- 无标题文档
查看论文信息

论文中文题名:

 一类单自由度非光滑隔振系统动力学特征及随机响应研究    

姓名:

 严旺    

学号:

 19201106030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0801    

学科名称:

 工学 - 力学(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 力学    

研究方向:

 随机动力学    

第一导师姓名:

 李自刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Dynamic Characteristics and Stochastic Responses of a Single-Degree-of-Freedom Non-Smooth Vibration Isolation System    

论文中文关键词:

 非光滑动力系统 ; 全局动力学 ; 短时概率近似 ; 噪声诱导跃迁 ; 隔振系统    

论文外文关键词:

 Non-smooth Dynamical System ; Global Dynamics ; Short-Time Probability Approximation ; Noise-Induced Transition ; Vibration Isolation System    

论文中文摘要:

隔振装置在机械设备中广泛应用,其非光滑特性可能导致整个系统具有多稳态响应共存、不稳定不变集以及复杂边界结构等非线性动力学特征。同时,作用在系统上的不确定扰动可能使机组产生一系列的动态效应,进而诱导系统在不同响应间切换和跃迁,甚至改变整个系统的动力学行为,并由此产生振动、噪声和故障等问题。因此,研究非光滑隔振系统的动力学特征以及噪声激励下系统的随机响应行为对系统响应预测,寿命预估等有着重要的作用。

为了解决随机系统大范围响应跃迁求解时的巨大计算消耗问题,本文首先在非线性随机动力学相关理论方法的框架下,结合主成分分析(Principal Component Analysis, PCA)技术和演化概率向量(Evolving Probabilistic Vector, EPV)技术,从数据驱动的角度提出了一种基于少量响应样本PCA的短时概率分布近似方法。该方法能够很好的实现Lévy噪声激励下系统响应跃迁的高效求解。另外,本文发展的数值计算方法具有进一步应用于研究其它非Gauss激励下系统瞬态概率密度演化行为的潜力。

其次,考虑到系统的基础牵连运动和限位器间歇接触的特点,在确定性框架下建立了包含间歇接触特征的系统确定性动力学模型,利用广义胞映射方法从全局动力学角度研究了系统的动力学特征。结果表明:不同工况下单自由度非光滑隔振系统普遍存在多稳态响应共存现象,支承刚度系数和限位器间隙的改变会导致系统响应在双稳态和多稳态之间切换,并且支承刚度系数的增大会加速无碰撞周期响应的湮灭。与之相反,限位器间隙的增加则会扩大无碰撞周期响应的吸引域范围。

再次,针对Gauss白噪声激励的随机动力学模型,基于短时Gauss近似的路径积分方法定性分析了系统响应的瞬态概率密度分布及其动力学演化行为,揭示了噪声诱导的不同随机分岔现象。分析显示:噪声改变了系统全局结构的表现形式,形成了随机吸引子,并且模糊了相邻吸引域的边界。当随机强度超过阈值后,甚至诱发出边界激变(Boundary Crisis)等危险分岔现象,此时响应概率密度会沿不稳定流形演化至其它共存的吸引域内部。

最后,通过和其它数值方法对比,验证了基于少量响应样本PCA的短时概率分布近似方法的有效性,并采用该方法研究了Lévy噪声激励下系统的随机响应行为,定性观察了噪声诱导的瞬态概率密度转移现象,定量讨论了噪声参数对响应逃逸时间的影响。具体结果为:稳定不变集和不稳定不变集等确定性全局结构奠定了随机响应的基本框架,通过对比不同类型噪声下响应概率密度的跃迁过程,发现扰动形式会造成瞬态演化存在一定差异,但演化的最终状态却保持一致,而且偏斜参数和噪声强度会明显改变响应的逃逸时间。

以上研究将有助于深入了解确定性全局结构和噪声的相互作用关系,以及它们在单自由度非光滑隔振系统随机稳定性中的作用。

论文外文摘要:

Vibration isolation system, whose non-smooth features could induce some nonlinear dynamic characteristics such as coexistence of multiple steady-state responses, unstable invariant sets and complex boundary, is widely applied in some mechanical equipments. Furthermore, uncertain disturbances subjected to system could bring about some undesirable vibrations and boresome noises as well as catastrophe by the significant changes of system in different responses and even dynamic structures. Therefore, the investigations on dynamic characteristics and stochastic responses of non-smooth vibration isolation system under noises can gain insight into life estimation and response prediction of mechanical systems.

To release the huge computing cost on solving noise-induced large transition of responses, a short-time probability distribution approximation method based on a small number of response samples PCA is firstly proposed in this thesis, from a data-driven perspective by combining PCA and EPV techniques. The proposed method can work nicely to capture probability transition of system with input of Lévy excitation. Note that the numerical method developed in this paper has the potential to be further applied to investigation of the transient probability evolution of systems under other non-Gaussian excitations.

Secondly, a deterministic dynamic model with discontinuous impact characteristics is established by considering the basic implicated motion and intermittent impact of the vibration isolation system, and the dynamic characteristics of the system are studied from the perspective of global dynamics using the generalized cell mapping method. The results show that the coexistence of multiple steady-state responses is common in the non-smooth vibration isolation system under different working conditions. The change of linear stiffness coefficient and limiter clearance will cause the system response to vary between bistability and multi-stability, and the increase of linear stiffness coefficient will lead to the annihilation of non-collision periodic response, while on the contrary, the range of attraction domain corresponding to non-collision periodic response will be expanded when the limiter clearance increases.

Thirdly, the dangerous bifurcation phenomenon and probability density evolution of the system excited by Gauss white noise are analyzed qualitatively by a path integral method based on the short-time Gaussian approximation. The analysis shows that the noise changes the form of the global structure, creating stochastic attractors and blurring the boundaries of adjacent attractive domains. When the stochastic intensity exceeds a threshold, dangerous bifurcations such as boundary crisis may even be induced, and the response probability density will evolve to other coexisting basins of attraction along the unstable manifold.

Finally, the validity of the short-time probability distribution approximation method based on a small number of response samples PCA is verified by compared with other numerical methods. At the same time, the probability density transition of the response under Lévy noise excitation and the effect of noise parameters on the response escape time is studied by this method. The results are as follows: the deterministic global structure shows the base frame of dynamical behaviors, and different disturbance forms will cause certain differences in the transient evolution, but the final state of evolution remains consistent. Moreover, the skewness parameter and noise intensity will significantly change the escape time of response.

The above research will help to understand the interaction between deterministic global structure and noise, and their roles in the stochastic stability of single-degree-of-freedom non-smooth vibration isolation systems.

参考文献:

[1] 侯勇俊, 谭海军, 方潘, 等. 双激振电机驱动旋转振动筛系统的同步理论研究[J]. 振动与冲击, 2019, 38(07): 179-185.

[2] 高溥, 王娜. 振动平板夯周期运动的稳定性与分岔[J]. 振动与冲击, 2007(10): 132-136+193.

[3] Wong B J, Majumdar K, Ahluwalia K, et al. Effects of high frequency vibratory finishing of aerospace components[J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1809-1815.

[4] Yang H, Wang Z, Zhang T, et al. A review on vibration analysis and control of machine tool feed drive systems[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(1-2): 1-23.

[5] Qin W, Qin H, Zheng H, et al. The coupled effect of bearing misalignment and friction on vibration characteristics of a propulsion shafting system[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(1): 150-163.

[6] Saxena S, Pandey J P, Solanki R S, et al. Coupled mechanical, metallurgical and FEM based failure investigation of steam turbine blade[J]. Engineering Failure Analysis, 2015, 52: 35-44.

[7] Guo L, Khiu A, Fan R L, et al. Analysis of a passive scissor-like structure isolator with quasi-zero stiffness for a seating system vibration-isolation application[J]. International Journal of Vehicle Design, 2020, 82(1-4): 224-240.

[8] Park Y H, Jo M S, Lee E S, et al. Performance enhancement of spaceborne cooler passive launch and on-orbit vibration isolation system[J]. International Journal of Aerospace Engineering, 2020, 2020: 6017957.

[9] Xie X, Li M, Du X L. Nonlinear dynamics of marine rotor-bearing system coupled with vibration isolation structure subject to ship rolling motion[J]. Applied Mathematical Modelling, 2022, 103: 344-359.

[10] Qu D, Liu X, Liu G, et al. Analysis of vibration isolation performance of parallel air spring system for precision equipment transportation[J]. Measurement and Control, 2019, 52(3-4): 291-302.

[11] 赖俊杰, 浮洁, 白俊峰, 等. 精密加工平台隔振系统多频振动控制[J]. 振动与冲击, 2019, 38(10): 242-249.

[12] 刘海超, 闫明, 冯麟涵. 带限位隔振系统的冲击响应分析[J]. 振动与冲击, 2019, 38(21): 172-177.

[13] Lu Z Q, Chen L Q, Brennan M J, et al. Stochastic resonance in a nonlinear mechanical vibration isolation system[J]. Journal of Sound and Vibration, 2016, 370: 221-229.

[14] Yang T, Cao Q. Noise- and delay-enhanced stability in a nonlinear isolation system[J]. International Journal of Non-Linear Mechanics, 2019, 110: 81-93.

[15] Xu C. Probabilistic mechanisms of the noise-induced oscillatory transitions in a leslie type predator-prey model[J]. Chaos, Solitons and Fractals, 2020, 137: 109871.

[16] 严济宽. 机械振动隔离技术[M]. 上海科学技术文献出版社, 1986.

[17] 王福新, 胡海岩. 含弹性与阻尼约束的隔振系统动力学设计[J]. 振动工程学报, 1997(04): 3-11.

[18] Laalej H, Lang Z Q, Daley S, et al. Application of non-linear damping to vibration isolation: an experimental study[J]. Nonlinear Dynamics, 2012, 69(1): 409-421.

[19] 韩璐, 孟宪松, 闫明, 等. 带限位器单层隔振系统冲击响应研究[J]. 噪声与振动控制, 2017, 37(05): 29-32.

[20] Zhang Y, Wei G, Wen H, et al. Design and analysis of a vibration isolation system with cam–roller–spring–rod mechanism[J]. Journal of Vibration and Control, 2021: 10775463211000516.

[21] Cheng C, Li S, Wang Y, et al. Resonance response of a quasi-zero stiffness vibration isolator considering a constant force[J]. Journal of Vibration Engineering and Technologies, 2018, 6(6): 471-481.

[22] Alabuzhev P, Gritchin A, Kim L, et al. Vibration protecting and measuring systems with quasi-zero stiffness[M]. USA: Hemisphere Publishing Corporation, 1989.

[23] 任旭东. 空气弹簧准零刚度隔振器的特性分析及引用研究[D]. 北京: 中国人民解放军军事医学科学院, 2017.

[24] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5): 707-717.

[25] Ho C, Lang Z Q, Billings S A. Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities[J]. Journal of Sound and Vibration, 2014, 333(12): 2489-2504.

[26] 刘桥, 贺科学, 黄协清. 含三次非线性位移的粘性阻尼干摩擦隔振系统振动特性的实验研究[J]. 振动与冲击, 2007(03): 135-138+142+164.

[27] 刘兴天, 陈树海, 王嘉登, 等. 几何非线性摩擦阻尼隔振系统动力学行为研究[J]. 力学学报, 2019 , 51(02): 371-379.

[28] Ferdek U, Dukała M. Experimental analysis of nonlinear characteristics of absorbers with wire rope isolators[J]. Open Engineering, 2021, 11(1): 1170-1179.

[29] Kumar P, Narayanan S, Gupta S. Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers[J]. International Journal of Mechanical Sciences, 2017, 127: 103-117.

[30] Cavalieri F J, Cardona A. Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics[J]. Mechanism and Machine Theory, 2018, 121: 335-354.

[31] Jiang J. Determination of the global responses characteristics of a piecewise smooth dynamical system with contact[J]. Nonlinear Dynamics, 2009, 57(3): 351-361.

[32] Yue X L, Xiang Y L, Xu Y, et al. Global dynamics of the dry friction oscillator with shape memory alloy[J]. Archive of Applied Mechanics, 2020, 90(12): 2681-2692.

[33] Hasnijeh S G, Poursina M, Leira B J, et al. Stochastic dynamics of a nonlinear time-varying spur gear model using an adaptive time-stepping path integration method[J]. Journal of Sound and Vibration, 2019, 447: 170-185.

[34] Li G, Yue Y, Xie J, et al. Strange nonchaotic attractors in a nonsmooth dynamical system[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104858.1-104858.10.

[35] Mofidian S M M, Bardaweel H. Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements[J]. Journal of Vibration and Control, 2018, 24(18): 4247-4259.

[36] Gao X, Chen Q, Liu X. Nonlinear dynamics and design for a class of piecewise smooth vibration isolation system[J]. Nonlinear Dynamics, 2016, 84(3): 1715-1726.

[37] Heidari H, Afifi A. Design and fabrication of an energy-harvesting device using vibration absorber[J]. European Physical Journal Plus, 2017, 132(5): 233.

[38] Sengha G G, Kenfack W F, Siewe M S, et al. Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105364.

[39] 黄冬梅. 典型碰撞振动系统和实幂率隔振系统的随机动力学研究[D]. 西安: 西北工业大学, 2016.

[40] Li Z G, Jiang J, Hong L. Noise-induced transition in a piecewise smooth system by generalized cell mapping method with evolving probabilistic vector[J]. Nonlinear Dynamics, 2017, 88(2): 1473-1485.

[41] George C, Virgin L N, Witelski T. Experimental study of regular and chaotic transients in a non-smooth system[J]. International Journal of Non-Linear Mechanics, 2016, 81: 55-64.

[42] Yin S, Shen Y, Wen G, et al. Analytical determination for degenerate grazing bifurcation points in the single-degree-of-freedom impact oscillator[J]. Nonlinear Dynamics, 2017, 90(1): 443-456.

[43] Wang S Z, Hong L, Jiang J. Nonsmooth behavior of sliding bifurcations in a general piecewise smooth rotor/stator rubbing system[J]. International Journal of Bifurcation and Chaos, 2021, 31(2): 2150085.

[44] Di Bernardo M, Hogan S J. Discontinuity-induced bifurcations of piecewise smooth dynamical systems[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1930): 4915-4935.

[45] 胡海岩. 分段光滑机械系统动力学的进展[J]. 振动工程学报, 1995(04): 331-341.

[46] Leine R I, Van Campen D H. Bifurcation phenomena in non-smooth dynamical systems[J]. European Journal of Mechanics-A/Solids, 2006, 25(4): 595-616.

[47] Makarenkov O, Lamb J S W. Dynamics and bifurcations of nonsmooth systems: a survey[J]. Physica D: Nonlinear Phenomena, 2012, 241(22): 1826-1844.

[48] 江俊, 高文辉. 一类分段光滑非线性平面运动系统响应特性研究[J]. 力学学报, 2013, 45(1): 16-24.

[49] Miao P, Li D, Chen H, et al. Generalized Hopf bifurcation of a non-smooth railway wheelset system[J]. Nonlinear Dynamics, 2020, 100(4): 3277-3293.

[50] Jafari S, Nazarimehr F, Alsaadi F Z, et al. Investigating bifurcation points of an impact oscillator[J]. Indian Journal of Physics, 2021, 95(5): 925-933.

[51] Meleshenko P A, Semenov M E, Klinskikh A F. Conservative chaos in a simple oscillatory system with non-smooth nonlinearity[J]. Nonlinear Dynamics, 2020, 101(4): 2523-2540.

[52] 郑伟谋, 郝柏林. 实用符号动力学[J]. 物理学进展, 1990(03): 316-373.

[53] Atangana A, Qureshi S. Modeling attractors of chaotic dynamical systems with fractal–fractional operators[J]. Chaos, solitons and fractals, 2019, 123: 320-337.

[54] Zhang G, Chen G, Chen T, et al. Analysis of a type of nonsmooth dynamical systems[J]. Chaos, Solitons and Fractals, 2006, 30(5): 1153-1164.

[55] 冯进钤, 徐伟. Duffing单边碰撞系统的混沌鞍合并激变[J]. 物理学报, 2011, 60(8): 59-64.

[56] Li T, Lamarque C H, Seguy S, et al. Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink[J]. Nonlinear Dynamics, 2018, 91(4): 2319-2330.

[57] Simpson D J W, Avrutin V, Banerjee S. Nordmark map and the problem of large-amplitude chaos in impact oscillators[J]. Physical Review E, 2020, 102(2): 022211.

[58] Bashkirtseva I, Ryashko L. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021, 31(5): 053101.

[59] Shajan E, Asir M P, Dixit S, et al. Enhanced synchronization due to intermittent noise[J]. New Journal of Physics, 2021, 23(11): 112001.

[60] Sorokin V, Blekhman I. On the stochastic resonance phenomenon in parametrically excited systems[J]. European Journal of Applied Mathematics, 2019, 30(5): 986-1003.

[61] 都琳, 徐伟, 许勇, 等. 噪声诱导的二维复时空系统的同步研究[J]. 物理学报, 2012, 61(05): 69-76.

[62] Benzi R, Parisi G, Sutera A, et al. Stochastic resonance in climatic change[J]. Tellus, 1982, 34(1): 10-16.

[63] 闫盖, 方明霞, 杨英豪, 等. 超声速二元机翼随机混沌运动分析[J]. 国防科技大学学报, 2021, 43(03): 23-31.

[64] Lyon R H, Heckl M, Hazelgrove C B. Response of hard‐spring oscillator to narrow‐band excitation[J]. The Journal of the Acoustical Society of America, 1961, 33(10): 1404-1411.

[65] Jing H S, Sheu K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibro-impact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373.

[66] Feng Q, He H. Modeling of the mean Poincaré map on a class of random impact oscillators[J]. European Journal of Mechanics-A/Solids, 2003, 22(2): 267-281.

[67] 李雪平, 王坤, 魏鹏, 等. 一种基于等效线性化的非平稳随机动力响应分析的显式迭代算法[J]. 动力学与控制学报, 2017, 15(03): 262-267.

[68] Wang K, Zhu Z, Xu L. Transient probabilistic solutions of stochastic oscillator with even nonlinearities by exponential polynomial closure method[J]. Journal of Vibration and Control, 2021: 1077546320987778.

[69] 朱位秋. 拟Hamilton系统的随机平均[J]. 中国科学(A辑), 1995(10): 1091-1100.

[70] 朱位秋. 随机平均法及其应用[J]. 力学进展, 1987(03): 342-352.

[71] 张雷, 吴勇军. 五自由度强非线性随机振动系统的首次穿越研究[J]. 振动与冲击, 2012, 31(12): 1-4.

[72] Zhao X, Xu W, Yang Y, et al. Stochastic responses of a viscoelastic-impact system under additive and multiplicative random excitations[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 35: 166-176.

[73] Guo S S. Transient responses of stochastic systems under stationary excitations[J]. Probabilistic Engineering Mechanics, 2018, 53: 59-65.

[74] 徐伟. 非线性随机动力学的若干数值方法及应用[M]. 科学出版社, 2013.

[75] Sun J Q, Hsu C S. The generalized cell mapping method in nonlinear random vibration based upon short-time gaussian approximation[J]. Journal of Applied Mechanics, 1990, 57(4): 1018-1025.

[76] Sun J Q. Random vibration analysis of a non-linear system with dry friction damping by the short-time gaussian cell mapping method[J]. Journal of Sound and Vibration, 1995, 180(5): 785-795.

[77] Han Q, Yue X, Chi H, et al, Stochastic response and bifurcations of a dry friction oscillator with periodic excitation based on a modified short-time gaussian approximation scheme[J], Nonlinear Dynamics, 2019, 96 (3): 2001-2011.

[78] Xu Y, Zan W, Jia W, et al. Path integral solutions of the governing equation of SDEs excited by Lévy white noise[J]. Journal of Computational Physics, 2019, 394: 41-55.

[79] Sun J Q, Stochastic dynamics and control, monograph series on nonlinear science and complexity[M], Vol.4, Elsevier, 2006.

[80] Feynman R P. Space-time approach to von-relativistic quantum mechanics[J]. Review of Modern Physics, 1948, 20(2): 367-387.

[81] Yu J S, Cai G Q, Lin Y K. A new path integration procedure based on Gauss-Legendre scheme[J]. International journal of non-linear mechanics, 1997, 32(4): 759-768.

[82] Li Z G, Jiang J, Hong L. Transient behaviors in noise-induced bifurcations captured by generalized cell mapping method with an evolving probabilistic vector[J]. International Journal of Bifurcation and Chaos, 2015, 25(08): 1550109.

[83] Hsu C S. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems[J]. Journal of Applied Mechanics, 1981, 48(3): 634.

[84] Thompson J M T, Stewart H B, Ueda Y. Safe, explosive, and dangerous bifurcations in dissipative dynamical systems[J]. Physical Review E, 1994, 49(2): 1019.

[85] Perc M, Marhl M. Noise-induced spatial dynamics in the presence of memory loss[J]. Physica A: Statistical Mechanics and its Applications, 2007, 375(1): 72-80.

[86] Xu Y, Li Y, Li J, et al. The phase transition in a bistable duffing system driven by Lévy noise[J]. Journal of Statistical Physics, 2015, 158(1): 120-131.

中图分类号:

 O324    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式