nanofiber Reinforced Elastic Silicon Aerogels    

论文中文关键词:

 SiO2弹性气凝胶 ; SiO2纳米纤维 ; 溶胶-凝胶 ; 常压干燥 ; 光热蒸发    

论文外文关键词:

 SiO2 aerogel ; SiO2 nanofibers ; Sol-gel ; Atmospheric drying ; Photothermal evaporation    

论文中文摘要:

弹性 SiO2气凝胶由于其独特的纳米结构、优异的吸附、隔热、力学性能受到了国内外研究者的广泛关注。目前报道的弹性 SiO2气凝胶通常需经超临界干燥法制备,其设备昂贵、能耗较高,不利于大规模推广应用。本论文提出以静电纺丝SiO2纳米纤维为增韧材料,设计制备一种新兴的弹性SiO2纳米纤维气凝胶(SiO2 Nanofibers Aerogel,SiO2 NFAG),通过改变 SiO2纤维的添加量,调节 SiO2 NFAG 的微观结构与尺寸,获得吸油、力学和隔热性能优异的弹性SiO2 NFAG。在此基础上,制备基于弹性SiO2 NFAG 光热蒸发结构,研究其光热蒸发海水淡化性能。主要的研究内容和成果如下:

(1)采用常压干燥法,设计制备了一种新兴的SiO2纳米纤维增强的弹性SiO2 NFAG。结果表明,SiO2纳米纤维的引入,使弹性SiO2气凝胶的网络结构由球形颗粒转变为核壳纤维结构,纤维之间通过复合硅烷牢牢粘结,纤维的直径随着SiO2纤维的增加而减小,SiO2 NFAG具有丰富的大孔结构。

(2)研究了 SiO2 NFAG 的吸油、力学与隔热性能。结果表明,SiO2 NFAG 水接触角可达 154.1°,具有良好的疏水性,可快速吸油,对 CH2Cl2 的吸附能力最优,吸附倍率为 10.33 g g-1,随着 SiO2 纤维含量的增加,其吸附性能降低,但 SiO2 NFAG 具有稳定的循环吸附性能,可快速压缩回弹。随着 SiO2 纳米纤维的增加,气凝胶的强度逐渐增加,当含量为 8 mg·mL-1 时的杨氏模量为 0.91 MPa,SiO2 NFAG 隔热性能随着纤维含量增加而略有提升,有望应用于保冷和隔热领域。

(3)以弹性 SiO2 NFAG 为隔热层构建了两种光热蒸发结构。结果表明,在 1 单位光强下,SiO2 NFAG-炭黑/聚丙烯腈纤维膜(SiO2 NFAG-CB/PAN)柱体蒸发结构和SiO2 NFAG-碳管(SiO2 NFAG-CNT)双亲结构的水蒸发速率分别为 2.29 kg m-2 h-1 和2.934 kg m-2 h-1,光热转化效率为分别为 86.53%和 87.97%,并表现出一定的抗盐性,二者均具有优异的光热蒸发性能。

关 键 词:SiO2弹性气凝胶;SiO2纳米纤维;溶胶-凝胶;常压干燥;光热蒸发

研究类型:基础研究

论文外文摘要:

Elastic SiO2 aerogels have attracted extensive attention from researchers at home and abroad due to their unique nanostructure, excellent adsorption, thermal insulation, and mechanical properties. The currently reported elastic SiO2 aerogels are usually dried by supercritical drying method. However, the expensive equipment and high energy consumption are not favorable for large-scale production and application, which limits their application. This thesis proposes to design and fabricate a new elastic SiO2 Nanofibers aerogel (SiO2 nanofibers aerogel, SiO2 NFAG) by using electrospinning SiO2 nanofibers as toughening materials. The micro-morphology and size were adjusted by changing the quantity of SiO2 nanofibers. Elastic SiO2 NFAG with excellent oil absorption, mechanical and thermal insulation properties were obtained. On this basis, a photothermal evaporation structure based on elastic SiO2 NFAG was prepared, and its photothermal evaporation seawater desalination performance was studied. The main research contents and results are as follows:

(1) A new SiO2 nanofiber reinforced elastic SiO2 NFAG was designed and fabricated by atmospheric drying method. The results show that the introduction of SiO2 nanofibers changes the network structure of elastic SiO2 aerogel from spherical particles to core-shell fiber structure. The fibers are firmly bonded by composite silane, and the diameter of the fibers decreases with the increase of the amount of SiO2 fibers. SiO2 NFAG has abundant macroporous structure.

(2) The oil absorption, mechanical and thermal insulation properties of SiO2 NFAG were studied. The results show that SiO2 NFAG has good hydrophobicity with water contact angle of 154.1°. SiO2 NFAG can absorb oil quickly, and has the best adsorption capacity for CH2Cl2 of 10.33 g g-1 . With the increase of SiO2 fiber content, the adsorption capacity decreases. But SiO2 NFAG has stable cyclic adsorption performance because of its fast compression and rebound ability. The strength of the aerogel gradually increases with the increase of the SiO2 nanofibers addition. The Young's modulus is 0.91 MPa with addition of 8 mg·mL-1 . The thermal insulation performance of SiO2 NFAG increases with the increase lightly of fiber content, which is expected to be applied for cold. and thermal insulation field.

(3) Two photothermal evaporation structures were constructed with elastic SiO2 NFAG as the thermal insulation layer. The results show that the evaporation rate of SiO2 NFAG carbon black/polyacrylonitrile fiber membrane (SiO2 NFAG-CB/PAN) cylinder and SiONFAG-Carbon nanotube (SiO2 NFAG-CNT) amphiphilic structure can reach up to 2.29 kg m-2 h-1 and 2.29 kg m-2 h-1 , respectively under 1 light intensity. The related photothermal conversion efficiency of SiO2 NFAG-CB/PAN cylinder and SiO2 NFAG-CNT amphiphilic structure are 86.53% and 87.97% respecticely. Both the two structures display excellent photothermal evaporation performance.

Key words:SiO2 aerogel; SiO2 nanofibers; Sol-gel; Atmospheric drying; Photothermal evaporation

Thesis:Foundamental Research

参考文献:

[1] Dorcheh A S, Abbasi M H. Silica aerogel; synthesis, properties and characterization[J]. J. Mater. Process. Technol., 2008, 199(3): 10-26.

[2] Kim G S, Hyun S H. Synthesis of window glazing coated with silica aerogel films via ambient drying[J]. J. Non-Cryst. Solids, 2003, 320(1–3): 125-132.

[3] Prakash S S, Brinker C J, Hurd A J. Silica aerogel films at ambient pressure[J]. J. NonCryst. Solids, 1995, 190(3): 264-275.

[4] 李明. 硅气凝胶及其复合材料的制备,性能与应用研究[D]. 武汉理工大学, 2018.

[5] Yun S, Luo H, Gao Y. Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels[J]. J. Mater. Chem. A, 2014, 3(7): 3390-3398.

[6] Jalali M S, Kumar S, Madani M, et al. Microhotplate for low power and ultra dense gaseous sensor arrays using recessed silica aerogel for heat insulation[C]. Galveston, TX, USA. IEEE, 2013: 133-136.

[7] Petukhov P A, Zhang J, Wang C Z, et al. Synthesis, molecular modeling, and biological studies of novel piperidine-based analogues of cocaine: evidence of unfavorable interactions proximal to the 3α-position of the piperidine ring[J]. Eur. J. Med. Chem., 2004, 47(12): 3009-3018.

[8] Buisson P, Pierre A C. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions[J]. J. Mol. Catal. B: Enzym., 2006, 42(4): 106-113.

[9] Chen-Yang W, Sie S F, Chen Y T, et al. Mesoporous silica aerogel as a drug carrier for the enhancement of the sunscreen ability of benzophenone-3[J]. Colloids Surf. A., 2014, 115(10): 191-196.

[10] Mora, Maria, F, et al. Extraction of amino acids from aerogel for analysis by capillary electrophoresis. Implications for a mission concept to Enceladus' Plume[J]. J. Electrochem. Soc., 2018, 39(4): 620-625.

[11] Yin H, Huang D, Qi Z, et al. Modeling thermal insulation of firefighting protective clothing embedded with phase change material[J]. Heat Mass Transfer., 2013, 49(4): 567-573.

[12] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 127(3211): 741-742.

[13] Kistler, S. S. Coherent expanded-aerogels[J]. J. phys. chem, 1931, 36(1): 52-64.

[14] Teichner S J, Nicolaon G A, Vicarini M A, et al. Inorganic oxide aerogels[J]. Adv. Colloid Interface Sci., 1976, 5(3): 245-273.

[15] Jiang Y, Feng J, Feng J. Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity[J]. J. Sol-Gel Sci. Technol., 2017, 83(1): 64-71.

[16] Gediminas, Markevicius, Rachid, et al. Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers[J]. J. Mater. Sci., 2016, 52(4): 1-12.

[17] Li Y K, Yang D K, Chen Y C, et al. A novel three-dimensional aerogel biochip for molecular recognition of nucleotide acids[J]. Acta Biomaterialia, 2010, 6(4): 1462-1470.

[18] Tran T D, Farmer J C, Murguia L. Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes. US: EP959280512, 2001.

[19] Wei W, Li C, Xie J, et al. Application of hydrophobic silica/fiber composite aerogels in organic absorption[J]. Mater. Sci. Forum, 2011, 675(5): 1035-1039.

[20] Kaveh A, Javadi S M, Maniat M. Damage assessment via modal data with a mixed particle swarm strategy, ray optimizer, and harmony search[J]. J. Civ. Eng., 2014, 15(1): 95-106.

[21] Alexander C G, Randy W, Johnson C M, et al. Novel microscale approaches for easy, rapid determination of protein stability in academic and commercial settings[J]. Biochim. Biophys. Acta, 2019, 1844(12): 2241-2250.

[22] Martin J, Hosticka B, Lattimer C, et al. Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels[J]. J. Non-Cryst. Solids, 2001, 285(1-3): 222-229.

[23] Venkataraman M, Mishra R, Kotresh T M, et al. Aerogels for thermal insulation in highperformance textiles[J]. Text. Prog., 2016, 48(2): 55-118.

[24] 沈军, 王际超, 倪星元. 以水玻璃为源常压制备高保温二氧化硅气凝胶[J]. 功能材料, 2009, 40(1): 4-5.

[25] Song, He, Dongmei, et al. Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass[J]. J. Non. Cryst. Solids., 2015, 410(3): 58-64.

[26] Kim C E, Yoon J S, Hwang H J. Synthesis of nanoporous silica aerogel by ambient pressure drying[J]. J. Sol-Gel Sci. Technol., 2009, 49(1): 47-50.

[27] Stolarski M, Walendziewski J, Steininger M, et al. Synthesis and characteristic of silica aerogels[J]. Appl. Catal., A, 1999, 177(2): 139-148.

[28] Tereshchenko T A, Shevchuk A V, Shevchenko V V, et al. Alkoxysilyl derivatives of polyhedral oligosilsesquioxanes containing amino and hydroxyl groups and sol-gel hybrid materials on their basis[J]. Polymer Science, 2006, 48(12): 1248-1256.

[29] Bassindale A R, Liu Z, Mackinnon I A, et al. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates[J]. Dalton Transactions, 2003, 14(14): 2945-2949.

[30] 刘双, 张洋, 江华. 纤维素气凝胶干燥方法的研究进展[J]. 纤维素科学与技术, 2017, 25(1): 8-10.

[31] Zhang G, Dass A, Rawashdeh A, et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization[J]. J. Non-Cryst. Solids, 2004, 350(7): 152-164.

[32] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chem. Rev., 2008, 108(9): 3893-3957.

[33] Sethi S, Rathore D K, Ray B C. Effects of temperature and loading speed on interfacedominated strength in fibre/polymer composites: An evaluation for in-situ environment[J]. Mater. Des., 2015, 65: 617-626.

[34] Capadona L A, Meador M, Alunni A, et al. Flexible, low-density polymer crosslinked silica aerogels[J]. Polymer, 2006, 47(16): 5754-5761.

[35] Boday D J, Keng P Y, Muriithi B. Mechanically reinforced silica aerogel nanocomposites via surface initiated atom transfer radical polymerizations[J]. J. Mater. Chem., 2010, 20(33): 6863-6871.

[36] Lin D, Yuen P Y, Liu Y, et al. A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus[J]. Adv. Mater., 2018, 30(32): 1802-1810.

[37] Parmenter K E, Milstein F. Mechanical properties of silica aerogels[J]. Journal of NonCrystalline Solids, 1998, 223(3): 179-189.

[38] Karout A, Buisson P, Perrard A, et al. Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts[J]. Journal of Sol-Gel Science and Technology, 2005, 36(2): 163-171.

[39] Deng Z, Wang J, Wu A, et al. High strength SiO2 aerogel insulation[J]. J. Non-Cryst. Solids, 1998, 225(1): 101-104.

[40] Yang X, Sun Y, Shi D. Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced SiO2 aerogel[J]. J. Non-Cryst. Solids, 2012, 358(3): 519-524.

[41] Sun M, Feng J, Han S, et al. Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatographyflame ionization detection[J]. Microchim. Acta., 2021, 188(3): 96-105.

[42] Ryu J. Flexible aerogel superinsulation and its manufacture. US, US06068882A, 2000.

[43] Hæreid S, Einarsrud M A, Scherer G W. Mechanical strengthening of TMOS-based alcogels by aging in silane solutions[J]. J. Sol-Gel Sci. Technol., 1994, 3(3): 199-204.

[44] Sai H, Xing L, Xiang J, et al. Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process[J]. RSC Adv., 2014, 4(57): 30453-30461.

[45] Markevicius G, Jaxel J, Niemeyer P, et al. Thermal superinsulating silica aerogels and xerogels reinforced with short cellulose fibers[J]. J. Am. Chem. Soc., 2017, 253(7): 1756-1761.

[46] Koebel M M, Huber L, Zhao S, et al. Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale[J]. J. Sol-Gel Sci. Technol., 2016, 79(2): 308-318.

[47] Litschauer M, Neouze M A, Haimer E, et al. Silica modified cellulosic aerogels[J]. Cellul. Chem. Technol., 2011, 18(1): 143-149.

[48] Liu S, Yu T, Hu N, et al. High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds[J]. Colloids Surf. A., 2013, 439: 159-166.

[49] Li L, Yalcin B, Nguyen B N, et al. Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization[J]. ACS Appl. Mater. Interfaces, 2009, 1(11): 2491-2495.

[50] Linhares T, Amorim M T, Dures L. Silica aerogel composites with embedded fibres: a review on preparation, properties and applications[J]. J. Mater. Chem. A, 2019, 7(40): 196-204.

[51] Zhang Z, Shen J, Ni X, et al. Hydrophobic silica aerogels strengthened with nonwoven fibers[J]. J. Macromol. Sci. Part A Pure Appl. Chem., 2006, 187(11): 1663-1670.

[52] Wu H, Chen Y, Chen Q, et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermalinsulation[J]. J. Nanomaterials, 2013, 6(2): 10-12.

[53] Dong H, Brennan J D. Macroporous monolithic methylsilsesquioxanes prepared by a two-step acid/acid processing method[J]. Chem. Mater., 2006, 18(17): 4176-4182.

[54] Popp M, Sulyok M, Rosenberg E. Chromatographic characterisation of a novel type of monolithic methylsilsesquioxane-based HPLC column[J]. J. Sep. Sci., 2015, 30(17): 2888-2899.

[55] Shiu J Y, Kuo C W, Chen P, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chem. Mater., 2004, 16(4): 561-564.

[56] Padovani A M, Rhodes L, Riester L, et al. Porous methylsilsesquioxane for low-k dielectric applications[J]. Electrochem. Solid-State Lett., 2001, 4(11): 25-32.

[57] Yin G, Yuan Q, Ning Z. Repairing oxygen plasma-damaged on low dielectric constant MSQ (methylsilsesquioxane) films with anneal[J]. J. Electroceram., 2012, 28(1): 70-73.

[58] Kanamori K, Nakanishi K. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths[J]. Cheminform, 2011, 40(2): 754-770.

[59] Kanamori K, Kodera Y, Hayase G, et al. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol–gel system[J]. J. Colloid Interface Sci., 2011, 357(2): 336-344.

[60] Gen, Hayase, Kazuyoshi, et al. New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors[J]. J. Mater. Chem., 2011, 21(43): 17077-17079.

[61] Shimizu T, Kanamori K, Nakanishi K. 2017 Transparent polyvinylsilsesquioxane aerogels- investigations on synthetic parameters and surface modification.[J]. J. SolGel Sci. Technol., 82(1): 2-14.

[62] Cao L, Fu Q, Yang S, et al. Porous materials for sound absorption[J]. Compos. Commun., 2018, 10(9): 25-35.

[63] T L, T Z, D. W. Efficient preparation of crack-free, low-density and transparent polymethylsilsesquioxane aerogels via ambient pressure drying and surface modification[J]. RSC Adv., 2018, 8(32): 17967-17975.

[64] Wu X, Fan M, Mclaughlin J F, et al. A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique[J]. Powder Technol., 2018, 323(6): 310-322.

[65] Lin J, Chen H, Fei T, et al. Highly transparent and thermally stable superhydrophobic coatings from the deposition of silica aerogels[J]. Appl. Surf. Sci., 2013, 273(3): 776-786.

[66] Li T, Tao W. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure[J]. Mater. Chem. Phys., 2008, 112(2): 398-401.

[67] Ok S S, Ko F, Gizli N. Hydrophobic silica aerogels synthesized in ambient conditions by preserving the pore structure via two-step silylation[J]. Ceram. Int., 2020, 46(17): 687-693.

[68] Ruhi A, Messager M L, Olden J D. Tracking the pulse of the Earth’s fresh waters[J].Nature Sustainability, 2018, 1(4): 198-203.

[69] Xu W, Hu X, Zhuang S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Adv. Energy Mater., 2018, 8(14): 1702-1710.

中图分类号:

 TB33    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式